Please wait a minute...
Journal of Integrative Agriculture  2024, Vol. 23 Issue (8): 2649-2661    DOI: 10.1016/j.jia.2024.03.015
Horticulture Advanced Online Publication | Current Issue | Archive | Adv Search |
JrATHB-12 mediates JrMYB113 and JrMYB27 to control the anthocyanin levels in different types of red walnut
Haifeng Xu1, Guifang Wang1, Xinying Ji2, Kun Xiang1, Tao Wang1, Meiyong Zhang1, Guangning Shen1, Rui Zhang3, Junpei Zhang2#, Xin Chen1#
Key Laboratory of Huanghuai Protected Horticulture Engineering/National Germplasm Repository of Walnut and Chestnut, Shandong Institute of Pomology, Tai’an 271000, China
2 Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
3 College of Horticulture and Forestry, Tarim University, Alaer 843300, China
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  
红核桃因其比普通核桃富含花青苷而具有广阔市场前景。然而,红核桃花青苷生物合成机制仍是未知的。我们研究了两种类型红核桃,R1型带有红色的果皮和种皮,R2型仅有红色的种皮。R1型红色部分主要为矢车菊素-3-O-半乳糖苷,而R2型中矢车菊素-3-O-半乳糖苷,矢车菊素-3-O-阿拉伯糖苷,矢车菊素-3-O-葡萄糖苷均占有一定比例。编码无色花青素双加氧酶/花青素合成酶的基因LDOX-2LDOX-3被初步鉴定为分别是R1和R2型红核桃花青苷生物合成关键基因。MYB差异基因分析发现MYB27MYB113分别在R1和R2型红色部位特异表达,被当做花青苷生物合成候选调控基因。拟南芥异源表达和核桃果实瞬时注射表明细胞核定位的MYB27和MYB113均能启动花青苷的积累,并且MYB27能促进LDOX-2的表达,MYB113能促进LDOX-3UAGT-3的表达。酵母单杂交和EMSA分析进一步验证了MYB27仅能结合LDOX-2的启动子,而MYB113能结合LDOX-3UAGT-3的启动子。此外,我们还鉴定到一个果皮特异表达的HD-Zip转录因子ATHB-12,在果皮中沉默它的表达后,仅有R2型红核桃果皮变红,同时MYB113表达增加,进一步实验表明ATHB-12能特异的与MYB113互作并结合其启动子。这些结果表明MYB27能通过调控LDOX-2表达来控制R1型红核桃着色,而MYB113能通过调控LDOX-3UAGT-3表达来控制R2型红核桃着色,但ATHB-12能特定结合并抑制R2型果皮中MYB113的表达,从而使R2型红核桃果皮不着色。本研究揭示了不同类型红核桃花青苷生物合成机制,为未来选育红核桃品种提供了科学依据。


Abstract  
Red walnut has broad market prospects because it is richer in anthocyanins than ordinary walnut.  However, the mechanism driving anthocyanin biosynthesis in red walnut is still unknown.  We studied two types of red walnut, called red walnut 1 (R1), with a red pericarp and seed coat, and red walnut 2 (R2), with a red seed coat only.  R1 mostly contained cyanidin-3-O-galactoside, while R2 contained a various amounts of cyanidin-3-O-galactoside, cyanidin-3-O-arabinoside, and cyanidin-3-O-glucoside.  The LDOX-2 (LOC109007163) and LDOX-3 (LOC109010746) genes, which encode leucoanthocyanidin dioxygenase/anthocyanidin synthase (LDOX/ANS), were preliminarily indicated as the crucial genes for anthocyanin biosynthesis in R1 and R2, respectively.  The MYB differential genes analysis showed that MYB27 and MYB113 are specifically expressed in the red parts of R1 and R2, respectively, and they are regarded as candidate regulatory genes.  Ectopic expression in Arabidopsis and transient injection in walnut showed that both MYB27 and MYB113 were located in the nucleus and promoted anthocyanin accumulation, while MYB27 promoted the expression of LDOX-2, and MYB113 promoted the expression of LDOX-3 and UAGT-3.  Yeast one-hybrid and electrophoretic mobility shift assays showed that MYB27 could only bind to the LDOX-2 promoter, while MYB113 could bind to the promoters of both LDOX-3 and UAGT-3.  In addition, we also identified an HD-Zip transcription factor, ATHB-12, which is specifically expressed in the pericarp.  After silencing the expression of ATHB-12, the R2 pericarp turned red, and MYB113 expression increased.  Further experiments showed that ATHB-12 could specifically interact with MYB113 and bind to its promoter.  This suggests that MYB27 controls R1 coloration by regulating LDOX-2, while MYB113 controls R2 coloration by regulating LDOX-3 and UAGT-3, but ATHB-12 can specifically bind to and inhibit the MYB113 of the R2 pericarp so that it becomes unpigmented.  This study reveals the anthocyanin biosynthetic mechanisms in two different types of red walnut and provides a scientific basis for the selection and breeding of red walnut varieties.


Keywords:  JrATHB-12       JrMYB113        JrMYB27        red walnut        anthocyanin biosynthesis  
Received: 06 July 2023   Accepted: 24 January 2024
Fund: 
This work was supported by the National Key Research and Development Program, China (2022YFD2200402), the Improved Variety Program of Shandong Province, China (2020LZGC0902), the Special Fund for Innovation Teams of Fruit Trees in Agricultural Technology System of Shandong Province, China (SDAIT-06-01) and the Agricultural Science and Technology Innovation Project of Shandong Academy of Agricultural Sciences, China (CXGC2021B34).
About author:  Haifeng Xu, E-mail: xhfdl1991@163.com; #Correspondence Xin Chen, E-mail: sdaucx@163.com; Junpei Zhang, E-mail: zhangjunpei@caf.ac.cn

Cite this article: 

Haifeng Xu, Guifang Wang, Xinying Ji, Kun Xiang, Tao Wang, Meiyong Zhang, Guangning Shen, Rui Zhang, Junpei Zhang, Xin Chen. 2024. JrATHB-12 mediates JrMYB113 and JrMYB27 to control the anthocyanin levels in different types of red walnut. Journal of Integrative Agriculture, 23(8): 2649-2661.

Ahmed N U, Park J, Jung H, Yang T, Hur Y, Nou I. 2014. Characterization of dihydroflavonol 4-reductase (DFR) genes and their association with cold and freezing stress in Brassica rapaGene550, 46–55.

Albert N W, Davies K M, Lewis D H, Zhang H Bi, Montefiori M, Brendolise C, Boase M R, Ngo H, Jameson P E, Schwinn K E. 2014. A conserved network of transcriptional activators and repressors regulates anthocyanin pigmentation in eudicots. The Plant Cell26, 962–980.

An J P, Wang X F, Hao Y J. 2020. BTB/TAZ protein MdBT2 integrates multiple hormonal and environmental signals to regulate anthocyanin biosynthesis in apple. Journal of Integrative Plant Biology62, 1643–1646.

An X H, Tian Y, Chen K Q, Wang X F, Hao Y J. 2012. The apple WD40 protein MdTTG1 interacts with bHLH but not MYB proteins to regulate anthocyanin accumulation. Journal of Plant Physiology169, 710–717.

Bitok E, Jaceldo-Siegl K, Rajaram S, Serra-Mir M, Roth I, Feitas-Simoes T, Ros E, Sabaté J. 2017. Favourable nutrient intake and displacement with long-term walnut supplementation among elderly: Results of a randomised trial. British Journal of Nutrition118, 201–209.

Chagné D, Lin-Wang K, Espley R V, Volz R K, How N M, Rouse S, Brendolise C, Carlisle C M, Kumar S, Silva N D, Micheletti D, McGhie T, Crowhurst R N, Storey R D, Velasco R, Hellens R P, Gardiner S E, Allan A C. 2013. An ancient duplication of apple MYB transcription factors is responsible for novel red fruit-flesh phenotypes. Plant Physiology161, 225–239.

Cui D L, Zhao S X, Xu H N, Allan A C, Zhang X D, Fan L, Chen L M, Su J, Shu Q, Li K Z. 2021. The interaction of MYB, bHLH and WD40 transcription factors in red pear (Pyrus pyrifolia) peel. Plant Molecular Biology106, 407–417.

Davies K M, Albert N W, Schwinn K E. 2012. From landing lights to mimicry: The molecular regulation of flower colour patterns. Functional Plant Biology39, 619–638.

Espley R V, Brendolise C, Chagné D, Kutty-Amma S, Green S, Volz R, Putterill J, Schouten H J, Gardiner S E, Hellens R P, Allana A C. 2009. Multiple repeats of a promoter segment causes transcription factor autoregulation in red apples. The Plant Cell21, 168–183.

Espley R V, Hellens R P, Putterill J, Stevenson D E, Kutty-Amma S, Allan A C. 2007. Red colouration in apple fruit is due to the activity of the MYB transcription factor MdMYB10. The Plant Journal49, 414–427.

Ji X H, Wang Y T, Zhang R, Wu S J, An M M, Li M, Wang C Z, Chen X L, Zhang Y M, Chen X S. 2015. Effect of auxin, cytokinin and nitrogen on anthocyanin biosynthesis in callus cultures of redfleshed apple (Malus sieversii f. niedzwetzkyana). Plant Cell Tissue and Organ Culture, 120, 325–337.

Jiang Y H, Liu C H, Yan D, Wen X H, Liu Y L, Wang H J, Dai J Y, Zhang Y J, Liu Y F, Zhou B, Ren X L. 2017. MdHB1 down-regulation activates anthocyanin biosynthesis in the white-fleshed apple cultivar ‘Granny Smith’. Journal of Experimental Botany68, 1055–1069.

Jun J Y, Liu C G, Xiao X R, Dixon R A. 2015. The transcriptional repressor MYB2 regulates both spatial and temporal patterns of proanthocyandin and anthocyanin pigmentation in Medicago truncatulaThe Plant Cell27, 2860–2879.

Kubo H, Peeters A J M, Aarts M G M, Pereira A, Koornneef M. 1999. ANTHOCYANINLESS2, a homeobox gene affecting anthocyanin distribution and root development in ArabidopsisThe Plant Cell11, 1217–1226.

Lin-Wang K, Bolitho K, Grafton K, Kortstee A, Karunairetnam S, McGhie T, Espley R, Hellens R, Allan A. 2010. An R2R3 MYB transcription factor associated with regulation of the anthocyanin biosynthetic pathway in Rosaceae. BMC Plant Biology10, 50.

Li Y Z, Luo X, Wu C Y, Cao S Y, Zhou Y F, Jie B, Cao Y L, Meng H J, Wu G L. 2018. Comparative transcriptome analysis of genes involved in anthocyanin biosynthesis in red and green walnut (Juglans regia L.). Molecules23, 25.

Liu X F, Feng C, Zhang M M, Yin X R, Xu C J, Chen K S. 2013. The MrWD40-1 gene of Chinese bayberry (Myrica rubra) interacts with MYB and bHLH to enhance anthocyanin accumulation. Plant Molecular Biology Reporter31, 1474–1484.

Lloyd A, Brockman A, Aguirre L, Campbell A, Bean B, Cantero A, Gonzalez A. 2017. Advances in the MYB-bHLH-WD repeat (MBW) pigment regulatory model: Addition of a WRKY factor and co-option of an anthocyanin MYB for betalain regulation. Plant and Cell Physiology58, 1431–1441.

Lu P T, Zhang C Q, Liu J T, Liu X W, Jiang G M, Jiang X Q, Khan M A, Wang L S, Hong B, Gao J P. 2014. RhHB1 mediates the antagonism of gibberellins to ABA and ethylene during rose (Rosa hybrida) petal senescence. The Plant Journal78, 578–590.

McGranahan G, Leslie C. 2004. ‘Robert Livermore’, a Persian walnut cultivar with a red seed coat. Horticultural Science39, 1772.

Miao Z Q, Zhao P X, Mao J L, Yu L H, Yuan Y, Tang H, Liu Z B, Xiang C B. 2018. HOMEOBOXPROTEIN52 mediates the crosstalk between ethylene and auxin signaling during primary root elongation by modulating auxin transport-related gene expression. The Plant Cell30, 2761–2778.

Paolocci F, Robbins M P, Passeri V, Hauck B, Morris P, Rubini A, Arcioni S, Damiani F. 2011. The strawberry transcription factor FaMYB1 inhibits the biosynthesis of proanthocyanidins in Lotus corniculatus leaves. Journal of Experimental Botany62, 1189–1200.

Persic M, Mikulic-Petkovsek M, Halbwirth H, Solar A, Veberic R, Slatnar A. 2018. Red walnut: Characterization of the phenolic profiles, activities and gene expression of selected enzymes related to the phenylpropanoid pathway in pellicle during walnut development. Journal of Agricultural and Food Chemistry66, 2742–2748.

Ravaglia D, Espley R V, Henry-Kirk R A, Andreotti C, Ziosi V, Hellens R P, Costa G, Allan A C. 2013. Transcriptional regulation of flavonoid biosynthesis in nectarine (Prunus persica) by a set of R2R3 MYB transcription factors. BMC Plant Biology13, 68.

Sessa G, Morelli G, Ruberti I. 1993. The Athb-1 and -2 HD-Zip domains homodimerize forming complexes of different DNA binding specificities. The EMBO Journal12, 3507–3517.

Sun C D, Huang H Z, Xu C J, Li X, Chen K S. 2013. Biological activities of extracts from Chinese bayberry (Myrica rubra Sieb. et Zucc.): A review. Plant Foods for Human Nutrition68, 97–106.

Takos A M, Jaffé F W, Jacob S R, Bogs J, Robinson S P, Walker A R. 2006. Light-induced expression of a MYB gene regulates anthocyanin biosynthesis in red apples. Plant Physiology142, 1216–1232.

Walker A R, Lee E, Bogs J, McDavid D A J, Thomas M R, Robinson S P. 2007. White grapes arose through the mutation of two similar and adjacent regulatory genes. The Plant Journal49, 772–785.

Wang N, Qu C Z, Jiang S H, Chen Z J, Xu H F, Fang H C, Su M Y, Zhang J, Wang Y C, Liu W J, Zhang Z Y, Lu N L, Chen X S. 2018. The proanthocyanidin-specific transcription factor MdMYBPA1 initiates anthocyanin synthesis under low-temperature conditions in red-fleshed apples. The Plant Journal96, 39–55.

Wang N, Xu H F, Jiang S H, Zhang Z Y, Lu N L, Qiu H R, Qu C Z, Wang Y C, Wu S J, Chen X S. 2017. MYB12 and MYB22 play essential roles in proanthocyanidin and flavonol synthesis in red-fleshed apple (Malus sieversii f. niedzwetzkyana). The Plant Journal90, 276–292.

Wang W Q, Moss S M A, Zeng L H, Espley R V, Wang T C, Lin-Wang K, Fu B L, Schwinn K E, Allan A C, Yin X R. 2022. The red flesh of kiwifruit is differentially controlled by specific activation-repression systems. New Phytologist235, 630–645.

Xi R T, Zhang Y P. 1996. Chinese Fruit AnnalsWalnut. 1st ed. China Forestry Publishing House, China. pp. 1–9.

Xi W P, Feng J, Liu Y, Zhang S K, Zhao G H. 2019. The R2R3-MYB transcription factor PaMYB10 is involved in anthocyanin biosynthesis in apricots and determines red blushed skin. BMC Plant Biology19, 287.

Xu H F, Wang N, Liu J X, Qu C Z, Wang Y C, Jiang S H, Lu N L, Wang D Y, Zhang Z Y, Chen X S. 2017. The molecular mechanism underlying anthocyanin metabolism in apple using the MdMYB16 and MdbHLH33 genes. Plant Molecular Biology94, 149–165.

Xu H F, Zou Q, Yang G X, Jiang S H, Fang H C, Wang Y C, Zhang J, Zhang Z Y, Wang N, Chen X S. 2020. MdMYB6 regulates anthocyanin formation in apple both through direct inhibition of the biosynthesis pathway and through substrate removal. Horticulture Research7, 72.

Zhang F, Zuo K J, Zhang J Q, Liu X, Zhang L D, Sun X F, Tang K X. 2010. An L1 box binding protein, GbML1, interacts with GbMYB25 to control cotton fibre development. Journal of Experimental Botany61, 3599–3613.

Zhang Z, Li Chen Z Y, Zhang Y, Li X, Wang S, Wang X Y, Chen X S, Feng S Q. 2021. Inhibition of pear anthocyanin synthesis by the PcHB12 gene in European pears. Acta Horticulturae Sinica48, 456–464. (in Chinese)

No related articles found!
No Suggested Reading articles found!