Please wait a minute...
Journal of Integrative Agriculture  2024, Vol. 23 Issue (11): 3882-3895    DOI: 10.1016/j.jia.2024.03.022
Agro-ecosystem & Environment Advanced Online Publication | Current Issue | Archive | Adv Search |
Biochar induced trade-offs and synergies between ecosystem services and crop productivity

Jinxia Wang1, Qiu Huang1, Kai Peng1, Dayang Yang1, 2, Guozhen Wei1, Yunfei Ren1, Yixuan Wang1, Xiukang Wang3, Nangia Vinay4, Shikun Sun5, Yanming Yang6, Fei Mo1#

1 College of Agronomy, Northwest A&F University, Yangling 712100, China

2 Agricultural and Animal Husbandry Technology Extension Center, Linzhi 860000, China

3 College of Life Sciences, Yan’an University, Yan’an 716000, China

4 International Center for Agricultural Research in the Dry Areas (ICARDA), Raba 6299-10112t, Morocco

5 College of Water Resources and Architectural Engineering, Northwest A&F University, Yangling 712100, China

6 College of Agronomy, Inner Mongolia Agricultural University, Hohhot 010019, China

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  
生物炭还田为农业可持续发展创造了新机遇。然而,生物炭制备条件和配套管理措施是生物炭还田效益的主要制约因素,这也是在全球农田系统中所观测到的生物炭还田生产生态效益及其对农业可持续发展的贡献尚存在差异的根源所在。本研究利用Second order meta-analysis方法对34,628个生物炭添加和未添加的配对观测数据进行再分析,首次定量评估了生物炭制备条件和管理措施对多项生态系统服务的影响。总体而言,生物炭还田增强了植物的毒性缓解和生理调节、土壤的修复和固碳、微生物功能基因等能力。然而,在养分循环、微生物功能、减缓气候变化和土壤微生物群落方面,生物炭施用引起了作物生产力与生态系统服务之间的权衡。进一步发现:采用污水污泥物为原料、且在高温热解下生产的较低碳氮比的生物炭,配合适量的肥料施用,能够保证作物生产力与多种生态系统服务之间的协同共济。整体上,本研究强调因地制宜建立生物炭制备与施用方案对缓解特定条件下土壤结构和功能障碍的重要性。本文量化的协同和权衡关系可为构建粮食安全保障能力与必要生态服务功能协同提升的生物炭可持续发展框架提供参考依据。


Abstract  
Biochar amendment offers a chance for sustainable agriculture. However, the effectiveness of biochar relies on its physical and chemical properties, which are heavily affected by biochar production conditions and management practices. Therefore, substantial uncertainties regarding the use of biochar exist in agricultural systems globally. This study provides the first quantitative evaluation of the impacts of biochar characteristics and management practices on key ecosystem services by performing a second-order meta-analysis based on 34,628 paired observations in biochar-amended and unamended systems. Overall, biochar enhances phytotoxicity alleviation, physiology regulation, soil remediation and carbon sequestration, and microbial functional gene abundance. However, some prominent trade-offs exist between crop productivity and ecosystem service deliveries including for nutrient cycling, microbial function, climate change mitigation, and the soil microbial community). The adoption of low C:N biochar produced at high pyrolysis temperatures from sewage sludge-derived feedstock, in combination with a moderate application rate and inorganic fertilizer input, shows potential for achieving synergistic promotion of crop productivity and ecosystem services. These outcomes highlight the need for judicious implementation of biochar-based solutions to site-specific soil constraints. The quantified synergy and tradeoff relationships will aid the establishment of a sustainable biochar development framework that strengthens necessary ecosystem services commensurate with food security assurance.
Keywords:  biochar       soil remediation        phytotoxicity alleviation        carbon sequestration        productivity  
Received: 07 October 2023   Accepted: 08 January 2024
Fund: 
The research was funded by the National Natural Science Foundation of China (32272233), the National Key Research and Development Program of China (2023YFD2302300), the Shaanxi Innovative Talents Promotion Plan, China (2023KJXX-012), and the Science and Technology Plan Project of Inner Mongolia, China (2022YFDZ0018).
About author:  Jinxia Wang, Mobile: +86-13470067015, E-mail: wangjinxia@nwafu.edu.cn; #Correspondence Fei Mo, Mobile: +86-18710929182, E-mail: mofei@nwafu.edu.cn

Cite this article: 

Jinxia Wang, Qiu Huang, Kai Peng, Dayang Yang, Guozhen Wei, Yunfei Ren, Yixuan Wang, Xiukang Wang, Nangia Vinay, Shikun Sun, Yanming Yang, Fei Mo. 2024. Biochar induced trade-offs and synergies between ecosystem services and crop productivity. Journal of Integrative Agriculture, 23(11): 3882-3895.

Bai S H, Omidvar N, Gallart M, Kamper W, Tahmasbian I, Farrar M B, Singh K, Zhou G, Muqadass B, Xu C Y, Koech R, Li Y, Nguyen T T N, van Zwieten L. 2022. Combined effects of biochar and fertilizer applications on yield: A review and meta-analysis. Science of the Total Environment, 808, 152073.

Benítez-López A, Alkemade R, Schipper A M, Ingram D J, Verweij P A, Eikelboom J A J, Huijbregts M A J. 2017. The impact of hunting on tropical mammal and bird populations. Science, 356, 180–183.

Biederman L A, Harpole W S. 2013. Biochar and its effects on plant productivity and nutrient cycling: A meta-analysis. Global Change Biology Bioenergy, 5, 202-214.

Blanco‐Canqui H. 2020. Does biochar improve all soil ecosystem services? Global Change Biology Bioenergy, 13, 291-304.

Boyd J, Banzhaf S. 2007. What are ecosystem services? The need for standardized environmental accounting units. Ecological Economics, 63, 616-626.

Carpenter S R, Defries R, Dietz T H A, Mooney S P, Reid W V, Scholes R J. 2006. The millennium ecosystem assessment: Research needs. Science, 314, 257–258.

Castellanos M C, Verdú M. 2012. Meta-analysis of meta-analyses in plant evolutionary ecology. Evolutionary Ecology, 26, 1187–1196.

Chan K Y, Van Zwieten L, Meszaros I, Downie A, Joseph S. 2008. Using poultry litter biochars as soil amendments. Australian Journal of Soil Research, 46, 437-444.

Cooper H K A. 2012. The overview of reviews: Unique challenges and opportunities when research syntheses are the principal elementsof new integrative scholarship. American Psychologist67, 446–462.

De Corato U. 2020. Towards new soil management strategies for improving soil quality and ecosystem services in sustainable agriculture: Editorial overview. Sustainability, 12, 9398.

Costanza R, Arge R, Groots R, Farber S, Grasso M, Hannon B, Limburg K, Naeem S, O'Neil R, Paruelo J, Raskin P, Bel M. 1997. The value of the world's ecosystem services and natural capital. Nature, 387, 253-260.

Ding F, Van Zwieten L, Zhang W, Weng Z, Shi S, Wang J, Meng J. 2017. A meta-analysis and critical evaluation of influencing factors on soil carbon priming following biochar amendment. Journal of Soils and Sediments, 18, 1507-1517.

Ding Y, Liu Y, Liu S, Li Z, Tan X, Huang X, Zeng G, Zhou L, Zheng B. 2016. Biochar to improve soil fertility. A review. Agronomy for Sustainable Development, 36, 36.

Dutta T, Kwon E, Bhattacharya S S, Jeon B H, Deep A, Uchimiya M, Kim K H. 2017. Polycyclic aromatic hydrocarbons and volatile organic compounds in biochar and biochar-amended soil: A review. Global Change Biology Bioenergy, 9, 990-1004.

Egger M, Smith G D, Schneider M, Minder C. 1997. Bias in meta-analysis detected by a simple, graphical test. The BMJ, 315, 629-634.

Elad Y, David R, Harel Y M, Borenshtein M, Kalifa H B, Silber A, Graber E R. 2010. Induction of systemic resistance in plants by biochar, a soil-applied carbon sequestering agent. Phytopathology, 100, 913–921.

Elmer W H, Pignatello J J. 2011. Effect of biochar amendments on mycorrhizal associations and fusarium crown and root rot of asparagus in replant soils. Plant Disease95, 960–966.

Feng Z, Leung L R, Hagos S, Houze R A, Burleyson C D, Balaguru K. 2016. More frequent intense and long-lived storms dominate the springtime trend in central US rainfall. Nature Communications, 7, 13429.

Fisher B, Kerry Turner R. 2008. Ecosystem services: Classification for valuation. Biological Conservation, 141, 1167-1169.

Gao S, DeLuca T H, Cleveland C C. 2019. Biochar additions alter phosphorus and nitrogen availability in agricultural ecosystems: A meta-analysis. Science of the Total Environment654, 463-472.

Gao Y, Shao G, Yang Z, Zhang K, Lu J, Wang Z, Wu S, Xu D. 2021. Influences of soil and biochar properties and amount of biochar and fertilizer on the performance of biochar in improving plant photosynthetic rate: A meta-analysis. European Journal of Agronomy130, 126345.

Gul S, Whalen J K. 2016. Biochemical cycling of nitrogen and phosphorus in biochar-amended soils. Soil Biology & Biochemistry, 103, 1-15.

He M, Xu Z, Sun Y, Chan P S, Lui I, Tsang D C W. 2021. Critical impacts of pyrolysis conditions and activation methods on application-oriented production of wood waste-derived biochar. Bioresource Technology, 341, 125811.

Hennessy E A, Johnson B T. 2020. Examining overlap of included studies in meta-reviews: Guidance for using the corrected covered area index. Research Synthesis Methods, 11, 134-145.

Hossain M K, Strezov V, Chan K Y, Nelson P F. 2010. Agronomic properties of wastewater sludge biochar and bioavailability of metals in production of cherry tomato (Lycopersicon esculentum). Chemosphere, 78, 1167-1171.

Huang L, Wang Q, Zhou Q, Ma L, Wu Y, Liu Q, Wang S, Feng Y. 2020. Cadmium uptake from soil and transport by leafy vegetables: A meta-analysis. Environmental Pollution264, 114677.

Ippolito J A, Cui L, Kammann C, Wrage-Mönnig N, Estavillo J M, Fuertes-Mendizabal T, Cayuela M L, Sigua G, Novak J, Spokas K, Borchard N. 2020. Feedstock choice, pyrolysis temperature and type influence biochar characteristics: A comprehensive meta-data analysis review. Biochar, 2, 421-438.

Koricheva J, Gurevitch J, Mengersen K. 2013. Handbook of Meta-Analysis in Ecology and Evolution. Princeton University Press, USA.

Jeffery S, Verheijen F G A, van der Velde M, Bastos A C. 2011. A quantitative review of the effects of biochar application to soils on crop productivity using meta-analysis. Agriculture, Ecosystems & Environment, 144, 175-187.

Ji C, Jin Y, Li C, Chen J, Kong D, Yu K, Liu S, Zou J. 2018. Variation in Soil methane release or uptake responses to biochar amendment: A separate meta-analysis. Ecosystems21, 1692-1705.

Kammann C I, Linsel S, Gößling J W, Koyro H W. 2011. Influence of biochar on drought tolerance of Chenopodium quinoa Willd and on soil–plant relations. Plant Soil, 345, 195-210.

Laird D A, Brown R C, Amonette J E, Lehmann J. 2009. Review of the pyrolysis platform for coproducing bio-oil and biochar. Biofuels, Bioproducts and Biorefining, 3, 547-562.

Laird D A, Fleming P, Davis D D, Horton R, Wang B, Karlen D L. 2010. Impact of biochar amendments on the quality of a typical Midwestern agricultural soil. Geoderma, 158, 443-449.

Lehmann J, Gaunt J, Rondon M. 2006. Bio-char sequestration in terrestrial ecosystems-A Review. Mitigation and Adaptation Strategies for Global Change, 11, 403-427.

Lehmann J, Rillig M C, Thies J, Masiello C A, Hockaday W C, Crowley D. 2011. Biochar effects on soil biota-A review. Soil Biology & Biochemistry, 43, 1812-1836.

Levins R A, Cochrane W W. 1996. The treadmill revisited. Land Economics, 72, 550–553.

Li X, Wang T, Chang S X, Jiang X, Song Y. 2020. Biochar increases soil microbial biomass but has variable effects on microbial diversity: A meta-analysis. Science of the Total Environment, 749, 141593.

Liang B, Lehmann J, Solomon D, Kinyangi J, Grossman J, O'Neill B, Skjemstad J O, Thies J, Luizão F J, Petersen J, Neves E G. 2006. Black carbon increases cation exchange capacity in soils. Soil Science Society of America Journal, 70, 1719-1730.

Liu C, Liu X, Zhang X, Li L, Pan G. 2019. Evaluating the effects of biochar amendment on crop yield and soil carbon sequestration and greenhouse gas emission using meta-analysis. Journal of Agro-Environment Science, 38, 696-706.

Liu J N, Zhou Q X, Sun T, Ma L Q, Wang S. 2008. Growth responses of three ornamental plants to Cd and Cd-Pb stress and their metal accumulation characteristics. Journal of Hazardous Materials, 151, 261-268.

Liu S, Zhang Y, Zong Y, Hu Z, Wu S, Zhou J, Jin Y, Zou J. 2016. Response of soil carbon dioxide fluxes, soil organic carbon and microbial biomass carbon to biochar amendment: A meta-analysis. Global Change Biology Bioenergy, 8, 392-406.

McGrath T E, Chan W G, Hajaligol M R. 2003. Low temperature mechanism for the formation of polycyclic aromatic hydrocarbons from the pyrolysis of cellulose. Journal of Analytical and Applied Pyrolysis, 66, 51-70.

Millennium Ecosystem Assessment. 2005. Millennium ecosystem assessment synthesis report. Island, Washington.

Murphy B W. 2015. Impact of soil organic matter on soil properties-a review with emphasis on Australian soils. Soil Research, 53, 605–635.

Nakagawa S, Noble D W, Senior A M, Lagisz M. 2017. Meta-evaluation of meta-analysis: Ten appraisal questions for biologists. BMC Biology, 15, 18.

Nakajima D, Nagame S, Kuramochi H, Sugita K, Kageyama S, Shiozaki T, Takemura T, Shiraishi F, Goto S. 2007. Polycyclic aromatic hydrocarbon generation behavior in the process of carbonization of wood. Bulletin of Environmental Contamination and Toxicology79, 221-226.

Nguyen T T N, Xu C Y, Tahmasbian I, Che R, Xu Z, Zhou X, Wallace H M, Bai S H. 2017. Effects of biochar on soil available inorganic nitrogen: A review and meta-analysis. Geoderma, 288, 79-96.

O'Connor D, Peng T, Zhang J, Tsang D C W, Alessi D S, Shen Z, Bolan N S, Hou D. 2018. Biochar application for the remediation of heavy metal polluted land: A review of in situ field trials. Science of the Total Environment, 619-620, 815-826.

Pan S Y, Dong C D, Su J F, Wang P Y, Chen C W, Chang J S, Kim H, Huang C P, Hung C M. 2021. The role of biochar in regulating the carbon, phosphorus, and nitrogen cycles exemplified by soil systems. Sustainability, 13, 5612.

Park J H, Choppala G K, Bolan N S, Chung J W, Chuasavathi T. 2011. Biochar reduces the bioavailability and phytotoxicity of heavy metals. Plant Soil348, 439-451.

Pokharel P, Ma Z, Chang S X. 2020. Biochar increases soil microbial biomass with changes in extra- and intracellular enzyme activities: A global meta-analysis. Biochar, 2, 65-79.

Quilliam R S, Marsden K A, Gertler C, Rousk J, DeLuca T H, Jones D L. 2012. Nutrient dynamics, microbial growth and weed emergence in biochar amended soil are influenced by time since application and reapplication rate. Agriculture Ecosystems & Environment, 158, 192-199.

Rehman A, Arif M S, Tufail M A, Shahzad S M, Farooq T H, Ahmed W, Mehmood T, Farooq M R, Javed Z, Shakoor A. 2021. Biochar potential to relegate metal toxicity effects is more soil driven than plant system: A global meta-analysis. Journal of Cleaner Production, 316, 128276.

Routschek A, Schmidt J, Kreienkamp F. 2014. Impact of climate change on soil erosion-A high-resolution projection on catchment scale until 2100 in Saxony/Germany. Catena121, 99-109.

Sachs J D, Reid W V. 2006. Environment. Investments toward sustainable development. Science, 312, 1002.

Schmidt F L, Oh I S. 2013. Methods for second order meta-analysis and illustrative applications. Organizational Behavior and Human Decision, 121, 204-218.

Sha Z, Li Q, Lv T, Misselbrook T, Liu X. 2019. Response of ammonia volatilization to biochar addition: A meta-analysis. Science of the Total Environment655, 1387-1396.

Shakoor A, Arif M S, Shahzad S M, Farooq T H, Ashraf F, Altaf M M, Ahmed W, Tufail M A, Ashraf M. 2021. Does biochar accelerate the mitigation of greenhouse gaseous emissions from agricultural soil? - A global meta-analysis. Environmental Research, 202, 111789.

Singh S, Kumar V, Dhanjal D S, Datta S, Bhatia D, Dhiman J, Samuel J, Prasad R, Singh J. 2020. A sustainable paradigm of sewage sludge biochar: Valorization, opportunities, challenges and future prospects. Journal of Cleaner Production269, 122259.

Sun Y, Gao B, Yao Y, Fang J, Zhang M, Zhou Y, Chen H, Yang L. 2014. Effects of feedstock type, production method, and pyrolysis temperature on biochar and hydrochar properties. Chemical Engineering Journal, 240, 574-578.

Tamim R M, Bernard R M, Borokhovski E, Abrami P C, Schmid R F. 2011. What forty years of research says about the impact of technology on learning. Review of Educational Research, 81, 4-28.

Tammeorg P, Simojoki A, Mäkelä P, Stoddard F L, Alakukku L, Helenius J. 2014. Short-term effects of biochar on soil properties and wheat yield formation with meat bone meal and inorganic fertiliser on a boreal loamy sand. Agriculture, Ecosystems & Environment191, 108-116.

Tillman D, Cassman K G, Matson P A, Naylor R, Polasky S. 2002. Agricultural sustainability and intensive production practices. Nature, 418, 671–677.

Tomczyk A, Sokołowska Z, Boguta P. 2020. Biochar physicochemical properties: Pyrolysis temperature and feedstock kind effects. Reviews in Environmental Science and Bio/Technology, 19, 191–215.

Verheijen F G A, Zhuravel A, Silva F C, Amaro A, Ben-Hur M, Keizer J J. 2019. The influence of biochar particle size and concentration on bulk density and maximum water holding capacity of sandy vs sandy loam soil in a column experiment. Geoderma, 347, 194-202.

Viechtbauer W. 2010. Conducting meta-analyses in R with the metafor package. Journal of Statistical Software36, 1-48.

Wallace K J. 2007. Classification of ecosystem services: Problems and solutions. Biological Conservation139, 235-246.

Wang F, Harindintwali J D, Yuan Z, Wang M, Wang F, Li S, Yin Z, Huang L, Fu Y, Li L, Chang S X, Zhang L, Rinklebe J, Yuan Z, Zhu Q, Xiang L, Tsang D C W, Xu L, Jiang X, Liu J, et al. 2021. Technologies and perspectives for achieving carbon neutrality. The Innovation, 2, 4.

Wang J, Xiong Z, Kuzyakov Y. 2015. Biochar stability in soil: Meta‐analysis of decomposition and priming effects. Global Change Biology Bioenergy, 8, 512-523.

Wilkins L W. 2011. PRISMA Statement. Epidemiology22, 128.

Xiao L, Lichtfouse E, Kumar P S, Wang Q, Liu F. 2021. Biochar promotes methane production during anaerobic digestion of organic waste. Environmental Chemistry Letters, 19, 3557–3564.

Xiao Z. 2019. The effect of biochar amendment on N-cycling genes in soils A meta-analysis. Science of the Total Environment, 696, 133984.

Xu H, Cai A, Wu D, Liang G, Xiao J, Xu M, Colinet G, Zhang W. 2021. Effects of biochar application on crop productivity, soil carbon sequestration, and global warming potential controlled by biochar C:N ratio and soil pH: A global meta-analysis. Soil & Tillage Research, 213, 105125.

Xu Z, He M, Xu X, Cao X, Tsang D C W. 2021. Impacts of different activation processes on the carbon stability of biochar for oxidation resistance. Bioresource Technology, 338, 125555.

Yang J, Li H, Zhang D, Wu M, Pan B. 2017. Limited role of biochars in nitrogen fixation through nitrate adsorption. Science of the Total Environment, 592, 758-765.

Yuan C, Gao B, Peng Y, Gao X, Fan B, Chen Q. 2021. A meta-analysis of heavy metal bioavailability response to biochar aging: Importance of soil and biochar properties. Science of the Total Environment, 756, 144058.

Zhang L, Jing Y, Chen C, Xiang Y, Rezaei Rashti M, Li Y, Deng Q, Zhang R. 2021. Effects of biochar application on soil nitrogen transformation, microbial functional genes, enzyme activity, and plant nitrogen uptake: A meta‐analysis of field studies. Global Change Biology Bioenergy, 13, 1859-1873.

Zhang L, Jing Y, Xiang Y, Zhang R, Lu H. 2018. Responses of soil microbial community structure changes and activities to biochar addition: A meta-analysis. Science of the Total Environment, 643, 926-935.

Zhang Q, Xiao J, Xue J, Zhang L. 2020. Quantifying the effects of biochar application on greenhouse gas emissions from agricultural soils: A global meta-analysis. Sustainability, 12, 3436.

Zhang Y, Dang Y, Wang J, Huang Q, Wang X, Yao L, Vinay N, Yu K, Wen X, Xiong Y, Liao Y, Han J, Mo F. 2022. A synthesis of soil organic carbon mineralization in response to biochar amendment. Soil Biology & Biochemistry, 175, 3436.

Zhao X, Wang M, Liu H, Li L, Ma C, Song Z. 2012. A microwave reactor for characterization of pyrolyzed biomass. Bioresource Technology, 104, 673-680.

Zhao X, Wang S, Xing G. 2013. Nitrification, acidification, and nitrogen leaching from subtropical cropland soils as affected by rice straw-based biochar: Laboratory incubation and column leaching studies. Journal of Soils and Sediments, 14, 471-482.

Zhou H M, Zhang D X, Wang P, Liu X Y, Cheng K, Li L Q, Zheng J W, Zhang X H, Zheng J F, Crowley D, Zwieten L, Pan G X. 2017. Changes in microbial biomass and the metabolic quotient with biochar addition to agricultural soils: A Meta-analysis. Agriculture, Ecosystems & Environment, 239, 80-89.

Van Zwieten L, Kammann C, Cayuela M L, Singh B P, Joseph S, Kimber S, Donne S, Clough T, Spokas K A. 2015. Biochar effects on nitrous oxide and methane emissions from soils. In: Lehmann C J, Joseph S, eds., Biochar for Environmental Management: Science, Technology and Implementation. 2nd ed. Earthscan, London and New York. pp. 489–519.

 

[1] Ping’an Zhang, Mo Li, Qiang Fu, Vijay P. Singh, Changzheng Du, Dong Liu, Tianxiao Li, Aizheng Yang.

Dynamic regulation of the irrigation–nitrogen–biochar nexus for the synergy of yield, quality, carbon emission and resource use efficiency in tomato [J]. >Journal of Integrative Agriculture, 2024, 23(2): 680-697.

[2] Christian Adler PHARES, Selorm AKABA. Co-application of compost or inorganic NPK fertilizer with biochar influenced soil quality, grain yield and net income of rice[J]. >Journal of Integrative Agriculture, 2022, 21(12): 3600-3610.
[3] YUAN Hong-zhao, ZHU Zhen-ke, WEI Xiao-meng, LIU Shou-long, PENG Pei-qin, Anna Gunina, SHEN Jian-lin, Yakov Kuzyakov, GE Ti-da, WU Jin-shui, WANG Jiu-rong. Straw and biochar strongly affect functional diversity of microbial metabolism in paddy soils[J]. >Journal of Integrative Agriculture, 2019, 18(7): 1474-1485.
[4] CHEN Xue-jiao, LIN Qi-mei, Muhammad Rizwan, ZHAO Xiao-rong, LI Gui-tong. Steam explosion of crop straws improves the characteristics of biochar as a soil amendment[J]. >Journal of Integrative Agriculture, 2019, 18(7): 1486-1495.
[5] GUAN Song, LIU Si-jia, LIU Ri-yue, ZHANG Jin-jing, REN Jun, CAI Hong-guang, LIN Xin-xin. Soil organic carbon associated with aggregate-size and density fractions in a Mollisol amended with charred and uncharred maize straw[J]. >Journal of Integrative Agriculture, 2019, 18(7): 1496-1507.
[6] SHI Ren-yong, LI Jiu-yu, NI Ni, XU Ren-kou. Understanding the biochar’s role in ameliorating soil acidity[J]. >Journal of Integrative Agriculture, 2019, 18(7): 1508-1517.
[7] HUANG Min, FAN Long, JIANG Li-geng, YANG Shu-ying, ZOU Ying-bin, Norman Uphoff. Continuous applications of biochar to rice: Effects on grain yield and yield attributes[J]. >Journal of Integrative Agriculture, 2019, 18(3): 563-570.
[8] ZHU Qian, KONG Ling-jian, SHAN Yu-zi, YAO Xing-dong, ZHANG Hui-jun, XIE Fu-ti, AO Xue. Effect of biochar on grain yield and leaf photosynthetic physiology of soybean cultivars with different phosphorus efficiencies[J]. >Journal of Integrative Agriculture, 2019, 18(10): 2242-2254.
[9] CHEN Zhi-liang, ZHANG Jian-qiang, HUANG Ling, YUAN Zhi-hui, LI Zhao-jun, LIU Min-chao. Removal of Cd and Pb with biochar made from dairy manure at low temperature[J]. >Journal of Integrative Agriculture, 2019, 18(1): 201-210.
[10] CUI Yue-feng, MENG Jun, WANG Qing-xiang, ZHANG Wei-ming, CHENG Xiao-yi, CHEN Wen-fu. Effects of straw and biochar addition on soil nitrogen, carbon, and super rice yield in cold waterlogged paddy soils of North China[J]. >Journal of Integrative Agriculture, 2017, 16(05): 1064-1074.
[11] JIANG Lin-lin, HAN Guang-ming, LAN Yu, LIU Sai-nan, GAO Ji-ping, YANG Xu, MENG Jun, CHEN Wen-fu. Corn cob biochar increases soil culturable bacterial abundance without enhancing their capacities in utilizing carbon sources in Biolog Eco-plates[J]. >Journal of Integrative Agriculture, 2017, 16(03): 713-724.
[12] Yasmin Khan Kiran, Ali Barkat, CUI Xiao-qiang, FENG Ying, PAN Feng-shan, TANG Lin, YANG Xiao-e . Cow manure and cow manure-derived biochar application as a soil amendment for reducing cadmium availability and accumulation by Brassica chinensis L. in acidic red soil[J]. >Journal of Integrative Agriculture, 2017, 16(03): 725-734.
[13] HE Li-li, ZHONG Zhe-ke, YANG Hui-min. Effects on soil quality of biochar and straw amendment in conjunction with chemical fertilizers[J]. >Journal of Integrative Agriculture, 2017, 16(03): 704-712.
[14] LI Ming, LIU Ming, LI Zhong-pei, JIANG Chun-yu, WU Meng. Soil N transformation and microbial community structure as affected by adding biochar to a paddy soil of subtropical China[J]. >Journal of Integrative Agriculture, 2016, 15(1): 209-219.
[15] Willis Gwenzi, Moreblessing Muzava, Farai Mapanda, Tonny P Tauro. Comparative short-term effects of sewage sludge and its biochar on soil properties, maize growth and uptake of nutrients on a tropical clay soil in Zimbabwe[J]. >Journal of Integrative Agriculture, 2016, 15(06): 1395-1406.
No Suggested Reading articles found!