Please wait a minute...
Journal of Integrative Agriculture  2025, Vol. 24 Issue (11): 4168-4182    DOI: 10.1016/j.jia.2024.03.030
Crop Science Advanced Online Publication | Current Issue | Archive | Adv Search |
Natural variation in SbTEF1 contributes to salt tolerance in sorghum seedlings 

Chang Liu1, Lei Tian1, Wenbo Yu1, Yu Wang1, Ziqing Yao1, Yue Liu2, Luomiao Yang3, Chunjuan Liu1, Xiaolong Shi1, Tao Liu4, Bingru Chen5, Zhenguo Wang6, Haiqiu Yu1, 7#, Yufei Zhou1#

1 College of Agriculture, Shenyang Agricultural University, Shenyang 110866, China

2 Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110866, China

3 College of Agriculture, Northeast Agricultural University, Harbin 150006, China

4 Institute of Sorghum Research, Baicheng Academy of Agricultural Sciences, Baicheng 137000, China

5 Institute of Sorghum Research, Jilin Academy of Agricultural Sciences, Changchun 130033, China

6 Institute of Sorghum Research, Tongliao Agriculture and Animal Husbandry Sciences, Tongliao 028000, China

7 Liaoning Agricultural Vocational and Technical College, Yingkou 115009, China

 Highlight 
The sorghum salt tolerant gene SbTEF1 was identified by genome-wide association study (GWAS) and the PAV284 which located in the promoter region of SbTEF1 was the key regulatory locus governing the salt tolerant ability.
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  盐胁迫是影响作物产量和品质的主要非生物胁迫因素。由于耐盐基因资源的匮乏,耐盐育种的进程受到了极大的限制。高粱是一种具有较强盐碱耐受性的作物,挖掘其耐盐基因显得尤为重要。本研究对186份核心高粱种质材料进行重测序,结合盐胁迫下相对根长及根鲜重表型进行全基因组关联分析结果显示,在多重耐盐表型共定位区间内共有8个候选基因,结合数据库注释及盐胁迫下基因表达结果,SbTEF1(一种编码转录延长因子蛋白的基因)被确定为耐盐候选基因。在此基础上,结合连锁不平衡分析、基因克隆、基因单倍型分析及等位基因效应分析,发现位于SbTEF1启动子区域的PAV284通过调节盐胁迫情况下基因表达影响高粱耐盐性。PAV284可作为分子标记为高粱种质耐盐改良高粱耐盐品种培育提供技术支撑

Abstract  

Salt stress is a major constraint to crop productivity and quality.  The limited availability of salt-tolerant genes poses significant challenges to breeding programs aimed at enhancing salt tolerance.  Sorghum displays a remarkable ability to withstand saline conditions; therefore, elucidating the genetic underpinnings of this trait is crucial.  This study entailed a comprehensive resequencing of 186 sorghum accessions to perform a genome-wide association study (GWAS) focusing on relative root length (RL) and root fresh weight (RFW) under salt stress conditions.  We identified eight candidate genes within a co-localized region, among which SbTEF1 - a gene encoding a transcription elongation factor protein - was deemed a potential candidate due to its annotation and expression pattern alterations under salt stress.  Haplotype analysis, gene cloning, linkage disequilibrium (LD) analysis, and allele effect analysis revealed that PAV284, located in the promoter region of SbTEF1, modulated gene expression under salt stress, which, in turn, influenced sorghum seedlings’ salt tolerance.  PAV284 holds promise as a genetic marker for selecting salt-tolerant germplasm via marker-assisted breeding, enhancing the development of salt-tolerant sorghum cultivars.

Keywords:  salt stress       GWAS       transcription elongation factor       sorghum (Sorghum biocolor L.)  
Received: 14 November 2023   Accepted: 03 January 2024 Online: 06 March 2024  
Fund: This work was supported by the Science and Technology Program in Liaoning Province, China (2022-BS-172), the China Agriculture Research System of MOF and MARA (CARS-06-14.5-A17) and the Guiding Funds of the Central Government for the Local Scientific and Technological Development Basic Research Program of Jilin Province, China (202002068JC).
About author:  #Correspondence Yufei Zhou, Tel: +86-24-88487135, E-mail: zhouyufei@syau.edu.cn; Haiqiu Yu, Tel: +86-24-88487135, E-mail: yuhaiqiu@syau.edu.cn

Cite this article: 

Chang Liu, Lei Tian, Wenbo Yu, Yu Wang, Ziqing Yao, Yue Liu, Luomiao Yang, Chunjuan Liu, Xiaolong Shi, Tao Liu, Bingru Chen, Zhenguo Wang, Haiqiu Yu, Yufei Zhou. 2025. Natural variation in SbTEF1 contributes to salt tolerance in sorghum seedlings . Journal of Integrative Agriculture, 24(11): 4168-4182.

Bazakos C, Hanemian M, Trontin C, Jiménez-Gómez J M, Loudet O. 2017. New strategies and tools in quantitative genetics: How to go from the phenotype to the genotype. Annual Review of Plant Biology68, 435–455.

Cao Y, Zhang M, Liang X, Li F, Shi Y, Yang X, Jiang C. 2020. Natural variation of an EF-hand Ca2+-binding-protein coding gene confers saline–alkaline tolerance in maize. Nature Communications11, 186.

Cui D, Wu D, Somarathna Y, Xu C, Li S, Li P, Zhang H, Chen H, Zhao L. 2015. QTL mapping for salt tolerance based on snp markers at the seedling stage in maize (Zea mays L.). Euphytica203, 273–283.

Cui Y, Zhang F, Zhou Y. 2018. The application of multi-locus GWAS for the detection of salt-tolerance loci in rice. Frontiers in Plant Science9, 1464.

Do T D, Vuong T D, Dunn D, Clubb M, Valliyodan B, Patil G, Chen P, Xu D, Nguyen H T, Shannon J G. 2019. Identification of new loci for salt tolerance in soybean by high-resolution genome-wide association mapping. BMC Genomics20, 1–16.

Fan G, Xia X, Yao W, Cheng Z, Zhang X, Jiang J, Zhou B, Jiang T. 2022. Genome-wide identification and expression patterns of the F-box family in poplar under salt stress. International Journal of Molecular Sciences23, 10934.

Fang H, Fu X Y, Ge H Q, Jia M X, Ji J, Zhao Y Z, Qu Z J, Cui Z Q, Zhang A X, Wang Y D, Li P, Wang B H. 2024. Genetic analysis and candidate gene identification of salt tolerance-related traits in maize. Journal of Integrative Agriculture23, 2196–2210.

Galvan-Ampudia C S, Testerink C. 2011. Salt stress signals shape the plant root. Current Opinion in Plant Biology14, 296–302.

Gao L, Jia S, Cao L, Ma Y, Wang J, Lan D, Guo G, Chai J, Bi C. 2022. An F-box protein from wheat, TaFBA-2A, negatively regulates JA biosynthesis and confers improved salt tolerance and increased JA responsiveness to transgenic rice plants. Plant Physiology and Biochemistry182, 227–239.

Gao Y, Ma J, Zheng J C, Chen J, Chen M, Zhou Y B, Fu J D, Xu Z S, Ma Y Z. 2019. The elongation factor GmEF4 is involved in the response to drought and salt tolerance in soybean. International Journal of Molecular Sciences20, 3001.

Hao Y C, Kong F M, Wang L L, Zhao Y, Li M Y, Che N X, Li S, Wang M, Hao M, Zhang X C. 2024. Genome-wide association study of grain micronutrient concentrations in bread wheat. Journal of Integrative Agriculture23, 1468–1480.

Jia Q, Xiao Z X, Wong F L, Sun S, Liang K J, Lam H M. 2017. Genome-wide analyses of the soybean F-box gene family in response to salt stress. International Journal of Molecular Sciences18, 818.

Jones D T. 1999. Protein secondary structure prediction based on position-specific scoring matrices. Journal of Molecular Biology292, 195–202.

Kimani W, Zhang L M, Wu X Y, Hao H Q, Jing H C. 2020. Genome-wide association study reveals that different pathways contribute to grain quality variation in sorghum (Sorghum bicolor). BMC Genomics21, 1–19.

Kumar V, Singh A, Mithra S A, Krishnamurthy S, Parida S K, Jain S, Tiwari K K, Kumar P, Rao A R, Sharma S. 2015. Genome-wide association mapping of salinity tolerance in rice (Oryza sativa). DNA Research22, 133–145.

Li P, Yang X, Wang H, Pan T, Wang Y, Xu Y, Xu C, Yang Z. 2021. Genetic control of root plasticity in response to salt stress in maize. Theoretical and Applied Genetics134, 1475–1492.

Li Q L, Li Z Y, Wang M M, Yan J W, Fang L. 2023. Phosphorylation of SiRAV1 at Ser31 regulates the SiCAT expression to enhance salt tolerance in Setaria italicaJournal of Integrative Agriculture22, 3638–3651.

Li X, Guo D, Xue M, Li G, Yan Q, Jiang H, Liu H, Chen J, Gao Y, Duan L. 2022. Genome-wide association study of salt tolerance at the seed germination stage in flax (Linum usitatissimum L.). Genes13, 486.

Liaqat A, Alfatih A, Jan S U, Sun L, Zhao P, Xiang C. 2023. Transcription elongation factor AtSPT4-2 positively modulates salt tolerance in Arabidopsis thalianaBMC Plant Biology23, 49.

Lipka A E, Tian F, Wang Q, Peiffer J, Li M, Bradbury P J, Gore M A, Buckler E S, Zhang Z. 2012. GAPIT: Genome association and prediction integrated tool. Bioinformatics28, 2397–2399.

Liu C, Yao Z, Jiang B, Yu W, Wang Y, Dong W, Li Y, Shi X, Liu C, Zhou Y. 2023. Effects of exogenous auxin on mesocotyl elongation of sorghum. Plants12, 944.

Luo M, Zhang Y, Chen K, Kong M, Song W, Lu B, Shi Y, Zhao Y, Zhao J. 2019. Mapping of quantitative trait loci for seedling salt tolerance in maize. Molecular Breeding39, 1–12.

Luo M, Zhang Y, Li J, Zhang P, Chen K, Song W, Wang X, Yang J, Lu X, Lu B. 2021. Molecular dissection of maize seedling salt tolerance using a genome-wide association analysis method. Plant Biotechnology Journal19, 1937–1951.

Luo M, Zhao Y, Zhang R, Xing J, Duan M, Li J, Wang N, Wang W, Zhang S, Chen Z. 2017. Mapping of a major QTL for salt tolerance of mature field-grown maize plants based on SNP markers. BMC Plant Biology17, 1–10.

Luo X, Wang B, Gao S, Zhang F, Terzaghi W, Dai M. 2019. Genome-wide association study dissects the genetic bases of salt tolerance in maize seedlings. Journal of Integrative Plant Biology61, 658–674.

Lv Y, Ma J, Wei H, Xiao F, Wang Y, Jahan N, Hazman M, Qian Q, Shang L, Guo L. 2022. Combining GWAS, genome-wide domestication and a transcriptomic analysis reveals the loci and natural alleles of salt tolerance in rice (Oryza sativa L.). Frontiers in Plant Science13, 912637.

Ma H S, Liang D, Shuai P, Xia X L, Yin W L. 2010. The salt-and drought-inducible poplar GRAS protein SCL7 confers salt and drought tolerance in Arabidopsis thalianaJournal of Experimental Botany61, 4011–4019.

Ma L, Zhang M, Chen J, Qing C, He S, Zou C, Yuan G, Yang C, Peng H, Pan G. 2021. GWAS and WGCNA uncover hub genes controlling salt tolerance in maize (Zea mays L.) seedlings. Theoretical and Applied Genetics134, 3305–3318.

Min M H, Khaing A A, Chu S H, Nawade B, Park Y J. 2024. Exploring the genetic basis of pre-harvest sprouting in rice through a genome-wide association study-based haplotype analysis. Journal of Integrative Agriculture23, 2525–2540.

Nayyeripasand L, Garoosi G A, Ahmadikhah A. 2021. Genome-wide association study (GWAS) to identify salt-tolerance QTLs carrying novel candidate genes in rice during early vegetative stage. Rice14, 1–21.

Neves G, Marchiosi R, Ferrarese M, Siqueira-Soares R, Ferrarese-Filho O. 2010. Root growth inhibition and lignification induced by salt stress in soybean. Journal of Agronomy and Crop Science196, 467–473.

Patishtan J, Hartley T N, Fonseca De Carvalho R, Maathuis F J. 2018. Genome-wide association studies to identify rice salt-tolerance markers. PlantCell & Environment41, 970–982.

Pritchard J K, Stephens M, Donnelly P. 2000. Inference of population structure using multilocus genotype data. Genetics155, 945–959.

Quamruzzaman M, Manik S N, Shabala S, Zhou M. 2021. Improving performance of salt-grown crops by exogenous application of plant growth regulators. Biomolecules11, 788.

Rengasamy P. 2006. World salinization with emphasis on Australia. Journal of Experimental Botany57, 1017–1023.

Sha X Q, Guan H H, Zhou Y Q, Su E H, Guo J, Li Y X, Zhang D F, Liu X Y, He G H, Li Y, Wang T Y, Zou H W, Li C H. 2023. Genetic dissection of crown root traits and their relationships with aboveground agronomic traits in maize. Journal of Integrative Agriculture22, 3394–3407.

Shabala S, Bose J, Hedrich R. 2014. Salt bladders: Do they matter? Trends in Plant Science19, 687–691.

Szádeczky-Kardoss I, Szaker H M, Verma R, Darkó É, Pettkó-Szandtner A, Silhavy D, Csorba T. 2022. Elongation factor TFIIS is essential for heat stress adaptation in plants. Nucleic Acids Research50, 1927–1950.

Tao Y, Zhao X, Wang X, Hathorn A, Hunt C, Cruickshank A W, Van Oosterom E J, Godwin I D, Mace E S, Jordan D R. 2020. Large-scale GWAS in sorghum reveals common genetic control of grain size among cereals. Plant Biotechnology Journal18, 1093–1105.

Verslues P E, Batelli G, Grillo S, Agius F, Kim Y S, Zhu J, Agarwal M, Katiyar-Agarwal S, Zhu J K. 2007. Interaction of SOS2 with nucleoside diphosphate kinase 2 and catalases reveals a point of connection between salt stress and H2Osignaling in Arabidopsis thalianaMolecular and Cellular Biology27, 7771–7780.

Wang J, Zhang Z. 2021. GAPIT version 3: Boosting power and accuracy for genomic association and prediction. GenomicsProteomics & Bioinformatics19, 629–640.

Wang Y, Li D Y, Liu C J, Shi X L, Huang Y, Liu C, Zhou Y F. 2025. Screening and identification of grain sorghum germplasm for salt tolerance at seedling stage. Frontiers in Plant Science16, 1610685.

Waterhouse A, Bertoni M, Bienert S, Studer G, Tauriello G, Gumienny R, Heer F T, De Beer T A P, Rempfer C, Bordoli L. 2018. SWISS-MODEL: Homology modelling of protein structures and complexes. Nucleic Acids Research46, W296–W303.

Wind M, Reines D. 2000. Transcription elongation factor SII. Bioessays22, 327–336.

Wu J, Yu R, Wang H, Zhou C E, Huang S, Jiao H, Yu S, Nie X, Wang Q, Liu S. 2021. A large-scale genomic association analysis identifies the candidate causal genes conferring stripe rust resistance under multiple field environments. Plant Biotechnology Journal19, 177–191.

Xu G, Cui Y, Wang M, Li M, Yin X, Xia X. 2014. OsMsr9, a novel putative rice F-box containing protein, confers enhanced salt tolerance in transgenic rice and ArabidopsisMolecular Breeding34, 1055–1064.

Xu H R, Liu Y, Yu T F, Hou Z H, Zheng J C, Chen J, Zhou Y B, Chen M, Fu J D, Ma Y Z. 2022. Comprehensive profiling of tubby-like proteins in soybean and roles of the GmTLP8 gene in abiotic stress responses. Frontiers in Plant Science13, 844545.

Xu K, Chen S, Li T, Ma X, Liang X, Ding X, Liu H, Luo L. 2015. OsGRAS23, a rice GRAS transcription factor gene, is involved in drought stress response through regulating expression of stress-responsive genes. BMC Plant Biology15, 1–13.

Yu Y, Wang P, Bai Y, Wang Y, Wan H, Liu C, Ni Z. 2020. The soybean F-box protein GmFBX176 regulates ABA-mediated responses to drought and salt stress. Environmental and Experimental Botany176, 104056.

Yuan J, Wang X, Zhao Y, Khan N U, Zhao Z, Zhang Y, Wen X, Tang F, Wang F, Li Z. 2020. Genetic basis and identification of candidate genes for salt tolerance in rice by GWAS. Scientific Reports10, 9958.

Yuan Y, Fang L, Karungo S K, Zhang L, Gao Y, Li S, Xin H. 2016. Overexpression of VaPAT1, a GRAS transcription factor from Vitis amurensis, confers abiotic stress tolerance in ArabidopsisPlant Cell Reports35, 655–666.

Zeng A, Chen P, Korth K, Hancock F, Pereira A, Brye K, Wu C, Shi A. 2017. Genome-wide association study (GWAS) of salt tolerance in worldwide soybean germplasm lines. Molecular Breeding37, 1–14.

Zhai L, Zheng T, Wang X, Wang Y, Chen K, Wang S, Xu J, Li Z. 2018. QTL mapping and candidate gene analysis of peduncle vascular bundle related traits in rice by genome-wide association study. Rice11, 1–15.

Zhan C, Zhu P, Chen Y, Chen X, Liu K, Chen S, Hu J, He Y, Xie T, Luo S. 2023. Identification of a key locus, qNL3. 1, associated with seed germination under salt stress via a genome-wide association study in rice. Theoretical and Applied Genetics136, 58.

Zhang H, Yu F, Xie P, Sun S, Qiao X, Tang S, Chen C, Yang S, Mei C, Yang D. 2023. A Gγ protein regulates alkaline sensitivity in crops. Science379, eade8416.

Zhang M, Li Y, Liang X, Lu M, Lai J, Song W, Jiang C. 2023. A teosinte-derived allele of an HKT1 family sodium transporter improves salt tolerance in maize. Plant Biotechnology Journal21, 97–108.

Zhang M, Liang X, Wang L, Cao Y, Song W, Shi J, Lai J, Jiang C. 2019. A HAK family Na+ transporter confers natural variation of salt tolerance in maize. Nature Plants5, 1297–1308.

Zhang S, Li X, Fan S, Zhou L, Wang Y. 2020. Overexpression of HcSCL13, a Halostachys caspica GRAS transcription factor, enhances plant growth and salt stress tolerance in transgenic ArabidopsisPlant Physiology and Biochemistry151, 243–254.

Zhao C, Zhang H, Song C, Zhu J K, Shabala S. 2020. Mechanisms of plant responses and adaptation to soil salinity. The Innovation1, 41.

Zhao Z, Zhang G, Zhou S, Ren Y, Wang W. 2017. The improvement of salt tolerance in transgenic tobacco by overexpression of wheat F-box gene TaFBA1Plant Science259, 71–85.

Zhou X, Li J, Wang Y, Liang X, Zhang M, Lu M, Guo Y, Qin F, Jiang C. 2022. The classical SOS pathway confers natural variation of salt tolerance in maize. New Phytologist236, 479–494.

Zhu J K. 2003. Regulation of ion homeostasis under salt stress. Current Opinion in Plant Biology6, 441–445.

[1] Yapeng Zhang, Wentao Cai, Qi Zhang, Qian Li, Yahui Wang, Ruiqi Peng, Haiqi Yin, Xin Hu, Zezhao Wang, Bo Zhu, Xue Gao, Yan Chen, Huijiang Gao, Lingyang Xu, Junya Li, Lupei Zha. Integrated analyses of genomic and transcriptomic data reveal candidate variants associated with carcass traits in Huaxi cattle[J]. >Journal of Integrative Agriculture, 2025, 24(8): 3169-3184.
[2] Runnan Zhou, Sihui Wang, Peiyan Liu, Yifan Cui, Zhenbang Hu, Chunyan Liu, Zhanguo Zhang, Mingliang Yang, Xin Li, Xiaoxia Wu, Qingshan Chen, Ying Zhao. Genome-wide characterization of soybean malate dehydrogenase genes reveals a positive role for GmMDH2 in the salt stress response[J]. >Journal of Integrative Agriculture, 2025, 24(7): 2492-2510.
[3] Dan Lü, Jianxin Li, Xuehai Zhang, Ran Zheng, Aoni Zhang, Jingyun Luo, Bo Tong, Hongbing Luo, Jianbing Yan, Min Deng. Genetic analysis of maize crude fat content by multi-locus genome-wide association study[J]. >Journal of Integrative Agriculture, 2025, 24(7): 2475-2491.
[4] Chunxiang Li, Yongfeng Song, Yong Zhu, Mengna Cao, Xiao Han, Jinsheng Fan, Zhichao Lü, Yan Xu, Yu Zhou, Xing Zeng, Lin Zhang, Ling Dong, Dequan Sun, Zhenhua Wang, Hong Di. GWAS analysis reveals candidate genes associated with density tolerance (ear leaf structure) in maize (Zea mays L.)[J]. >Journal of Integrative Agriculture, 2025, 24(6): 2046-2062.
[5] Zhian Dai, Rongwei Yuan, Xiangxia Yang, Hanxiao Xi, Ma Zhuo, Mi Wei. Salinity-responsive key endophytic bacteria in the propagules of Kandelia obovata enhance salt tolerance in rice[J]. >Journal of Integrative Agriculture, 2025, 24(5): 1738-1753.
[6] Huairen Zhang, Tauseef Taj Kiani, Huabang Chen, Juan Liu, Xunji Chen. Genome wide association analysis reveals multiple QTLs controlling root development in maize [J]. >Journal of Integrative Agriculture, 2025, 24(5): 1656-1670.
[7] Deyin Zhang, Xiaolong Li, Fadi Li, Xiaoxue Zhang, Yuan Zhao, Yukun Zhang, Zongwu Ma, Huibin Tian, Xiuxiu Weng, Weimin Wang. Genome-wide association study identifies novel loci associated with feed efficiency traits in Hu lambs[J]. >Journal of Integrative Agriculture, 2025, 24(4): 1259-1269.
[8] Fuli Gao, Zidong Wang, Wankun Liu, Min Liu, Baoyi Wang, Yingjie Yang, Jiankun Song, Zhenhua Cui, Chenglin Liang, Dingli Li, Ran Wang, Jianlong Liu. Dehydrin PbDHN3 regulates ethylene synthesis and signal transduction to improve salt tolerance in pear[J]. >Journal of Integrative Agriculture, 2025, 24(10): 3838-3850.
[9] Jiayue He, Yanhua Chen, Yanrong Hao, Dili Lai, Tanzim Jahan, Yaliang Shi, Hao Lin, Yuqi He, Md. Nurul Huda, Jianping Cheng, Kaixuan Zhang, Jinbo Li, Jingjun Ruan, Meiliang Zhou. Combining GWAS and RNA-seq approaches identifies the FtADH1 gene for drought resistance in Tartary buckwheat[J]. >Journal of Integrative Agriculture, 2025, 24(10): 3739-3756.
[10] Myeong-Hyeon Min, Aye Aye Khaing, Sang-Ho Chu, Bhagwat Nawade, Yong-Jin Park. Exploring the genetic basis of pre-harvest sprouting in rice through a genome-wide association study-based haplotype analysis[J]. >Journal of Integrative Agriculture, 2024, 23(8): 2525-2540.
[11] Yingzhen Wang, Ying Wu, Xinlei Wang, Wangmei Ren, Qinyao Chen, Sijia Zhang, Feng Zhang, Yunzhi Lin, Junyang Yue, Yongsheng Liu.

Genome wide association analysis identifies candidate genes for fruit quality and yield in Actinidia eriantha  [J]. >Journal of Integrative Agriculture, 2024, 23(6): 1929-1939.

[12] Yongchao Hao, Fanmei Kong, Lili Wang, Yu Zhao, Mengyao Li, Naixiu Che, Shuang Li, Min Wang, Ming Hao, Xiaocun Zhang, Yan Zhao.

Genome-wide association study of grain micronutrient concentrations in bread wheat [J]. >Journal of Integrative Agriculture, 2024, 23(5): 1468-1480.

[13] Ping Xu, Hao Li, Haiyuan Li, Ge Zhao, Shengjie Dai, Xiaoyu Cui, Zhenning Liu, Lei Shi, Xiaohua Wang.

Genome-wide and candidate gene association studies identify BnPAP17 as conferring the utilization of organic phosphorus in oilseed rape [J]. >Journal of Integrative Agriculture, 2024, 23(4): 1134-1149.

[14] Congcong Zhang, Han Wang, Guojie Nai, Lei Ma, Xu Lu, Haokai Yan, Meishuang Gong, Yuanyuan Li, Ying Lai, Zhihui Pu, Li Wei, Guiping Chen, Ping Sun, Baihong Chen, Shaoying Ma, Sheng Li. Nitrogen application regulates antioxidant capacity and flavonoid metabolism, especially quercetin, in grape seedlings under salt stress[J]. >Journal of Integrative Agriculture, 2024, 23(12): 4074-4092.
[15] Lei Wu, Yujie Chang, Lanfen Wang, Shumin Wang, Jing Wu. Genome-wide association study dissecting drought resistance-associated loci based on physiological traits in common bean[J]. >Journal of Integrative Agriculture, 2024, 23(11): 3657-3671.
No Suggested Reading articles found!