Please wait a minute...
Journal of Integrative Agriculture  2024, Vol. 23 Issue (8): 2618-2632    DOI: 10.1016/j.jia.2023.09.011
Crop Science Advanced Online Publication | Current Issue | Archive | Adv Search |
General and specialized metabolites in peanut roots regulate arbuscular mycorrhizal symbiosis
Li Cui1, Jianguo Wang1, Zhaohui Tang1, Zheng Zhang1, Sha Yang1, Feng Guo1, Xinguo Li1, Jingjing Meng1, Jialei Zhang2#, Yakov Kuzyakov3, 4, 5#, Shubo Wan2#
1 Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences/Scientific Observing and Experimental Station of Crop Cultivation in East China, Ministry of Agriculture and Rural Affairs, Jinan 250100, China
2 Shandong Academy of Agricultural Sciences, Jinan 250100, China
3 Department of Soil Science of Temperate Ecosystems, Department of Agricultural Soil Science, University of Göttingen, Göttingen 37077, Germany
4 Peoples Friendship University of Russia (RUDN University), Miklukho-Maklaya St, Moscow 117198, Russia
5 Institute of Environmental Sciences, Kazan Federal University, 420049 Kazan, Russia
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

丛枝菌根(Arbuscular mycorrhizae, AM)真菌与植物根系形成的共生关系能够为植物提供营养、促进植物生长和抵御各种逆境胁迫。AM真菌定殖过程中根部的代谢变化是研究这种共生关系形成和维持的关键。因此,我们分析花生(Arachis hypogaea L.)植株在AM共生定殖和发展过程中的代谢变化,并与未定殖的根系进行了比较。研究结果表明在AM定殖初期主要是苯丙素和黄酮类化合物含量和种类的变化,这些化合物在调节根系与AM真菌的识别、相互作用和预定殖的信号通路中起重要作用。与初始定殖阶段相比,当共生关系完全建立时类黄酮化合物种类减少了25%AM共生体建立后,一般代谢物发生很大的变化主要表现为脂质、氨基酸、羧酸和碳水化合物的形成。从AM真菌侵染根系到共生体完全形成,脂质类化合物增加了8.5%,其中溶磷脂酰胆碱作为一种信号化合物,仅存在于AM共生体完全建立的根系中,与为未定根系相比其含量显著减少。在AM建立初期,水杨酸含量增加2倍,而茉莉酸和脱落酸含量则显著降低,当共生关系建立后,根中茉莉酸含量仍然显著降低。另外,AM根系中钙、镁和D-(+)-甘露糖含量显著增加,从而促进植株的生长。总体而言,有利于AM共生关系建立的特殊代谢物的变化主要发生AM形成的早期阶段,但是AM完全建立,一般代谢物则发生强烈变化。综上所述,特殊代谢物作为信号化合物参与了AM共生的形成根系与AM真菌的共生关系完全建立后,这些化合物的含量不再发生变化



Abstract  
Arbuscular mycorrhizae (AM) fungi form symbiotic associations with plant roots, providing nutritional benefits and promoting plant growth and defenses against various stresses.  Metabolic changes in the roots during AM fungal colonization are key to understanding the development and maintenance of these symbioses.  Here, we investigated metabolic changes in the roots of peanut (Arachis hypogaea L.) plants during the colonization and development of AM symbiosis, and compared them to uncolonized roots.  The primary changes during the initial stage of AM colonization were in the contents and compositions of phenylpropanoid and flavonoid compounds.  These compounds function in signaling pathways that regulate recognition, interactions, and pre-colonization between roots and AM fungi.  Flavonoid compounds decreased by 25% when the symbiosis was fully established compared to the initial colonization stage.  After AM symbiosis was established, general metabolism strongly shifted toward the formation of lipids, amino acids, carboxylic acids, and carbohydrates.  Lipid compounds increased by 8.5% from the pre-symbiotic stage to well-established symbiosis.  Lyso-phosphatidylcholines, which are signaling compounds, were only present in AM roots, and decreased in content after the symbiosis was established.  In the initial stage of AM establishment, the content of salicylic acid increased two-fold, whereas jasmonic acid and abscisic acid decreased compared to uncolonized roots.  The jasmonic acid content decreased in roots after the symbiosis was well established.  AM symbiosis was associated with high levels of calcium, magnesium, and D-(+)-mannose, which stimulated seedling growth.  Overall, specific metabolites that favor the establishment of AM symbiosis were common in the roots, primarily during early colonization, whereas general metabolism was strongly altered when AM symbiosis was well-established.  In conclusion, specialized metabolites function as signaling compounds to establish AM symbiosis.  These compounds are no longer produced after the symbiosis between the roots and AM becomes fully established.
Keywords:  Arachis hypogaea L.       arbuscular mycorrhizal fungi       metabolites       symbiotic association  
Received: 25 April 2023   Accepted: 09 August 2023
Fund: 
This work was supported by the National Key R&D Program of China (2022YFD1000105), the Key R&D Program of Shandong Province, China (2021CXGC010804), the Taishan Scholars Project, China (202211275), the Youth Found of Shandong Natural Science Foundation, China (ZR2021QC163), the Natural Science Foundation of Shandong Province, China (ZR2020MC094), the Strategic Academic Leadership Program “Priority 2030” of the Kazan Federal University, Russia, the RUDN University Strategic Academic Leadership Program, China, and the 2022 High-level Talent Innovation and Entrepreneurship (Platform) Project of Linyi, China.
About author:  #Correspondence Jialei Zhang, Tel: +86-531-66659047, E-mail: zhangjialei19@163.com; Yakov Kuzyakov, E-mail: kuzyakov@gwdg.de; Shubo Wan, E-mail: wanshubo2016@163.com

Cite this article: 

Li Cui, Jianguo Wang, Zhaohui Tang, Zheng Zhang, Sha Yang, Feng Guo, Xinguo Li, Jingjing Meng, Jialei Zhang, Yakov Kuzyakov, Shubo Wan. 2024. General and specialized metabolites in peanut roots regulate arbuscular mycorrhizal symbiosis. Journal of Integrative Agriculture, 23(8): 2618-2632.

Adolfsson L, Nziengui H, Abreu I N, Šimura J, Beebo A, Herdean A, Aboalizadeh J, Siroka J, Moritz T, Novak O, Ljung K, Schoefs B, Spetea C. 2017. Enhanced secondary- and hormone metabolism in leaves of arbuscular mycorrhizal Medicago truncatulaPlant Physiology175, 392–411.

Agnihotri R, Sharma M P, Prakash A, Ramesh A, Bhattacharjya S, Patra A K, Manna M C, Kurganova I, Kuzyakov Y. 2022. Glycoproteins of arbuscular mycorrhiza for soil carbon sequestration: Review of mechanisms and controls. Science of the Total Environment806, 150571.

Bago B, Pfeffer P E, Shachar-Hill Y. 2000. Carbon metabolism and transport in arbuscular mycorrhizas. Plant Physiology124, 949–958.

Baslam M, Garmendia I, Goicoechea N. 2011. Arbuscular mycorrhizal fungi (AMF) improved growth and nutritional quality of greenhouse-grown lettue. Journal of Agricultural and Food Chemistry59, 5504–5515.

Bel J, Legout A, Saint-André L, Hall S J, Löfgren S, Laclau J P, van der Heijden G. 2020. Conventional analysis methods underestimate the plant-available pools of calcium, magnesium and potassium in forest soils. Scientific Report10, 15703.

Bouwmeester H J. 2021. Plant lipids enticed fungi to mutualism. Science372, 789–790.

Catford J G, Staehelin C, LaRose G, Piché Y, Vierhelig H. 2006. Systemically suppressed isoflavonoids and their stimulating effects on nodulation and mycorrhization in alfalfa split-root systems. Plant and Soil285, 257–266.

Charpentier M, Sun J H, Wen J Q, Mysore K S, Oldroyd G E D. 2014. Abscisic acids promotion of arbuscular mycorrhizal colonization requires a component of the PROTEIN PHOSPHATASE 2A complex. Plant Physiology166, 2077–2090.

Chen A, Hu J, Sun S, Xu G. 2007. Conservation and divergence of both phosphate- and mycorrhiza-regulated physiological responses and expression patterns of phosphate transporters in solanaceous species. New Phytologist173, 817–831.

Chen W, Gong L, Guo Z L, Wang W S, Zhang H Y, Liu X Q, Yu S B. 2013. A novel integrated method for large-scale detection, identification, and quantification of widely targeted metabolites: Application in the study of rice metabolomics. Molecular Plant6, 1769–1780.

Chen X, Chen J, Liao D, Ye H, Li C, Luo Z, Yan A, Zhao Q, Xie K, Li Y. 2022. Auxin-mediated regulation of arbuscualr mycorrhizal symbiosis: A role of SIGH3.4 in tomato. Plant Cell and Environment45, 955–968.

Chi X Y, Hu R B, Yang Q L, Zhang X W, Pan L J, Chen M N, Yang Z, Wang T, He Y N, Yu S L. 2012. Validation of reference genes for gene expression studies in peanut by quantitative real-time RT-PCR. Molecular Genetics and Genomics287, 167–176.

Cook D L, Frum N L. 2004. Evaluation of total phosphorus and total nitrogen methods in pulp mill effluents. Water Science and Technology50, 79–86.

Cui L, Guo F, Zhang J L, Yang S, Meng J J, Geng Y, Li X G, Wan S B. 2019a. Synergy of arbuscular mycorrhizal symbiosis and exogenous Ca2+ benefits peanut (Arachis hypogaea L.) growth through the shared hormone and flavonoid pathway. Scientific Reports, 9, 16281.

Cui L, Guo F, Zhang J L, Yang S, Meng J J, Geng Y, Wang Q, Li X G, Wan S B. 2019b. Arbuscular mycorrhizal fungi combined with exogenous calcium improves the growth of peanut (Arachis hypogaea L.) seedlings under continuous cropping. Journal of Intergrative Agriculture18, 407–416.

Dipietro E S, Bashor M M, Stroud P E, Smarr B J, Burgess B J, Turner W E, Neese J W. 1988. Comparison of an inductively coupled plasma-atomic emission spectrometry method for the determination of calcium, magnesium, sodium, potassium, copper and zinc with atomic absorption spectroscopy and flame photometry methods. The Science of Total Encironment74, 249–262.

Drissner D, Kunze G, Callewaert N, Gehrig P, Tamasloukht M B, Boller T, Felix G, Amrhein N, Bucher M. 2007. Lyso-phosphatidylcholine is a signal in the arbuscular mycorrhizal symbiosis. Science318, 265–267.

Duhamel M, Pel R, Ooms A, Bücking H, Jansa J, Ellers J, van Straalen N M, Wouda T, Vandenkoornhuyse P, Kiers E T. 2013. Do fungivores trigger the transfer of protective metabolites from host plants to arbuscular mycorrhizal hyphae? Ecology94, 2019–2029.

Fernández I, Merlos M, López-Ráez J A, Martínez-Medina A, Ferrol N, Azcón C, Bonfante P, Flors V, Pozo M J. 2014. Defense related phytohormones regulation in arbuscular mycorrhizal symbioses depends on the partner genotypes. Journal of Chemical Ecology40, 791–803.

Fitze D, Wiepning A, Kaldorf M, Ludwig-Muller J. 2005. Auxins in the development of an arbuscular mycorrhizal symbiosis in maize. Journal of Plant Physiology162, 1210–1219.

Foo E, Ross J J, Jones W T, Reid J B. 2013. Plant hormones in arbuscular mycorrhizal symbiosis: An emerging role for gibberellins. Annals of Botany111, 769–779.

French K E. 2017. Engineering mycorrhizal symbioses to alter plant metabolism and improve crop health. Frontiers in Microbiology8, 1403.

Gaude N, Bortfeld S, Erban A, Kopka J, Krajinski F. 2015. Symbiosis dependent accumulation of primary metabolites in arbuscule-containing cells. BMC Plant Biology15, 234.

Gerlach N, Schmitz J, Polatajko A, Schlüter U, Fahnenstich H, Witt S, Fernie A R, Uroic K, Scholz U, Sonnewald U, Bucher M. 2015. An integrated functional approach to dissect systemic responses in maize to arbuscular mycorrhizal symbiosis. Plant Cell and Environment38, 1591–1612.

Gianinazzi S, Gollotte A, Binet M N, van Tuinen D, Redecker D, Wipf D. 2010. Agroecology: The key role of arbuscular mycorrhizas in ecosystem services. Mycorrhiza, 20, 519–530.

Giasson P, Karam A, Jaouich A. 2008. Arbuscular mycorrhizae and alleviation of soil stresses on plant growth. In: MycorrhizaeSustainable Agriculture and Forestry. Springer Science and Business Media, Berlin, Germany. pp. 99–134.

Gobbato E, Marsh J F, Vernié T, Wang E, Maillet F, Kim J, Miller J B, Sun J, Bano S A, Ratet P, Mysore K S, Dénarié J, Schultze M, Oldroyd G E. 2012. A GRAS-type transcription factor with a specific function in mycorrhizal signaling. Current Biology22, 2236–2241.

Guenoune D, Galili S, Philips D A, Volpin H, Chet I, Okon Y, Kapulnik Y. 2001. The defense response elicited by the pathogen Rhizoctonia solani is suppressed by colonization of the AM-fungus Glomus intraradicesPlant Science160, 925–932.

Gutjahr C, Paszkowski U. 2009. Weights in the balance: Jasmonic acid and salicylic acid signaling in root-biotroph interactions. Molecular Plant (Microbe Interactions), 22, 763–772.

Gutjahr C, Siegler H, Haga K, Iino M, Paszkowski U. 2015. Full establishment of arbuscular mycorrhizal symbiosis in rice occurs independently of enzymatic jasmonate biosynthesis. PLoS ONE10, e0123422.

Hafner S, Wiesenberg G L B, Stolnikova E, Merz K, Kuzyakov Y. 2014. Spatial distribution and turnover of root-derived carbon in alfalfa rhizosphere depending on top- and subsoil properties and mycorrhization. Plant and Soil380, 101–115.

Harrison M J. 1993. Isoflavonoid accumulation and expression of defense gene transcript during the establishment of vesicular-arbuscular mycohhizal associations in roots of Medicago truncatulaMolecular Plant (Microbe Interactions), 6, 643

van der Heijden M G A, Streitwolf-Engel R, Riedl R, Siegrist S, Neudecker A, Ineichen K, Boller T, Wiemken A, Sanders I R. 2006. The mycorrhizal contribution to plant productivity, plant nutrition and soil structure in experimental grassland. New Phytologist172, 739–752.

Hildebrandt T, Nunes-Nesi A, Araujo W, Braun H P. 2015. Amino acid catabolism in plants. Molecular Plant8, 1563–1579.

Hosoda R, Hamada H, Uesugi D, Iwahara N, Nojima I, Horio Y, Kuno A. 2021. Different antioxidative and antiapoptotic effects of piceatannol and resveratrol. The Journal of Pharmacology and Experimental Therapeutics376, 385–396.

Hu Y, Chen B. 2020. Arbuscular mycorrhiza induced putrescine degradation into γ-aminobutyric acid, malic acid accumulation, and improvement of nitrogen assimilation in roots of water-stressed maize plants. Mycorrhiza30, 329–339.

Huo W G, Chai X F, Wang X H, William D B, Arjun K, Feng G. 2022. Indigenous arbuscular mycorrhizal fungi play a role in phosphorus depletion in organic manure amended high fertility soil. Journal of Integrative Agriculture21, 3051–3066.

Javot H, Penmetsa R V, Terzaghi N, Cook D R, Harrison M J. 2007. A Medicago truncatula phosphate transporter indispensable for the arbuscular mycorrhizal symbiosis. Proceedings of the National Academy of Sciences of the United States of America104, 1720–1725.

Jeewani P H, Luo Y, Yu G, Fu Y, He X, van Zwieten L, Liang C, Kumar A, He Y, Kuzyakov Y, Qin H, Guggenberger G, Xu J M. 2021. Arbuscular mycorrhizal fungi and goethite promote carbon sequestration via hyphal-aggregate mineral interactions. Soil Biology & Biochemistry162, 108417.

Jentschel K, Thiel D, Rehn F, Ludwig-Muller J. 2007. Arbuscular mycorrhiza enhances auxin levels and alters auxin biosynthesis in Tropaeolum majus during early stages of colonization. Physiologia Plantarum, 129, 320–333.

Jiang Y, Wang W, Xie Q, Liu N, Liu L, Wang D, Zhang X, Yang C, Chen X, Tang D, Wang E. 2017. Plants transfer lipids to sustain colonization by mutualistic mycorrhizal and parasitic fungi. Science356, 1172–1175.

Jung S C, Martínez-Medina A, López-Ráez J A, Pozo M J. 2012. Mycorrhiza-induced resistance and priming of plant defenses. Journal of Chemical Ecology38, 651–664.

Kaur S, Campbell B J, Suseela V. 2022. Root metabolome of plant-arbuscular mycorrhizal symbiosis mirrors the mutualistic or parasitic mycorrhizal phenotype. New Phytologist234, 672–687.

Kaur S, Suseela V. 2020. Unraveling arbuscular mycorrhiza-induced changes in plant primary and secondary metabolome. Metabolites10, 335.

Keymer A, Pimprikar P, Wewer V, Huber C, Brands M, Bucerius S L, Delaux P M, Klingl V, Röpenack-Lahaye E V, Wang T L, Eisenreich W, Dörmann P, Parniske M, Gutjahr C. 2017. Lipid transfer from plants to arbuscular mycorrhiza fungi. eLife6, e29107.

Lanfranco L, Fiorilli V, Gutjahr C. 2018. Partner communication and role of nutrients in the arbuscular mycorrhizal symbiosis. New Phytologist220, 1031–1046.

Larose G, Chênevert R, Moutoglis P, Gagné S, Piché Y, Vierheilig H. 2002. Flavonoid levels in roots of Medicago sativa are modulated by the developmental stage of the symbiosis and the root colonizing arbuscular mycorrhizal fungus. Journal of Plant Physiology159, 1329–1339.

Liao D H, Wang S S, Cui M M, Liu A C, Xu G H. 2018. Phytohormones regulate the development of arbuscular mycorrhizal symbiosis. International Journal of Molecular Sciences19, 3146.

Lohse S, Schliemann W, Ammer C, Kopka J, Strack D, Fester T. 2005. Organization and metabolism of plastids and mitochondria in arbuscular mycorrhizal roots of Medicago truncatulaPlant Physiology139, 329–340.

Luginbuehl L H, Menard G N, Kurup S. 2017. Fatty acids in arbuscular mycorrhizal fungi are synthesized by the host plant. Science356, 6343.

Luisa L, Valentina F, Caroline G. 2018. Partner communication and role of nutrients in the arbuscular mycorrhizal symbiosis. New Phytologist, 220, 1031–1046.

Luo Z B, Janz D, Jiang X, Göbel C, Wildhagen H, Tan Y, Rennenberg H, Feussner I, Polle A. 2009. Upgrading root physiology for stress tolerance by ectomycorrhizas: Insights from metabolite and transcriptional profiling into reprogramming for stress anticipation. Plant Physiology151, 1902–1917.

Ma J, Wang W, Yang J, Qin S, Yang Y, Sun C, Pei G, Zeeshan M, Liao H, Liu L, Huang J. 2022. Mycorrhizal symbiosis promotes the nutrient content accumulation and affects the root exudates in maize. BMC Plant Biology22, 64.

Maclean A M, Bravo A, Harrison M J. 2017. Plant signaling and metabolic pathways enabling arbuscular mycorrhizal symbiosis. The Plant Cell29, 2319–2335.

McGonigle T P, Miller M H, Evans D G, Fairchild G L, Swan J A. 1990. A new method which gives an objective measure of colonization of roots by vesicular–arbuscular mycorrhizal fungi. New Phytologist115, 495–501.

Medina M H. 2003. Root colonization by arbuscular mycorrhizal fungi is affected by the salicylic acid content of the plant. Plant Science164, 993–998.

Nadeem S M, Ahmad M, Zahir Z A, Javaid A, Ashraf M. 2014. The role of mycorrhizae and plant growth promoting rhizobacteria (PGPR) in improving crop productivity under stressful environments. Biotechnology Advances32, 429–448.

Noceto P A, Bettenfeld P, Boussageon R, Hériché M, Sportes A, van Tuinen D, Courty P E, Wipf D. 2021. Arbuscular mycorrhizal fungi, a key symbiosis in the development of quality traits in crop production, alone or combined with plant growth-promoting bacteria. Mycorrhiza31, 655–669.

Ocon A, Hampp R, Requena N. 2007. Trehalose turnover during abiotic stress in arbuscular mycorrhizal fungi. New Phytologist174, 879–891.

Oldroyd G E D, Harrison M J, Paszkowski U. 2009. Reprogramming plant cells for endosymbiosis. Science324, 753–754.

Pfeffer P E, Douds D D, Bécard G, Shachar-Hill Y. 1999. Carbon uptake and the metabolism and transport of lipids in an arbuscular mycorrhiza. Plant Physiology120, 587–598.

Pistell L, Ulivieri V, Giovanelli S, Avio L, Giovannetti M, Pistelli L. 2017. Arbuscular mycorrhizal fungi alter the content and composition of secondary metabolites in Bituminaria bituminosa L. Plant Biology19, 926–933.

Pons S, Fournier S, Chervin C, Bécard G, Rochange S, Frei Dit Frey N, Puech Pagès V. 2020. Phytohormone production by the arbuscular mycorrhizal fungus Rhizophagus irregularisPLoS ONE15, e0240886.

Pozo M J, López-Ráez J A, Azcón-Aguilar C, García-Garrido J M. 2015. Phytohormones as integrators of environmental signals in the regulation of mycorrhizal symbioses. New Phytologist205, 1431–1436.

Rich M K, Nouri E, Courty P E, Reinhardt D. 2017. Diet of arbuscular mycorrjizal fungi: Bread and butter? Trends in Plant Science22, 652–660.

Rich M K, Vigneron N, Libourel C, Keller J, Xue L, Hajheidari M, Radhakrishnan G V, Le Ru A, Diop S I, Potente G, Conti E, Duijsings D, Batut A, Le Faouder P, Kodama K, Kyozuka J, Sallet E, Bécard G, Rodriguez-Franco M, Ott T, et al. 2021. Lipid exchanges drove the evolution of mutualism during plant terrestrialization. Science372, 864–868.

Rivero J, Gamir J, Aroca R, Pozo M J, Flors V. 2015. Metabolic transition in mycorrhizal tomato roots. Frontiers in Microbiology23, 598.

Salloum M S, Insani M, Monteoliva M I, Menduni M F, Silvente S, Carrari F, Luna C. 2019. Metabolic responses to arbuscular mycorrhizal fungi are shifted in roots of contrasting soybean genotypes. Mycorrhiza29, 459–473.

Scervino J M, Ponce M A, Erra-Bassells R, Vierheilig H, Godeas A. 2005. Flavonoids exhibit fungal species and genus specific effects on the presymbiotic growth of Gigaspora and GlomusMycological Research109, 789–794.

Schliemann W, Ammer C, Strack D. 2008. Metabolite profiling of mycorrhizal roots of Medicago truncatulaPhytochemistry69, 112–146.

Smith S E, Gianinazzi-Pearson V. 1990. Phosphate uptake and arbuscular activity in mycorrhizal Allium cepa L.: Effects of photon irradiance and phosphate nutrition. Functional Plant Biology17, 177–188.

Song Y Y, Ye M, Li C, He X, Zhu-Salzman K, Wang R L, Su Y J, Luo S M, Zeng R S. 2014. Hijacking common mycorrhizal networks for herbivore-induced defence signal transfer between tomato plants. Science Reports4, 3915.

Spatafora J W, Ying C, Benny G L, Lazarus K, Stajich J E. 2016. A phylum-level phylogenetic classification of zygomycete fungi based on genome-scale data. Mycologia108, 1028–1046.

Tarkowski Ł P, Signorelli S, Höfte M. 2020. γ-Aminobutyric acid and related amino acids in plant immune responses: Emerging mechanisms of action. Plant Cell and Environment43, 1103–1116.

Tränkner M, Tavakol E, Jákli B. 2018. Functioning of potassium and magnesium in photosynthesis, photosynthate translocation and photoprotection. Physiologia Plantarum163, 414–431.

Wahdan S F M, Reitz T, Heintz-Buschart A, Schädler M, Roscher C, Breitkreuz C, Schnabel B, Purahong W, Buscot F. 2021. Organic agricultural practice enhances arbuscular mycorrhizal symbiosis in correspondence to soil warming and altered precipitation patterns. Environmental Microbiology23, 6163–6176.

Wang E, Schornack S, Marsh J F, Gobbato E, Schwessinger B, Eastmond P, Schultze M, Kamoun S, Oldroyd G E. 2012. A common signaling process that promotes mycorrhizal and oomycete colonization of plants. Current Biology22, 2242–2246.

Wang Q, Yang S, Wan S B, Li X G. 2019. The significance of calcium in photosynthesis. International Journal of Molecular Sciences20, 1353.

Wang X X, Zhang M, Sheng J D, Feng G, Thomas W K. 2023. Breeding against mycorrhizal symbiosis: Modern cotton (Gossypium hirsutum L.) varieties perform more poorly than older varieties except at very high phosphorus supply levels. Journal of Integrative Agriculture22, 701–715.

Winkel-Shirley B. 2002. Biosynthesis of flavonoids and effects of stress. Current Opinion in Plant Biology5, 218–223.

Zamioudis C, Pieterse C M J. 2012. Modulation of host immunity by beneficial microbes. Molecular Plant (Microbe Interactions), 25, 139–150.

Zhou J, Zang H, Loeppmann S, Gube M, Kuzyakov Y, Pausch J. 2020. Arbuscular mycorrhiza enhances rhizodeposition and reduces the rhizosphere priming effect on the decomposition of soil organic matter. Soil Biology & Biochemistry140, 107641.

Zhuang W, Chen H, Yang M, Wang J, Pandey M K, Zhang C, Chang W C, Zhang L, Zhang X, Tang R, Garg V, Wang X, Tang H, Chow C N, Wang J, Deng Y, Wang D, Khan A W, Yang Q, Cai T, et al. 2019. The genome of cultivated peanut provides insight into legume karyotypes, polyploid evolution and crop domestication. Nature Genetics51, 865–876.

[1] Wenqing Tan, Xinbo Guo, Zhangying Wang, Rong Zhang, Chaochen Tang, Bingzhi Jiang, Ruixue Jia, Yuanyuan Deng, Shaohai Yang, Jingyi Chen.

Metabolic profiles and morphological characteristics of leaf tips among different sweet potato (Ipomoea batatas Lam.) varieties [J]. >Journal of Integrative Agriculture, 2024, 23(2): 494-510.

No Suggested Reading articles found!