Adolfsson L, Nziengui H, Abreu I N, Šimura J, Beebo A, Herdean A, Aboalizadeh J, Siroka J, Moritz T, Novak O, Ljung K, Schoefs B, Spetea C. 2017. Enhanced secondary- and hormone metabolism in leaves of arbuscular mycorrhizal Medicago truncatula. Plant Physiology, 175, 392–411.
Agnihotri R, Sharma M P, Prakash A, Ramesh A, Bhattacharjya S, Patra A K, Manna M C, Kurganova I, Kuzyakov Y. 2022. Glycoproteins of arbuscular mycorrhiza for soil carbon sequestration: Review of mechanisms and controls. Science of the Total Environment, 806, 150571.
Bago B, Pfeffer P E, Shachar-Hill Y. 2000. Carbon metabolism and transport in arbuscular mycorrhizas. Plant Physiology, 124, 949–958.
Baslam M, Garmendia I, Goicoechea N. 2011. Arbuscular mycorrhizal fungi (AMF) improved growth and nutritional quality of greenhouse-grown lettue. Journal of Agricultural and Food Chemistry, 59, 5504–5515.
Bel J, Legout A, Saint-André L, Hall S J, Löfgren S, Laclau J P, van der Heijden G. 2020. Conventional analysis methods underestimate the plant-available pools of calcium, magnesium and potassium in forest soils. Scientific Report, 10, 15703.
Bouwmeester H J. 2021. Plant lipids enticed fungi to mutualism. Science, 372, 789–790.
Catford J G, Staehelin C, LaRose G, Piché Y, Vierhelig H. 2006. Systemically suppressed isoflavonoids and their stimulating effects on nodulation and mycorrhization in alfalfa split-root systems. Plant and Soil, 285, 257–266.
Charpentier M, Sun J H, Wen J Q, Mysore K S, Oldroyd G E D. 2014. Abscisic acids promotion of arbuscular mycorrhizal colonization requires a component of the PROTEIN PHOSPHATASE 2A complex. Plant Physiology, 166, 2077–2090.
Chen A, Hu J, Sun S, Xu G. 2007. Conservation and divergence of both phosphate- and mycorrhiza-regulated physiological responses and expression patterns of phosphate transporters in solanaceous species. New Phytologist, 173, 817–831.
Chen W, Gong L, Guo Z L, Wang W S, Zhang H Y, Liu X Q, Yu S B. 2013. A novel integrated method for large-scale detection, identification, and quantification of widely targeted metabolites: Application in the study of rice metabolomics. Molecular Plant, 6, 1769–1780.
Chen X, Chen J, Liao D, Ye H, Li C, Luo Z, Yan A, Zhao Q, Xie K, Li Y. 2022. Auxin-mediated regulation of arbuscualr mycorrhizal symbiosis: A role of SIGH3.4 in tomato. Plant Cell and Environment, 45, 955–968.
Chi X Y, Hu R B, Yang Q L, Zhang X W, Pan L J, Chen M N, Yang Z, Wang T, He Y N, Yu S L. 2012. Validation of reference genes for gene expression studies in peanut by quantitative real-time RT-PCR. Molecular Genetics and Genomics, 287, 167–176.
Cook D L, Frum N L. 2004. Evaluation of total phosphorus and total nitrogen methods in pulp mill effluents. Water Science and Technology, 50, 79–86.
Cui L, Guo F, Zhang J L, Yang S, Meng J J, Geng Y, Li X G, Wan S B. 2019a. Synergy of arbuscular mycorrhizal symbiosis and exogenous Ca2+ benefits peanut (Arachis hypogaea L.) growth through the shared hormone and flavonoid pathway. Scientific Reports, 9, 16281.
Cui L, Guo F, Zhang J L, Yang S, Meng J J, Geng Y, Wang Q, Li X G, Wan S B. 2019b. Arbuscular mycorrhizal fungi combined with exogenous calcium improves the growth of peanut (Arachis hypogaea L.) seedlings under continuous cropping. Journal of Intergrative Agriculture, 18, 407–416.
Dipietro E S, Bashor M M, Stroud P E, Smarr B J, Burgess B J, Turner W E, Neese J W. 1988. Comparison of an inductively coupled plasma-atomic emission spectrometry method for the determination of calcium, magnesium, sodium, potassium, copper and zinc with atomic absorption spectroscopy and flame photometry methods. The Science of Total Encironment, 74, 249–262.
Drissner D, Kunze G, Callewaert N, Gehrig P, Tamasloukht M B, Boller T, Felix G, Amrhein N, Bucher M. 2007. Lyso-phosphatidylcholine is a signal in the arbuscular mycorrhizal symbiosis. Science, 318, 265–267.
Duhamel M, Pel R, Ooms A, Bücking H, Jansa J, Ellers J, van Straalen N M, Wouda T, Vandenkoornhuyse P, Kiers E T. 2013. Do fungivores trigger the transfer of protective metabolites from host plants to arbuscular mycorrhizal hyphae? Ecology, 94, 2019–2029.
Fernández I, Merlos M, López-Ráez J A, Martínez-Medina A, Ferrol N, Azcón C, Bonfante P, Flors V, Pozo M J. 2014. Defense related phytohormones regulation in arbuscular mycorrhizal symbioses depends on the partner genotypes. Journal of Chemical Ecology, 40, 791–803.
Fitze D, Wiepning A, Kaldorf M, Ludwig-Muller J. 2005. Auxins in the development of an arbuscular mycorrhizal symbiosis in maize. Journal of Plant Physiology, 162, 1210–1219.
Foo E, Ross J J, Jones W T, Reid J B. 2013. Plant hormones in arbuscular mycorrhizal symbiosis: An emerging role for gibberellins. Annals of Botany, 111, 769–779.
French K E. 2017. Engineering mycorrhizal symbioses to alter plant metabolism and improve crop health. Frontiers in Microbiology, 8, 1403.
Gaude N, Bortfeld S, Erban A, Kopka J, Krajinski F. 2015. Symbiosis dependent accumulation of primary metabolites in arbuscule-containing cells. BMC Plant Biology, 15, 234.
Gerlach N, Schmitz J, Polatajko A, Schlüter U, Fahnenstich H, Witt S, Fernie A R, Uroic K, Scholz U, Sonnewald U, Bucher M. 2015. An integrated functional approach to dissect systemic responses in maize to arbuscular mycorrhizal symbiosis. Plant Cell and Environment, 38, 1591–1612.
Gianinazzi S, Gollotte A, Binet M N, van Tuinen D, Redecker D, Wipf D. 2010. Agroecology: The key role of arbuscular mycorrhizas in ecosystem services. Mycorrhiza, 20, 519–530.
Giasson P, Karam A, Jaouich A. 2008. Arbuscular mycorrhizae and alleviation of soil stresses on plant growth. In: Mycorrhizae: Sustainable Agriculture and Forestry. Springer Science and Business Media, Berlin, Germany. pp. 99–134.
Gobbato E, Marsh J F, Vernié T, Wang E, Maillet F, Kim J, Miller J B, Sun J, Bano S A, Ratet P, Mysore K S, Dénarié J, Schultze M, Oldroyd G E. 2012. A GRAS-type transcription factor with a specific function in mycorrhizal signaling. Current Biology, 22, 2236–2241.
Guenoune D, Galili S, Philips D A, Volpin H, Chet I, Okon Y, Kapulnik Y. 2001. The defense response elicited by the pathogen Rhizoctonia solani is suppressed by colonization of the AM-fungus Glomus intraradices. Plant Science, 160, 925–932.
Gutjahr C, Paszkowski U. 2009. Weights in the balance: Jasmonic acid and salicylic acid signaling in root-biotroph interactions. Molecular Plant (Microbe Interactions), 22, 763–772.
Gutjahr C, Siegler H, Haga K, Iino M, Paszkowski U. 2015. Full establishment of arbuscular mycorrhizal symbiosis in rice occurs independently of enzymatic jasmonate biosynthesis. PLoS ONE, 10, e0123422.
Hafner S, Wiesenberg G L B, Stolnikova E, Merz K, Kuzyakov Y. 2014. Spatial distribution and turnover of root-derived carbon in alfalfa rhizosphere depending on top- and subsoil properties and mycorrhization. Plant and Soil, 380, 101–115.
Harrison M J. 1993. Isoflavonoid accumulation and expression of defense gene transcript during the establishment of vesicular-arbuscular mycohhizal associations in roots of Medicago truncatula. Molecular Plant (Microbe Interactions), 6, 643
van der Heijden M G A, Streitwolf-Engel R, Riedl R, Siegrist S, Neudecker A, Ineichen K, Boller T, Wiemken A, Sanders I R. 2006. The mycorrhizal contribution to plant productivity, plant nutrition and soil structure in experimental grassland. New Phytologist, 172, 739–752.
Hildebrandt T, Nunes-Nesi A, Araujo W, Braun H P. 2015. Amino acid catabolism in plants. Molecular Plant, 8, 1563–1579.
Hosoda R, Hamada H, Uesugi D, Iwahara N, Nojima I, Horio Y, Kuno A. 2021. Different antioxidative and antiapoptotic effects of piceatannol and resveratrol. The Journal of Pharmacology and Experimental Therapeutics, 376, 385–396.
Hu Y, Chen B. 2020. Arbuscular mycorrhiza induced putrescine degradation into γ-aminobutyric acid, malic acid accumulation, and improvement of nitrogen assimilation in roots of water-stressed maize plants. Mycorrhiza, 30, 329–339.
Huo W G, Chai X F, Wang X H, William D B, Arjun K, Feng G. 2022. Indigenous arbuscular mycorrhizal fungi play a role in phosphorus depletion in organic manure amended high fertility soil. Journal of Integrative Agriculture, 21, 3051–3066.
Javot H, Penmetsa R V, Terzaghi N, Cook D R, Harrison M J. 2007. A Medicago truncatula phosphate transporter indispensable for the arbuscular mycorrhizal symbiosis. Proceedings of the National Academy of Sciences of the United States of America, 104, 1720–1725.
Jeewani P H, Luo Y, Yu G, Fu Y, He X, van Zwieten L, Liang C, Kumar A, He Y, Kuzyakov Y, Qin H, Guggenberger G, Xu J M. 2021. Arbuscular mycorrhizal fungi and goethite promote carbon sequestration via hyphal-aggregate mineral interactions. Soil Biology & Biochemistry, 162, 108417.
Jentschel K, Thiel D, Rehn F, Ludwig-Muller J. 2007. Arbuscular mycorrhiza enhances auxin levels and alters auxin biosynthesis in Tropaeolum majus during early stages of colonization. Physiologia Plantarum, 129, 320–333.
Jiang Y, Wang W, Xie Q, Liu N, Liu L, Wang D, Zhang X, Yang C, Chen X, Tang D, Wang E. 2017. Plants transfer lipids to sustain colonization by mutualistic mycorrhizal and parasitic fungi. Science, 356, 1172–1175.
Jung S C, Martínez-Medina A, López-Ráez J A, Pozo M J. 2012. Mycorrhiza-induced resistance and priming of plant defenses. Journal of Chemical Ecology, 38, 651–664.
Kaur S, Campbell B J, Suseela V. 2022. Root metabolome of plant-arbuscular mycorrhizal symbiosis mirrors the mutualistic or parasitic mycorrhizal phenotype. New Phytologist, 234, 672–687.
Kaur S, Suseela V. 2020. Unraveling arbuscular mycorrhiza-induced changes in plant primary and secondary metabolome. Metabolites, 10, 335.
Keymer A, Pimprikar P, Wewer V, Huber C, Brands M, Bucerius S L, Delaux P M, Klingl V, Röpenack-Lahaye E V, Wang T L, Eisenreich W, Dörmann P, Parniske M, Gutjahr C. 2017. Lipid transfer from plants to arbuscular mycorrhiza fungi. eLife, 6, e29107.
Lanfranco L, Fiorilli V, Gutjahr C. 2018. Partner communication and role of nutrients in the arbuscular mycorrhizal symbiosis. New Phytologist, 220, 1031–1046.
Larose G, Chênevert R, Moutoglis P, Gagné S, Piché Y, Vierheilig H. 2002. Flavonoid levels in roots of Medicago sativa are modulated by the developmental stage of the symbiosis and the root colonizing arbuscular mycorrhizal fungus. Journal of Plant Physiology, 159, 1329–1339.
Liao D H, Wang S S, Cui M M, Liu A C, Xu G H. 2018. Phytohormones regulate the development of arbuscular mycorrhizal symbiosis. International Journal of Molecular Sciences, 19, 3146.
Lohse S, Schliemann W, Ammer C, Kopka J, Strack D, Fester T. 2005. Organization and metabolism of plastids and mitochondria in arbuscular mycorrhizal roots of Medicago truncatula. Plant Physiology, 139, 329–340.
Luginbuehl L H, Menard G N, Kurup S. 2017. Fatty acids in arbuscular mycorrhizal fungi are synthesized by the host plant. Science, 356, 6343.
Luisa L, Valentina F, Caroline G. 2018. Partner communication and role of nutrients in the arbuscular mycorrhizal symbiosis. New Phytologist, 220, 1031–1046.
Luo Z B, Janz D, Jiang X, Göbel C, Wildhagen H, Tan Y, Rennenberg H, Feussner I, Polle A. 2009. Upgrading root physiology for stress tolerance by ectomycorrhizas: Insights from metabolite and transcriptional profiling into reprogramming for stress anticipation. Plant Physiology, 151, 1902–1917.
Ma J, Wang W, Yang J, Qin S, Yang Y, Sun C, Pei G, Zeeshan M, Liao H, Liu L, Huang J. 2022. Mycorrhizal symbiosis promotes the nutrient content accumulation and affects the root exudates in maize. BMC Plant Biology, 22, 64.
Maclean A M, Bravo A, Harrison M J. 2017. Plant signaling and metabolic pathways enabling arbuscular mycorrhizal symbiosis. The Plant Cell, 29, 2319–2335.
McGonigle T P, Miller M H, Evans D G, Fairchild G L, Swan J A. 1990. A new method which gives an objective measure of colonization of roots by vesicular–arbuscular mycorrhizal fungi. New Phytologist, 115, 495–501.
Medina M H. 2003. Root colonization by arbuscular mycorrhizal fungi is affected by the salicylic acid content of the plant. Plant Science, 164, 993–998.
Nadeem S M, Ahmad M, Zahir Z A, Javaid A, Ashraf M. 2014. The role of mycorrhizae and plant growth promoting rhizobacteria (PGPR) in improving crop productivity under stressful environments. Biotechnology Advances, 32, 429–448.
Noceto P A, Bettenfeld P, Boussageon R, Hériché M, Sportes A, van Tuinen D, Courty P E, Wipf D. 2021. Arbuscular mycorrhizal fungi, a key symbiosis in the development of quality traits in crop production, alone or combined with plant growth-promoting bacteria. Mycorrhiza, 31, 655–669.
Ocon A, Hampp R, Requena N. 2007. Trehalose turnover during abiotic stress in arbuscular mycorrhizal fungi. New Phytologist, 174, 879–891.
Oldroyd G E D, Harrison M J, Paszkowski U. 2009. Reprogramming plant cells for endosymbiosis. Science, 324, 753–754.
Pfeffer P E, Douds D D, Bécard G, Shachar-Hill Y. 1999. Carbon uptake and the metabolism and transport of lipids in an arbuscular mycorrhiza. Plant Physiology, 120, 587–598.
Pistell L, Ulivieri V, Giovanelli S, Avio L, Giovannetti M, Pistelli L. 2017. Arbuscular mycorrhizal fungi alter the content and composition of secondary metabolites in Bituminaria bituminosa L. Plant Biology, 19, 926–933.
Pons S, Fournier S, Chervin C, Bécard G, Rochange S, Frei Dit Frey N, Puech Pagès V. 2020. Phytohormone production by the arbuscular mycorrhizal fungus Rhizophagus irregularis. PLoS ONE, 15, e0240886.
Pozo M J, López-Ráez J A, Azcón-Aguilar C, García-Garrido J M. 2015. Phytohormones as integrators of environmental signals in the regulation of mycorrhizal symbioses. New Phytologist, 205, 1431–1436.
Rich M K, Nouri E, Courty P E, Reinhardt D. 2017. Diet of arbuscular mycorrjizal fungi: Bread and butter? Trends in Plant Science, 22, 652–660.
Rich M K, Vigneron N, Libourel C, Keller J, Xue L, Hajheidari M, Radhakrishnan G V, Le Ru A, Diop S I, Potente G, Conti E, Duijsings D, Batut A, Le Faouder P, Kodama K, Kyozuka J, Sallet E, Bécard G, Rodriguez-Franco M, Ott T, et al. 2021. Lipid exchanges drove the evolution of mutualism during plant terrestrialization. Science, 372, 864–868.
Rivero J, Gamir J, Aroca R, Pozo M J, Flors V. 2015. Metabolic transition in mycorrhizal tomato roots. Frontiers in Microbiology, 23, 598.
Salloum M S, Insani M, Monteoliva M I, Menduni M F, Silvente S, Carrari F, Luna C. 2019. Metabolic responses to arbuscular mycorrhizal fungi are shifted in roots of contrasting soybean genotypes. Mycorrhiza, 29, 459–473.
Scervino J M, Ponce M A, Erra-Bassells R, Vierheilig H, Godeas A. 2005. Flavonoids exhibit fungal species and genus specific effects on the presymbiotic growth of Gigaspora and Glomus. Mycological Research, 109, 789–794.
Schliemann W, Ammer C, Strack D. 2008. Metabolite profiling of mycorrhizal roots of Medicago truncatula. Phytochemistry, 69, 112–146.
Smith S E, Gianinazzi-Pearson V. 1990. Phosphate uptake and arbuscular activity in mycorrhizal Allium cepa L.: Effects of photon irradiance and phosphate nutrition. Functional Plant Biology, 17, 177–188.
Song Y Y, Ye M, Li C, He X, Zhu-Salzman K, Wang R L, Su Y J, Luo S M, Zeng R S. 2014. Hijacking common mycorrhizal networks for herbivore-induced defence signal transfer between tomato plants. Science Reports, 4, 3915.
Spatafora J W, Ying C, Benny G L, Lazarus K, Stajich J E. 2016. A phylum-level phylogenetic classification of zygomycete fungi based on genome-scale data. Mycologia, 108, 1028–1046.
Tarkowski Ł P, Signorelli S, Höfte M. 2020. γ-Aminobutyric acid and related amino acids in plant immune responses: Emerging mechanisms of action. Plant Cell and Environment, 43, 1103–1116.
Tränkner M, Tavakol E, Jákli B. 2018. Functioning of potassium and magnesium in photosynthesis, photosynthate translocation and photoprotection. Physiologia Plantarum, 163, 414–431.
Wahdan S F M, Reitz T, Heintz-Buschart A, Schädler M, Roscher C, Breitkreuz C, Schnabel B, Purahong W, Buscot F. 2021. Organic agricultural practice enhances arbuscular mycorrhizal symbiosis in correspondence to soil warming and altered precipitation patterns. Environmental Microbiology, 23, 6163–6176.
Wang E, Schornack S, Marsh J F, Gobbato E, Schwessinger B, Eastmond P, Schultze M, Kamoun S, Oldroyd G E. 2012. A common signaling process that promotes mycorrhizal and oomycete colonization of plants. Current Biology, 22, 2242–2246.
Wang Q, Yang S, Wan S B, Li X G. 2019. The significance of calcium in photosynthesis. International Journal of Molecular Sciences, 20, 1353.
Wang X X, Zhang M, Sheng J D, Feng G, Thomas W K. 2023. Breeding against mycorrhizal symbiosis: Modern cotton (Gossypium hirsutum L.) varieties perform more poorly than older varieties except at very high phosphorus supply levels. Journal of Integrative Agriculture, 22, 701–715.
Winkel-Shirley B. 2002. Biosynthesis of flavonoids and effects of stress. Current Opinion in Plant Biology, 5, 218–223.
Zamioudis C, Pieterse C M J. 2012. Modulation of host immunity by beneficial microbes. Molecular Plant (Microbe Interactions), 25, 139–150.
Zhou J, Zang H, Loeppmann S, Gube M, Kuzyakov Y, Pausch J. 2020. Arbuscular mycorrhiza enhances rhizodeposition and reduces the rhizosphere priming effect on the decomposition of soil organic matter. Soil Biology & Biochemistry, 140, 107641.
Zhuang W, Chen H, Yang M, Wang J, Pandey M K, Zhang C, Chang W C, Zhang L, Zhang X, Tang R, Garg V, Wang X, Tang H, Chow C N, Wang J, Deng Y, Wang D, Khan A W, Yang Q, Cai T, et al. 2019. The genome of cultivated peanut provides insight into legume karyotypes, polyploid evolution and crop domestication. Nature Genetics, 51, 865–876.
|