Please wait a minute...
Journal of Integrative Agriculture  2024, Vol. 23 Issue (10): 3610-3621    DOI: 10.1016/j.jia.2024.03.061
Agro-ecosystem & Environment Advanced Online Publication | Current Issue | Archive | Adv Search |
Water and nitrogen footprint assessment of integrated agronomic practice management in a summer maize cropping system
Ningning Yu*, Bingshuo Wang*, Baizhao Ren, Bin Zhao, Peng Liu, Jiwang Zhang#

State Key Laboratory of Crop Biology and College of Agronomy, Shandong Agricultural University, Tai’an 271018, China

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  
水足迹和氮足迹(WF和NF)可全面的反映水分消耗和活性氮(Nr)损失的类型和数量。本试验以传统农户的管理方式(T1)为对照,设置了三个综合农艺管理处理(IAPM):优化管理处理(T2)、超高产处理(T3)和土壤-作物综合管理处理(ISCM),研究综合农艺管理对夏玉米生产的水足迹、活性氮损失、水分利用效率(WUE)和氮素利用效率(NUE)的影响。研究结果表明,IAPM可优化土壤水分分布,促进夏玉米水分吸收与利用。在整个玉米生长期,虽然IAPM的蒸散量增加,但产量增加更多,导致WUE显著增加。与T1相比,T2、T3和ISCM的WUE分别显著增加19.8-21.5%、31.8-40.6%和34.4-44.6%。IAPM的WF降低,其中ISCM的WF最低,比T1降低31.0%。此外,IAPM还能优化土壤全氮(TN)的分布,显著增加耕作层的TN含量。然而,T3为获得高产施用过量的氮肥,导致氮素损失最高。相比之下,ISCM在部分牺牲粮食产量的基础上降低氮肥施用量,减少氮素损失,最终氮素利用效率和氮素回收率显著提高。与T1相比,ISCM的氮损失率降低34.8%,氮利用效率显著提高56.8-63.1%。因此,综合考虑产量、WUE、NUE、WF和NF,ISCM为更可持续和清洁的夏玉米可持续生产系统。


Abstract  

The footprints of water and nitrogen (WF and NF) provide a comprehensive overview of the type and quantity of water consumption and reactive nitrogen (Nr) loss in crop production.  In this study, a field experiment over two years (2019 and 2020) compared three integrated agronomic practice management (IAPM) systems: An improved management system (T2), a high-yield production system (T3), and an integrated soil–crop management system (ISCM) using a local smallholder farmer’s practice system (T1) as control, to investigate the responses of WF, Nr losses, water use efficiency (WUE), and nitrogen use efficiency (NUE) to IAPM.  The results showed that IAPM optimized water distribution and promoted water use by summer maize.  The evapotranspiration over the whole maize growth period of IAPM increased, but yield increased more, leading to a significant increase in WUE.  The WUE of the T2, T3, and ISCM treatments was significantly greater than in the T1 treatment, in 2019 and 2020 respectively, by 19.8–21.5, 31.8–40.6, and 34.4–44.6%.  The lowest WF was found in the ISCM treatment, which was 31.0% lower than that of the T1 treatment.  In addition, the ISCM treatment optimized soil total nitrogen (TN) distribution and significantly increased TN in the cultivated layer.  Excessive nitrogen fertilizer was applied in treatment T3, producing the highest maize yield, and resulting in the highest Nr losses.  In contrast, the ISCM treatment used a reduced nitrogen fertilizer rate, sacrificing grain yield partly, which reduced Nr losses and eventually led to a significant increase in nitrogen use efficiency and nitrogen recovery.  The Nr level in the ISCM treatment was 34.8% lower than in the T1 treatment while NUE was significantly higher than in the T1 treatment by 56.8–63.1% in 2019 and 2020, respectively.  Considering yield, WUE, NUE, WF, and NF together, ISCM should be used as a more sustainable and clean system for sustainable production of summer maize.


Keywords:  integrated agronomic practice management       water footprints        nitrogen footprints        water use efficiency        nitrogen use efficiency        yield  
Received: 10 October 2023   Accepted: 15 January 2024
Fund: The authors are grateful for the useful comments from the anonymous reviewers and for the support of the National Key R&D Program of China (2023YFD2301500), the China Agriculture System of MOF and MARA (CARS-02), and the Shandong Central Guiding the Local Science and Technology Development, China (YDZX20203700002548).
About author:  Ningning Yu, E-mail: yuning@sdau.edu.cn; Bingshuo Wang, E-mail: 1785537450@qq.com; #Correspondence Jiwang Zhang, E-mail: jwzhang@sdau.edu.cn * These authors contributed equally to this study.

Cite this article: 

Ningning Yu, Bingshuo Wang, Baizhao Ren, Bin Zhao, Peng Liu, Jiwang Zhang. 2024. Water and nitrogen footprint assessment of integrated agronomic practice management in a summer maize cropping system. Journal of Integrative Agriculture, 23(10): 3610-3621.

Alghamdi R S, Daigh A L M, DeJong-Hughes J, Wick A F. 2021. Soil temperature and water contents among vertical tillage, strip tillage, and chisel plowing in the Upper Great Plains. Canadian Journal of Soil Science101, 596–616.

Arth I, Frenzel P, Conrad R. 1998. Denitrification coupled to nitrification in the rhizosphere of rice. Soil Biology & Biochemistry30, 509–515.

Aulakh M S, Khera T S, Doran J W. 2000. Mineralization and denitrification in upland, nearly saturated and flooded subtropical soil I. Effect of nitrate and ammoniacal nitrogen. Biology and Fertility of Soils31, 162–167.

Barton L, Colmer T D. 2006. Irrigation and fertiliser strategies for minimizing nitrogen leaching from turfgrass. Agricultural Water Management80, 160–175.

Chen X P, Cui Z L, Vitousek P M, Cassman K G, Matson P A, Bai J S, Zhang F S. 2011. Integrated soil–crop system management for food security. Proceedings of the National Academy of Sciences of the United States of America108, 6399–6404.

Chen X P, Zhang F S, Cui Z L. 2006. The Theory and Practice of Nutrient Resources Integrated Management on Wheat–Maize Rotation System. China Agricultural University Press, Beijing. (in Chinese)

Chen X P, Cui Z L, Fan M S, Vitousek P, Zhao M, Ma W Q, Wang Z L, Zhang W J, Yan X Y, Yang J C, Deng X P, Gao Q, Zhang Q, Guo S W, Ren J, Li S Q, Ye Y L, Wang Z H, Huang J L, Tang Q Y, et al. 2014. Producing more grain with lower environmental costs. Nature514, 486–489.

Cui Z, Yue S, Wang G, Zhang F, Chen X. 2013. In-season root-zone N management for mitigating greenhouse gas emission and reactive N losses in intensive wheat production. Environmental Science & Technology47, 6015–6022.

Cui Z, Zhang F, Chen X, Dou Z, Li J. 2010. In-season nitrogen management strategy for winter wheat: Maximizing yields, minimizing environmental impact in an over-fertilization context. Field Crops Research116, 140–146.

Duan P P, Fan C H, Zhang Q Q, Xiong Z Q. 2019. Overdose fertilization induced ammonia-oxidizing archaea producing nitrous oxide in intensive vegetable fields. Science of Total Environment650, 1787–1794.

Feng Y P, Zhang Y Y, Li S, Wang C, Yin X G, Chu Q Q, Chen F. 2020. Sustainable options for reducing carbon inputs and improving the eco-efficiency of smallholder wheat-maize cropping systems in the Huanghuaihai Farming Region of China. Journal of Cleaner Production244, 118887.

Goulding K W T, Bailey N J, Bradbury N J, Hargreaves P, Howe M, Murphy D V, Poulton P R, Willison T W. 1998. Nitrogen deposition and its contribution to nitrogen cycling and associated soil processes. New Phytologist139, 49–58.

Gu X B, Li Y N, Du Y D. 2016. Continuous ridges with film mulching improve soil water content, root growth, seed yield and water use efficiency of winter oilseed rape. Industrial Crops and Products85, 139–148.

Guan D, Al-Kaisi M M, Zhang Y, Duan L, Tan W, Zhang M, Li Z. 2014. Tillage practices affect biomass and grain yield through regulating root growth, root-bleeding sap and nutrients uptake in summer maize. Field Crops Research157, 89–97.

Herath I, Green S, Horne D, Singh R, Clothier B. 2014. Quantifying and reducing the water footprint of rain-fed potato production part II: a hydrological assessment using modelling supported by measurements. Journal of Cleaner Production81, 103–110.

Hernandez M D, Alfonso C, Echarte M M, Cerrudo A, Echarte L. 2021. Maize transpiration efficiency increases with N supply or higher plant densities. Agriculture Water Management250, 106816.

Hoekstra A Y, Chapagain A K, Mekonnen M M, Aldaya M M. 2011. The Water Footprint Assessment ManualSetting the Global Standard. Earthscan, London.

Hu R W, Liu Y J, Chen T, Zheng Z Y, Peng G J, Zou Y D, Tang C G, Shan X H, Zhou Q M, Li J. 2021. Responses of soil aggregates, organic carbon, and crop yield to short-term intermittent deep tillage in Southern China. Journal of Cleaner Production298, 126767.

Huang G B, Qiang C H A I, Feng F X, Yu A Z. 2012. Effects of different tillage systems on soil properties, root growth, grain yield, and water use efficiency of winter wheat (Triticum aestivum L.) in arid Northwest China. Journal of Integrative Agriculture11, 1286–1296.

IPCC (Intergovernmental Panel on Climate Change). 2006. Intergovernmental Panel on Climate Change Guidelines for National Greenhouse Gas Inventories. Volume Agricultural, Forestry and Other Land Use. Institute for Global Environmental Strategies, Kanaggawa, Japan.

Ji B, Zhao Y, Mu X, Liu K, Li C. 2013. Effects of tillage on soil physical properties and root growth of maize in loam and clay in central China. Plant Soil Environment59, 295–302.

Jiang X, Kang S, Tong L, Li F, Li D, Ding R, Qiu R. 2014. Crop coefficient and evapotranspiration of grain maize modified by planting density in an arid region of northwest China. Agriculture Water Management142, 135–143.

Kaur R, Aroravk. 2019. Deep tillage and residue mulch effects on productivity and water and nitrogen economy of spring maize in north-west India. Agriculture Water Management, 213, 724–731.

Kumar J S, Ramatshaba T S, Wang L, Liu H, Gao Y, Duan A. 2019. Response of growth, yield and water use efficiency of winter wheat to different irrigation methods and scheduling in North China Plain. Agriculture Water Management217, 292–302.

Labra M H, Struik P C, Calderini D F, Evers J B. 2020. Leaf nitrogen traits in response to plant density and nitrogen supply in oilseed rape. Agronmy10, 1780.

Li L, Guan J, Chen S, Zhang X. 2022. Intermittent deep tillage on improving soil physical properties and crop performance in an intensive cropping system. Agronmy12, 688.

Li T Y, Zhang W F, Yin J, Chadwick D, Norse D, Lu Y L, Liu X J, Chen X P, Zhang F S, Powlson D, Dou Z X. 2017. Enhanced efficiency fertilizers are not panacea for resolving the nitrogen problem. Global Change Biology24, 511–521.

Li X, Chen D, Cao X, Luo Z, Webber M. 2020. Assessing the components of, and factors influencing, paddy rice water footprint in China. Agriculture Water Management229, 105939.

Liu L, Zhang L, Liu J, Fu Q, Xu Q, Idimesheva O. 2021. Soil water and temperature characteristics under different straw mulching and tillage measures in the black soil region of China. Journal of Soil and Water Conservation76, 256–262.

Liu Z, Gao J, Gao F, Dong S T, Liu P, Zhao B, Zhang J W. 2018. Integrated agronomic practices management improve yield and nitrogen balance in double cropping of winter wheat–summer maize. Field Crops Research221, 196–206.

Liu Z, Gao J, Gao F, Liu P, Zhao B, Zhang J W. 2019. Late harvest improves yield and nitrogen utilization efficiency of summer maize. Field Crops Research232, 88–94.

Liu Z, Zhu K, Dong S, Liu P, Zhao B, Zhang J W. 2017. Effects of integrated agronomic practices management on root growth and development of summer maize. European Journal of Agronomy84, 140–151.

Liu Z X, Gao F, Yang X Y, Li Y, Zhao J H, Li J R, Qian B C, Yang D Q, Li X D. 2019. Photosynthetic characteristics and uptake and translocation of nitrogen in peanut in a wheat–peanut rotation system under different fertilizer management regimes. Frontiers in Plant Science10, 86.

Lu Y, Zhang X, Chen S, Shao L, Sun H. 2016. Changes in water use efficiency and water footprint in grain production over the past 35 years: A case study in the North China Plain. Journal of Cleaner Production116, 71–79.

Qin J, Wang X, Fan X, Jiang M, Lv M. 2022. Whether increasing maize planting density increases the total water use depends on soil water in the 0–60 cm soil layer in the North China Plain. Sustain14, 5848.

Raza S, Jiang Y, Elrys A S, Tao J, Liu Z, Li Z, Chen Z, Zhou J. 2022. Dicyandiamide efficacy of inhibiting nitrification and carbon dioxide emission from calcareous soil depends on temperature and moisture contents. Archives of Agronomy and Soil Science68, 1413–1429.

Stehfest E, Bouwman L. 2006. N2O and NO emission from agricultural fields and soils under natural vegetation: summarizing available measurement data and modeling of global annual emissions. Nutrient Cycling in Agroecosystems, 74, 207–228.

Snyder C S, Bruulsema T W, Jensen T L, Fixen P E. 2009. Review of greenhouse gas emissions from crop production systems and fertilizer management effects. Agriculture, Ecosystems & Environment133, 247–266.

Song X, Sun R, Chen W, Wang M. 2019. Effects of surface straw mulching and buried straw layer on soil water content and salinity dynamics in saline soils. Canadian Journal of Soil Science100, 58–68.

Tao T, Xin K L. 2014. Public health: A sustainable plan for China’s drinking water. Nature511, 527–528.

Wang J, Liu W, Dang T. 2011. Responses of soil water balance and precipitation storage efficiency to increased fertilizer application in winter wheat. Plant and Soil347, 41–51.

Wang J J, Hussain S, Sun X, Chen X L, Ma Z X, Zhang Q, Yu X H, Zhang P, Ren X L, Saqib M, Farooq M. 2022. Nitrogen application at a lower rate reduce net field global warming potential and greenhouse gas intensity in winter wheat grown in semi-arid region of the Loess Plateau. Field Crops Research280, 108475.

Wang Y B, Wu P T, Engel B A, Sun S K. 2014. Application of water footprint combined with a unified virtual crop pattern to evaluate crop water productivity in grain production in China. Science of Total Environment497, 1–9.

WHO (World Health Organization). 2003. Nitrate and Nitrite in Drinking-Water: Background Document for Development of World Health Organization Guidelines for Drinking-Water Quality (No. WHO/SDE/WSH/04.03/56). World Health Organization.

Xu P, Zhang Y, Gong W, Hou X, Kroeze C, Gao W, Luan S. 2015. An inventory of the emission of ammonia from agricultural fertilizer application in China for 2010 and its high-resolution spatial distribution. Atmospheric Environment115, 141e148.

Xu Q, Hu K, Liang H, Leghari S J, Knudsen M T. 2020. Incorporating the WHCNS model to assess water and nitrogen footprint of alternative cropping systems for grain production in the North China Plain. Journal of Cleaner Production263, 121548.

Yang Y, Zou J, Huang W, Manevski K, Olesen J E, Rees R M, Hu S, Li W J, Kersebaum K C, Louarn G, Ferchaud F, Si J, Xiong S P, Wen X Y, Chen F, Yin X G. 2022. Farm-scale practical strategies to increase nitrogen use efficiency and reduce nitrogen footprint in crop production across the North China Plain. Field Crops Research283, 108526.

Yang Z, Niimi H, Kanda K, Suga Y. 2003. Measurement of ammonia volatilization from a field, in upland Japan, spread with cattle slurry. Environmental Pollution121, 463–467.

Zhang C, Rees R M, Ju X T. 2021. Cropping system design can improve nitrogen use efficiency in intensively managed agriculture. Environmental Pollution280, 116967.

Zhang F S, Cui Z L, Fan M S, Zhang W, Chen X P, Jiang R H. 2011. Integrated soil–crop system management: Reducing environmental risk while increasing crop productivity and improving nutrient use efficiency in China. Journal of Environmental Quality40, 1051–1057.

Zhang X, Davidson E A, Mauzerall D L, Searchinger T D, Dumas P, Shen Y. 2015. Managing nitrogen for sustainable development. Nature528, 51–59.

Zhang Y, Wang R, Wang S, Ning F, Wang H, Wen P, Li A, Dong Z, Xu Z, Zhang Y, Li J. 2019. Effect of planting density on deep soil water and maize yield on the Loess Plateau of China. Agriculture Water Management223, 105655.

Zhang Z G, An J, Han Y C, Feng L, Li X F, Xiong S W, Xing F F, Xin M H, Li Y B, Wang Z. 2021. Advantages of an Orychophragmus violaceus-maize rotation in reducing greenhouse gas emissions and reactive nitrogen losses and increasing net ecosystem economic benefits on the North China Plain. Journal of Cleaner Production317, 128426.

Zhou J, Li B, Xia L L, Fan C H, Xiong Z Q. 2019. Organic-substitute strategies reduced carbon and reactive nitrogen footprints and gained net ecosystem economic benefit for intensive vegetable production. Journal of Cleaner Production225, 984–994.

Zhou J Y, Gu B J, Schlesinger W H, Ju X T. 2016. Significant accumulation of nitrate in Chinese semi-humid croplands. Scientific Reports6, 1–8.

[1] Zijuan Ding, Ren Hu, Yuxian Cao, Jintao Li, Dakang Xiao, Jun Hou, Xuexia Wang. Integrated assessment of yield, nitrogen use efficiency and ecosystem economic benefits of use of controlled-release and common urea in ratoon rice production[J]. >Journal of Integrative Agriculture, 2024, 23(9): 3186-3199.
[2] Lingxiao Zhu, Hongchun Sun, Ranran Wang, Congcong Guo, Liantao Liu, Yongjiang Zhang, Ke Zhang, Zhiying Bai, Anchang Li, Jiehua Zhu, Cundong Li. Exogenous melatonin improves cotton yield under drought stress by enhancing root development and reducing root damage[J]. >Journal of Integrative Agriculture, 2024, 23(10): 3387-3405.
[3] ZHANG Zhi-peng, LI Zhen, HE Fang, LÜ Ji-juan, XIE Bin, YI Xiao-yu, LI Jia-min, LI Jing, SONG Jing-han, PU Zhi-en, MA Jian, PENG Yuan-ying, CHEN Guo-yue, WEI Yu-ming, ZHENG You-liang, LI Wei. Genome-wide association and linkage mapping strategies reveal the genetic loci and candidate genes of important agronomic traits in Sichuan wheat[J]. >Journal of Integrative Agriculture, 2023, 22(11): 3380-3393.
[4] YANG Xu, ZHANG Jia-hua, YANG Shan-shan, WANG Jing-wen, BAI Yun, ZHANG Sha. Modelling the crop yield gap with a remote sensing-based process model: A case study of winter wheat in the North China Plain[J]. >Journal of Integrative Agriculture, 2023, 22(10): 2993-3005.
[5] GUAN Xian-jiao, CHEN Jin, CHEN Xian-mao, XIE Jiang, DENG Guo-qiang, HU Li-zhen, LI Yao, QIAN Yin-fei, QIU Cai-fei, PENG Chun-rui. Root characteristics and yield of rice as affected by the cultivation pattern of strong seedlings with increased planting density and reduced nitrogen application[J]. >Journal of Integrative Agriculture, 2022, 21(5): 1278-1289.
[6] Yeison M QUEVEDO, Liz P MORENO, Eduardo BARRAGÁN. Predictive models of drought tolerance indices based on physiological, morphological and biochemical markers for the selection of cotton (Gossypium hirsutum L.) varieties[J]. >Journal of Integrative Agriculture, 2022, 21(5): 1310-1320.
[7] ZHU Kuan-yu, YAN Jia-qian, SHEN Yong, ZHANG Wei-yang, XU Yun-ji, WANG Zhi-qin, YANG Jian-chang. Deciphering the morpho–physiological traits for high yield potential in nitrogen efficient varieties (NEVs): A japonica rice case study[J]. >Journal of Integrative Agriculture, 2022, 21(4): 947-963.
[8] ZHU Ling-xiao, LIU Lian-tao, SUN Hong-chun, ZHANG Yong-jiang, ZHANG Ke, BAI Zhi-ying, LI An-chang, DONG He-zhong, LI Cun-dong . Effects of chemical topping on cotton development, yield and quality in the Yellow River Valley of China[J]. >Journal of Integrative Agriculture, 2022, 21(1): 78-90.
No Suggested Reading articles found!