Please wait a minute...
Journal of Integrative Agriculture  2024, Vol. 23 Issue (11): 3896-3911    DOI: 10.1016/j.jia.2024.03.018
Agro-ecosystem & Environment Advanced Online Publication | Current Issue | Archive | Adv Search |
Insight into the effect of geographic location and intercropping on contamination characteristics and exposure risk of phthalate esters (PAEs) in tea plantation soils

Jie Li1*, Shanjie Han1, 2*, Ruhang Xu1, Xuchen Zhang1, Junquan Liang1, Mengxin Wang1#, Baoyu Han1#

1 Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Sciences, China Jiliang University, Hangzhou 310018, China

2 Hangzhou Tea & Chrysanthemum Technology, Co., Ltd., Hangzhou 310018, China

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  
邻苯二甲酸酯(PAEs)是一种新兴的污染物,广泛分布于环境介质中,近年来引起了广泛关注。然而,有关茶园土壤 PAEs 的信息却很少。本研究采集了中国江苏、浙江和安徽三省主要优质茶叶产区45个茶园的270份土壤样本,对7 种 PAEs 进行了分析。茶园土壤中 PAEs 的检出率为 100%。茶园土壤中DBP、DEHP 和 DiBP是其主要同系物。上层土壤中的 PAEs 浓度显著高于下层土壤。江苏省茶园土壤 PAEs 的浓度显著低于浙江省和安徽省。板栗间作可有效降低茶园土壤中 PAEs 的污染程度。通过相关分析、冗余分析、偏相关分析和结构方程模型,进一步证实了板栗间作、温度和农药等因素对茶园土壤中PAEs的变化有较强的直接影响。健康和生态风险评估结果表明,非致癌风险在安全范围内,而通过饮食途径的致癌风险较高,其中 DBP 的生态风险最高。


Abstract  

Phthalate esters (PAEs) are an emerging pollutant due to widespread distribution in environmental mediums that have attracted widespread attention over recent years.  However, there is little information about tea plantation soil PAEs.  A total of 270 soil samples collected from 45 tea plantations in the major high-quality tea-producing regions of Jiangsu, Zhejiang, and Anhui provinces in China were analyzed for seven PAEs.  The detection frequency of PAEs in tea plantation soil was 100%.  DBP, DEHP, and DiBP were the main congeners in tea plantation soil.  The PAEs concentrations in the upper soil were significantly higher than those in the lower soil.  The concentration of tea plantation soil PAEs in Jiangsu Province was significantly lower than those in Zhejiang and Anhui provinces.  Intercropping with chestnuts can effectively reduce the contamination level of PAEs in tea plantation soil.  Correlation analysis, redundancy analysis, partial correlation analysis, and structural equation modeling methods further confirmed the strong direct influence of factors such as chestnut–tea intercropping, temperature, and agricultural chemicals on the variation of PAEs in tea plantation soil.  The health and ecological risk assessments indicated that non-carcinogenic risk was within a safe range and that there was a high carcinogenic risk via the dietary pathway, with DBP posing the highest ecological risk. 

Keywords:  phthalate esters       chestnut and tea intercropping        driving factors        spatial heterogeneity        risk assessment  
Received: 23 October 2023   Accepted: 08 January 2024
Fund: 
This work was supported by the Zhejiang Provincial Key Research and Development Program, China (2020C02026), the National Natural Science Foundation of China (32072626 and 32001910), the Fundamental Research Funds for the Provincial Universities of Zhejiang, China (2021YW41), the Innovation and Entrepreneurship Training Program for College Students of China Jiliang University (2023-96), the Team Scientific Special Commissioner Project of Zhejiang Provincial Department of Science and Technology, China (SY-1).
About author:  #Correspondence Mengxin Wang, E-mail: wmx@cjlu.edu.cn; Baoyu Han, Mobile: +86-13588086214, E-mail: hanbaoyu@cjlu.edu.cn * These authors contributed equally to this study.

Cite this article: 

Jie Li, Shanjie Han, Ruhang Xu, Xuchen Zhang, Junquan Liang, Mengxin Wang, Baoyu Han. 2024. Insight into the effect of geographic location and intercropping on contamination characteristics and exposure risk of phthalate esters (PAEs) in tea plantation soils. Journal of Integrative Agriculture, 23(11): 3896-3911.

Akoto D S, Partey S T, Denich M, Kwaku M, Borgemeister C, Schmitt C B. 2020. Towards bamboo agroforestry development in Ghana: Evaluation of crop performance, soil properties and economic benefit. Agroforestry Systems94, 1759–1780.

Amponsah N Y, Wang J, Zhao L. 2019. Modelling PAH degradation in contaminated soils in Canada using a modified process-based model (DNDC). Soil Science Society of America Journal83, 605–613.

Bian F, Zhong Z, Li C, Zhang X, Gu L, Huang Z, Gai X, Huang Z. 2021. Intercropping improves heavy metal phytoremediation efficiency through changing properties of rhizosphere soil in bamboo plantation. Journal of Hazardous Materials416, 125898.

Bian F, Zhong Z, Zhang X, Yang C, Gai X. 2020. Bamboo - An untapped plant resource for the phytoremediation of heavy metal contaminated soils. Chemosphere246, 125750.

Cariou R, Larvor F, Monteau F, Marchand P, Bichon E, Dervilly-Pinel G, Antignac J P, Bizec B L. 2016. Measurement of phthalates diesters in food using gas ghromatography–gandem gass spectrometry. Food Chemistry196, 211–219.

Chen H, Zhao Y, Zhao T, Li Y, Ren B, Liang H, Liang H. 2023. Multi-walled carbon nanotubes enhance the toxicity effects of dibutyl phthalate on early life stages of zebrafish (Danio rerio): Research in physiological, biochemical and molecular aspects. Science of the Total Environment899, 165684.

CTMA (China Tea Marketing Association). 2023. Report on China’s Tea Production and Sales Situation in 2022. China Tea Marketing Association, Beijing, China. (in Chinese)

Das M T, Kumar S S, Ghosh P, Shah G, Malyan S K, Bajar S, Thakur I S, Singh L. 2021. Remediation strategies for mitigation of phthalate pollution: Challenges and future perspective. Journal of Hazardous Materials409, 124496.

Dhanyashri P V, Malik M S, Shashikumar M C, Agarwal Y K, Sahu S, Jadegowda M. 2020. Studies on effect of intercrops on initial growth stages of bamboo under spices-bamboo based agroforestry system in tropical regions of Jharkhand. International Journal of Current Microbiology and Applied9, 1112–1116.

Gao D, Li Z, Wang H, Liang H. 2018. An overview of phthalate acid ester pollution in China over the last decade: Environmental occurrence and human exposure. Science of the Total Environment645, 1400–1409.

Guo Y, Zhang Z, Liu L, Li Y, Ren N, Kannan K. 2012. Occurrence and profiles of phthalates in foodstuffs from China and their implications for human exposure. Journal of Agricultural and Food Chemistry60, 6913–6919.

Han Z, Xue J, Li Y. 2022. Phthalate’s multiple hormonal effects and their supplementary dietary regulation scheme of health risks for children. Environmental Science and Pollution Research29, 29016–29032.

He L, Gielen G, Bolan N S, Zhang X, Qin H, Huang H, Wang H. 2015.Contamination and remediation of phthalic acid esters in agricultural soils in China: A review. Agronomy for Sustainable Development35, 519–534.

He Y, Wang Q, He W, Xu F. 2019. Phthalate esters (PAEs) in atmospheric particles around a large shallow natural lake (Lake Chaohu, China). Science of the Total Environment687, 297–308.

Huang M, Zeng Y, Luo K, Lan B, Luo J, Zeng L, Kang Y. 2023. Inhalation bioacessibility and lung cell penetration of indoor PM2.5-bound PAEs and its implication in risk assessment. Environmental Pollution322, 121216.

Hui K, Tang J, Cui Y, Xi B, Tan W. 2021. Accumulation of phthalates under high versus low nitrogen addition in a soil–plant system with sludge organic fertilizers instead of chemical fertilizers. Environmental Pollution291, 118193.

Kong X, Bai Z, Jin T, Jin D, Pan J, Yu X, Cernava T. 2022. Arthrobacter is a universal responder to di-n-butyl phthalate (DBP) contamination in soils from various geographical locations. Journal of Hazardous Materials422, 126914.

Kumar M, Selvasekaran P, Chidambaram R, Zhang B, Hasan M, Prakash Gupta O, Rais N, Sharma K, Sharma A, Lorenzo J M, Parameswari E, Deshmukh V P, Elkelish A, Abdel-Wahab B A, Chandran D, Dey A, Senapathy M, Singh S, Pandiselvam R, Sampathrajan V, et al. 2023. Tea (Camellia sinensis (L.) Kuntze) as an emerging source of protein and bioactive peptides: A narrative review. Food Chemistry428, 136783.

Lei X, Wang T, Yang B, Duan Y, Zhou L, Zou Z, Ma Y, Zhu X, Fang W. 2022. Progress and perspective on intercropping patterns in tea plantations. Beverage Plant Research2, 1–10.

Li C, Chen J, Wang J, Han P, Luan Y, Ma X, Lu A. 2016. Phthalate esters in soil, plastic film, and vegetable from greenhouse vegetable production bases in Beijing, China: Concentrations, sources, and risk assessment. Science of the Total Environment568, 1037–1043.

Li X, Wang Q, Jiang N, Lv H, Liang C, Yang H, Yao X, Wang J. 2023. Occurrence, source, ecological risk, and mitigation of phthalates (PAEs) in agricultural soils and the environment: A review. Environmental Research220, 115196.

Li Y, Cheng S, Fang H, Yang Y, Guo Y, Zhou Y, Shi F. 2023.Composition, distribution, health risks, and drivers of phthalates in typical red paddy soils. Environmental Science and Pollution Research30, 94814–94826.

Li Y, Wang J, Bai H, Ni K, Liu K, Lu P. 2022. Occurrence, sources, and risk assessments of phthalic acid esters in tea plantations in China. Journal of Environmental Chemical Engineering10, 107636.

Li Y, Wang J, Yang S, Zhang S. 2021. Occurrence, health risks and soil-air exchange of phthalate acid esters: A case study in plastic film greenhouses of Chongqing, China. Chemosphere268, 128821.

Liang D, Zhang T, Fang H, He J. 2008. Phthalates biodegradation in the environment. Applied Microbiology and Biotechnology80, 183–198.

Liu X, Shi J, Bo T, Zhang H, Wu W, Chen Q, Zhan X. 2014. Occurrence of phthalic acid esters in source waters: A nationwide survey in China during the period of 2009–2012. Environmental Pollution184, 262–270.

Liu Y, Tang Y, He Y, Liu H, Tao S, Liu W. 2023. Riverine inputs, spatiotemporal variations, and potential sources of phthalate esters transported into the Bohai sea from an urban river in northern China. Science of the Total Environment878, 163253.

Lorre E, Bianchi F, Vybernaite Lubiene I, Mėžinė J, Zilius M. 2023. Phthalate esters delivery to the largest European lagoon: Sources, partitioning and seasonal variations. Environmental Research235, 116667.

Lu Y, Xu Y, Zhang Y, Liu Z, Li W, Sun Y. 2022. Phthalate acid esters in soil, plastic shed film, and ginseng tissues of different ages from farmland: Concentration, distribution, and risk assessment. Frontiers in Environmental Science10, 917508.

Lv H, Mo C, Zhao H, Xiang L, Kats Yiannis A, Li Y, Cai Q, Wong M. 2018. Soil contamination and sources of phthalates and its health risk in China: A review. Environmental Research164, 417–429.

Lv M, Gao W, Li J, Ye X, Xu T, Liu L, Zhou S, Sun J, Zhang A. 2022. Identification of zones contaminated with phthalates and polycyclic aromatic hydrocarbons by concentrations in gridded soil with 1/6° latitude by 1/4° longitude resolution: A case study of Zhejiang, China. Journal of Soils and Sediments22, 67–78.

Ma J, Chen L, Guo Y, Wu Q, Yang M, Wu M, Kannan K. 2014. Phthalate diesters in airborne PM2.5 and PM10 in a suburban area of Shanghai: Seasonal distribution and risk assessment. Science of the Total Environment497–498, 467–474.

Ma T, Luo Y, Christie P, Teng Y, Liu W. 2012. Removal of phthalic esters from contaminated soil using different cropping systems: A field study. European Journal of Soil Biology50, 76–82.

Ma Y, Fu S, Zhang X, Zhao K, Chen H. 2017. Intercropping improves soil nutrient availability, soil enzyme activity and tea quantity and quality. Applied Soil Ecology119, 171–178.

Mo C, Cai Q, Li Y, Zeng Q. 2008. Occurrence of priority organic pollutants in the fertilizers, China. Journal of Hazardous Materials152, 1208–1213.

Niu L, Xu Y, Xu C, Yun L, Liu W. 2014. Status of phthalate esters contamination in agricultural soils across China and associated health risks. Environmental Pollution195, 16–23.

NRC (National Research Council). 2008. Phthalates and Cumulative Risk Assessment: The Task Ahead. The National Academies Press, Washington, D.C.

NTP (National Toxicology Program). 2021. NTP Technical Report on the Toxicology and Carcinogenesis Studies of Di (2-ethylhexyl) Phthalate (CASRN 117-81-7) Administered in Feed to Sprague Dawley (Hsd: Sprague Dawley® SD®) Rats. North Carolina.

Pang X, Skillen N, Gunaratne N, Rooney D W, Robertson P K J. 2021. Removal of phthalates from aqueous solution by semiconductor photocatalysis: A review. Journal of Hazardous Materials402, 123461.

Sun S, Wang M, Yang X, Xu L, Wu J, Wang Y, Zhou Z. 2023. Pollution characteristics and health risk assessment of phthalate esters in agricultural soil of the Yellow River Delta, China. Environmental Science and Pollution Research30, 53370–53380.

Sun Y, Li C, Zhang X, Shi M, Wang Z. 2021. Effects of film mulching on the distribution of phthalate esters in wheat grains from dryland. Environmental Science and Pollution Research28, 27844–27851.

Tan W, Zhang Y, He X, Xi B, Gao R, Mao X, Huang C, Zhang H, Li D, Liang Q, Cui D, Alshawabkeh A N. 2016. Distribution patterns of phthalic acid esters in soil particle-size fractions determine biouptake in soil–cereal crop systems. Scientific Reports6, 31987.

Tang X, Feng D, Xu Y, Wu W, Shi X, Li H. 2020. Investigation and analysis of 62 organic solvents in 110 liquid pesticide formulations. Journal of Agricultural Resources and Environment37, 784–792. (in Chinese)

Viljoen S J, Brailsford F L, Murphy D V, Hoyle F C, Chadwick D R, Jones D L. 2023. Leaching of phthalate acid esters from plastic mulch films and their degradation in response to UV irradiation and contrasting soil conditions. Journal of Hazardous Materials443, 130256.

Wang A, Shang S, Sun M, Wang F. 2019. Characterization of uptake and accumulation of phthalic acid esters by tomato in the polluted soil. Asian Journal of Ecotoxicology14, 307–314. (in Chinese)

Wang D, Xi Y, Shi X, Han Y, Zhang N, Ahmad F, Li F. 2021. Reduction effects of solar radiation, mechanical tension, and soil burial on phthalate esters concentrations in plastic film and soils. Science of the Total Environment778, 146341.

Wang J, Luo Y, Teng Y, Ma W, Christie P, Li Z. 2013. Soil contamination by phthalate esters in Chinese intensive vegetable production systems with different modes of use of plastic film. Environmental Pollution180, 265–273.

Wang L, Duan W, Zhao Y, Sun G, Lin Y, Gao Y. 2021. The exposure levels of phthalates in pregnant women and impact factors of fetal malformation. Human & Experimental Toxicology40, S622–S631.

Wang M, Han S, Wu Y, Tang Y, Li J, Pan C, Han B. 2023. Spatiotemporal dynamics of phthalate esters in tea plants growing different geographical environments and an attempt on their risk assessment. Journal of Agricultural and Food Chemistry71, 6434–6444.

Wang X, Lin Q, Wang J, Lu X, Wang G. 2013. Effect of wetland reclamation and tillage conversion on accumulation and distribution of phthalate esters residues in soils. Ecological Engineering51, 10–15.

Wei L, Hu S, Wang J, Chai Q, Liu J, Wang M, Shi C. 2016. Phytoremediation of 4 phthalic acid esters in contaminated soil by beet–grass system. Journal of Agro-Environment Science35, 1097–1102. (in Chinese)

Wei L, Li Z, Sun J, Zhu L. 2020. Pollution characteristics and health risk assessment of phthalate esters in agricultural soil and vegetables in the Yangtze River Delta of China. Science of the Total Environment726, 137978.

Van Wezel A P, Van Vlaardingen P, Posthumus R, Crommentuijn G H, Sijm D T H M. 2000. Environmental risk limits for two phthalates, with special emphasis on endocrine disruptive properties. Ecotoxicology and Environmental Safety46, 305–321.

Wu J, Lai Y, Zhu H, Yang X, Ye X, Zhang A, Sun J. 2023. Phthalate esters and their metabolites in paired soil–crop systems from farmland in major provinces of eastern China: Pollution characteristics and implications for human exposure. Science of the Total Environment882, 163645.

Wu T, Jiang Y, Li M, Pu D, Shi M, Lan Z. 2022. RNA-seq analysis reveals the potential mechanism of improved viability and product quality of tea plants through intercropping with Chinese chestnut. Plant Growth Regulation96, 177–193.

Wu T, Qin Y, Li M. 2021a. Intercropping of tea (Camellia sinensis L.) and Chinese chestnut: Variation in the structure of rhizosphere bacterial communities. Journal of Soil Science and Plant Nutrition21, 2178–2190.

Wu T, Zou R, Pu D, Lan Z, Zhao B. 2021b. Non-targeted and targeted metabolomics profiling of tea plants (Camellia sinensis) in response to its intercropping with Chinese chestnut. BMC Plant Biology21, 55.

Wu Y, Chen X, Zhu T, Li X, Chen X, Mo C, Li Y, Cai Q, Wong M. 2018. Variation in accumulation, transport, and distribution of phthalic acid esters (PAEs) in soil columns grown with low- and high-PAE accumulating rice cultivars. Environmental Science and Pollution Research25, 17768–17780.

Xing H, Yu X, Huang J, Du X, Wang M, Sun J, Lu G, Tao X. 2022. Characteristics and health risks of phthalate ester contamination in soil and plants in coastal areas of South China. International Journal of Environmental Research and Public Health19, 9516.

Yang L, Shen F, Zhang L, Cai Y, Yi F, Zhou C. 2021. Quantifying influences of natural and anthropogenic factors on vegetation changes using structural equation modeling: A case study in Jiangsu Province, China. Journal of Cleaner Production280, 124330.

Yang X, Chen D, Lv B, Miao H, Wu Y, Zhao Y. 2018. Dietary exposure of the Chinese population to phthalate esters by a total diet study. Food Control89, 314–321.

Yost K E, Satpathy A T, Wells D K, Qi Y, Wang C, Kageyama R, McNamara K L, Granja J M, Sarin K Y, Brown R A, Gupta R K, Curtis C, Bucktrout S L, Davis M M, Chang A L S, Chang H Y. 2019. Clonal replacement of tumor-specific T cells following PD-1 blockade. Nature Medicine25, 1251–1259.

Zeng L, Huang Y, Chen X, Chen X, Mo C, Feng Y, Lü H, Xiang L, Li Y, Li H, Cai Q, Wong M. 2020. Prevalent phthalates in air-soil-vegetable systems of plastic greenhouses in a subtropical city and health risk assessments. Science of the Total Environment743, 140755.

Zeng L, Huang Y, Lu H, Geng J, Zhao H, Xiang L, Li H, Li Y, Mo C, Cai Q, Li Q. 2022. Uptake pathways of phthalates (PAEs) into Chinese flowering cabbage grown in plastic greenhouses and lowering PAE accumulation by spraying PAE-degrading bacterial strain. Science of the Total Environment815, 152854.

Zhang D, Zhou K, Liu C, Li X, Pan S, Zhong L. 2023. Dissipation, uptake, translocation and accumulation of five phthalic acid esters in sediment–Zizania latifolia system. Chemosphere315, 137651.

Zhang T, Ma B, Wang L. 2023. Phthalic acid esters in grains, vegetables, and fruits: Concentration, distribution, composition, bio-accessibility, and dietary exposure. Environmental Science and Pollution Research30, 2787–2799.

Zhang Z, Zhang H, Zhang J, Wang Q, Yang G. 2018. Occurrence, distribution, and ecological risks of phthalate esters in the seawater and sediment of Changjiang river estuary and its adjacent area. Science of the Total Environment619–620, 93–102.

Zhao F, Ma Z, Ping H, He Z, Li B, Gao Y, Li C. 2022. Tissue distribution of phthalates in celery under different cultivation patterns and associated dietary exposure. Environmental Pollution292, 118391.

[1] Zhiwen Wu, Xiaowei Cai, Xuewei Mao, Mingguo Zhou, Yiping Hou. Sensitivity and resistance risk analysis of Didymella bryoniae populations to fluopyram[J]. >Journal of Integrative Agriculture, 2024, 23(7): 2306-2317.
[2] SUN Tao, TONG Wen-jie, CHANG Nai-jie, DENG Ai-xing, LIN Zhong-long, FENG Xing-bing, LI Jun-ying, SONG Zhen-wei. Estimation of soil organic carbon stock and its controlling factors in cropland of Yunnan Province, China[J]. >Journal of Integrative Agriculture, 2022, 21(5): 1475-1487.
No Suggested Reading articles found!