Please wait a minute...
Journal of Integrative Agriculture  2024, Vol. 23 Issue (7): 2196-2210    DOI: 10.1016/j.jia.2024.02.009
Crop Science Advanced Online Publication | Current Issue | Archive | Adv Search |
Genetic analysis and candidate gene identification of salt tolerancerelated traits in maize

Hui Fang1*, Xiuyi Fu2*, Hanqiu Ge1, Mengxue Jia1, Jie Ji1, Yizhou Zhao1, Zijian Qu1, Ziqian Cui1, Aixia Zhang1, Yuandong Wang2#, Ping Li1#, Baohua Wang1#

1 Scientific Observing and Experimental Station of Maize in Plain Area of Southern Region, Ministry of Agriculture and Rural Affairs/School of Life Sciences, Nantong University, Nantong 226019, China

2 Maize Research Institute, Beijing Academy of Agriculture and Forestry Sciences (BAAFS), Beijing 100097, China

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  
土壤盐碱化对全球玉米生产构成威胁。但玉米的耐盐机制尚不十分清楚,因此,鉴定玉米耐盐的遗传组分具有重要意义。本研究使用大刍草-玉米为双亲构建的BC2F7群体对21个玉米盐耐性相关性状的遗传基础进行调查。利用高密度遗传图谱,共检测到125个QTL,其中每个性状能够检测到1~5个QTL,每个QTL可以解释6.05-32.02%的表型变异。每个性状检测到的所有QTL解释的表型变异范围为6.84%~63.88%。在所有鉴定到的125个QTL中,只有三个是主效QTL,分布在6号染色体上的两个基因组区域中,涉及3个盐耐相关性状。此外,在8个性状中还检测到了10对具有加加效应的上位性互作QTL,这些互作效应能够解释0.9%~4.44%的表型变异。检测到了18个QTL热区,每个热区能够影响3-7个性状。在L5热区中,发现了一个由4个基因(ZmNSA1SAG6ZmCLCgZmHKT1;2)组成的基因簇,表明这个热区可能有多个基因参与玉米盐胁迫响应。最后,通过连锁和标记-性状关联分析的结合鉴定到两个重要的候选基因Zm00001d002090Zm00001d002391与盐耐相关性状显著关联。Zm00001d002090编码了一个钙离子依赖的脂质结合(CaLB结构域)家族蛋白,可能作为Ca2+传感器,将盐胁迫信号传递到下游。而Zm00001d002391编码属于C19相关亚家族的泛素特异性蛋白酶。我们的研究结果为解析玉米盐耐相关性状的遗传基础提供了宝贵的见解,并为育种家改良耐盐玉米品种提供了理论基础。


Abstract  
Soil salinization poses a threat to maize production worldwide, but the genetic mechanism of salt tolerance in maize is not well understood.  Therefore, identifying the genetic components underlying salt tolerance in maize is of great importance.  In the current study, a teosinte-maize BC2F7 population was used to investigate the genetic basis of 21 salt tolerance-related traits.  In total, 125 QTLs were detected using a high-density genetic bin map, with one to five QTLs explaining 6.05–32.02% of the phenotypic variation for each trait.  The total phenotypic variation explained (PVE) by all detected QTLs ranged from 6.84 to 63.88% for each trait.  Of all 125 QTLs, only three were major QTLs distributed in two genomic regions on chromosome 6, which were involved in three salt tolerance-related traits.  In addition, 10 pairs of epistatic QTLs with additive effects were detected for eight traits, explaining 0.9 to 4.44% of the phenotypic variation.  Furthermore, 18 QTL hotspots affecting 3–7 traits were identified.  In one hotspot (L5), a gene cluster consisting of four genes (ZmNSA1, SAG6, ZmCLCg, and ZmHKT1;2) was found, suggesting the involvement of multiple pleiotropic genes.  Finally, two important candidate genes, Zm00001d002090 and Zm00001d002391, were found to be associated with salt tolerance-related traits by a combination of linkage and marker-trait association analyses.  Zm00001d002090 encodes a calcium-dependent lipid-binding (CaLB domain) family protein, which may function as a Ca2+ sensor for transmitting the salt stress signal downstream, while Zm00001d002391 encodes a ubiquitin-specific protease belonging to the C19-related subfamily.  Our findings provide valuable insights into the genetic basis of salt tolerance-related traits in maize and a theoretical foundation for breeders to develop enhanced salt-tolerant maize varieties.


Keywords:  maize       salt tolerance-related traits        QTL mapping        region-based association analysis  
Received: 21 September 2023   Accepted: 21 December 2023
About author:  Hui Fang, E-mail: fanghui8912@ntu.edu.cn; #Correspondence Baohua Wang, Tel: +86-513-85012812, E-mail: bhwang@ntu.edu.cn; Ping Li, E-mail: pingli6@hotmail.com; Yuandong Wang, E-mail: wyuandong@126.com * These authors contributed equally to this study.

Cite this article: 

Hui Fang, Xiuyi Fu, Hanqiu Ge, Mengxue Jia, Jie Ji, Yizhou Zhao, Zijian Qu, Ziqian Cui, Aixia Zhang, Yuandong Wang, Ping Li, Baohua Wang. 2024. Genetic analysis and candidate gene identification of salt tolerancerelated traits in maize. Journal of Integrative Agriculture, 23(7): 2196-2210.

Alexander D H, Novembre J, Lange K. 2009. Fast model-based estimation of ancestry in unrelated individuals. Genome Research19, 1655–1664.

Apse M P, Aharon G S, Snedden W A, Blumwald E. 1999. Salt tolerance conferred by overexpression of a vacuolar Na+/H+ antiport in ArabidopsisScience285, 1256–1258.

Beissinger T M, Wang L, Crosby K, Durvasula A, Hufford M B, Ross-Ibarra J. 2016. Recent demography drives changes in linked selection across the maize genome. Nature Plants2, 16084.

Berthomieu P, Conéjéro G, Nublat A, Brackenbury W J, Lambert C, Savio C, Uozumi N, Oiki S, Yamada K, Cellier F, Gosti F, Simonneau T, Essah P A, Tester M, Very A A, Sentenac H, Casse F. 2003. Functional analysis of AtHKT1 in Arabidopsis shows that Na+ recirculation by the phloem is crucial for salt tolerance. The EMBO Journal22, 2004–2014.

Blumwald E, Aharon G S, Apse M P. 2000. Sodium transport in plant cells. Biochimica et Biophysica Acta (BBA) (Biomembranes), 1465, 140–151.

Bradbury P J, Zhang Z, Kroon D E. Casstevens T M, Ramdoss Y, Buckler E S. 2007. TASSEL: Software for association mapping of complex traits in diverse samples. Bioinformatics23, 2633–2635.

Cadic E, Coque M, Vear F, Grezes-Besset B, Pauquet J, Piquemal J, Lippi Y, Blanchard P, Romestant M, Pouilly N, Rengel D, Gouzy J, Langlade N, Mangin B, Vincourt P. 2013. Combined linkage and association mapping of flowering time in sunflower (Helianthus annuus L.). Theoretical and Applied Genetics126, 1337–1356.

Cao Y, Liang X, Yin P, Zhang M, Jiang C. 2019. A domestication-associated reduction in K+-preferring HKT transporter activity underlies maize shoot K+ accumulation and salt tolerance. New Phytologist222, 301–317.

Cao Y, Zhang M, Liang X, Li F, Shi Y, Yang X, Jiang C. 2020. Natural variation of an EF-hand Ca2+-binding-protein coding gene confers saline–alkaline tolerance in maize. Nature Communications11, 186.

Du D, Hu X, Song X, Sun Z, Lang M, Pan Y, Zheng Y, Pan Y. 2023. SlTPP4 participates in ABA-mediated salt tolerance by enhancing root architecture in tomato. Journal of Integrative Agriculture22, 2384–2396.

Chen W, Chen L, Zhang X, Yang N, Guo J, Wang M, Ji S, Zhao X, Yin P, Cai L, Xu J, Zhang L, Han Y, Xiao Y, Xu G, Wang Y, Wang S, Wu S, Yang F, Jackson D, et al. 2022. Convergent selection of a WD40 protein that enhances grain yield in maize and rice. Science375, eabg7985.

Cui D, Wu D, Somarathna Y, Xu C, Li S, Li P, Zhang H, Chen H, Zhao L. 2015. QTL mapping for salt tolerance based on snp markers at the seedling stage in maize (Zea mays L.). Euphytica203, 273–283.

Doebley J, Stec A, Gustus C. 1995. teosinte branched1 and the origin of maize: Evidence for epistasis and the evolution of dominance. Genetics141, 333–346.

Fang H, Fu X, Ge H, Zhang A, Shan T, Wang Y, Li P, Wang B. 2021. Genetic basis of maize kernel oil-related traits revealed by high-density SNP markers in a recombinant inbred line population. BMC Plant Biology21, 1–12.

Fang H, Fu X, Wang Y, Xu J, Feng H, Li W, Xu J, Jittham O, Zhang X, Zhang L, Yang N, Xu G, Wang M, Li X, Li J, Yan J, Yang X. 2020. Genetic basis of kernel nutritional traits during maize domestication and improvement. The Plant Journal101, 278–292.

Fu Z, Chai Y, Zhou Y, Yang X, Warburton M L, Xu S, Cai Y, Zhang D, Li J, Yan J. 2013. Natural variation in the sequence of PSY1 and frequency of favorable polymorphisms among tropical and temperate maize germplasm. Theoretical and Applied Genetic126, 923–935.

Ganal M W, Durstewitz G, Polley A, Bérard A, Buckler E S, Charcosset A, Clarke J D, Graner E M, Hansen M, Joets J, Le Paslier M C, McMullen M D, Montalent P, Rose M, Schön C C, Sun Q, Walter H, Martin O C, Falque M. 2011. A large maize (Zea mays L.) SNP genotyping array: Development and germplasm genotyping, and genetic mapping to compare with the B73 reference genome. PLoS ONE6, e28334.

Geilfus C M, Ludwig-Müller J, Bárdos G, Zörb C. 2018. Early response to salt ions in maize (Zea mays L.). Journal of Plant Physiology220, 173–180.

Gong Z, Xiong L, Shi H, Yang S, Herrera-Estrella L R, Xu G, Chao D Y, Li J, Wang P Y, Qin F, Li J, Shi Y, Wang Y, Yang Y, Guo Y, Zhu J K. 2020. Plant abiotic stress response and nutrient use efficiency. Science China (Life Sciences), 63, 635–674.

Guo Z, Liu X, Zhang B, Yuan X, Xing Y, Liu H, Luo L, Chen G, Xiong L. 2021. Genetic analyses of lodging resistance and yield provide insights into post-Green-Revolution breeding in rice. Plant Biotechnology Journal19, 814–829.

Halfter U, Ishitani M, Zhu J K. 2000. The Arabidopsis SOS2 protein kinase physically interacts with and is activated by the calcium-binding protein SOS3. Proceedings of the National Academy of Sciences of the United States of America97, 3735–3740.

Van Heerwaarden J, Doebley J, Briggs W H, Glaubitz J C, Goodman M M, Gonzalez J d J S, Ross-Ibarra J. 2011. Genetic signals of origin, spread, and introgression in a large sample of maize landraces. Proceedings of the National Academy of Sciences of the United States of America108, 1088–1092.

Hoopes G M, Hamilton J P, Wood J C, Esteban E, Pasha A, Vaillancourt B, Provart N J, Buell C R. 2019. An updated gene atlas for maize reveals organ-specific and stress-induced genes. The Plant Journal97, 1154–1167.

Huang C, Sun H, Xu D, Chen Q, Liang Y, Wang X, Xu G, Tian J, Wang C, Li D, Wu L, Yang X, Jin W, Doebley J F, Tian F. 2018. ZmCCT9 enhances maize adaptation to higher latitudes. Proceedings of the National Academy of Sciences of the United States of America115, E334–E341.

Huang X, Wei X, Sang T, Zhao Q, Feng Q, Zhao Y, Li C, Zhu C, Lu T, Zhang Z, Li M, Fan D, Guo Y, Wang A, Wang L, Deng L, Li W, Lu Y, Weng Q, Liu K, et al. 2010. Genome-wide association studies of 14 agronomic traits in rice landraces. Nature Genetics42, 961–967.

Ismail A M, Horie T. 2017. Genomics, physiology, and molecular breeding approaches for improving salt tolerance. Annual Review of Plant Biology68, 405–434.

Lander E S, Botstein D. 1989. Mapping mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics121, 185–199.

Li H, Peng Z, Yang X, Wang W, Fu J, Wang J, Han Y, Chai Y, Guo T, Yang N, Liu J, Warburton M L, Cheng Y, Hao X, Zhang P, Zhao J, Liu Y, Wang G, Li J, Yan J. 2013. Genome-wide association study dissects the genetic architecture of oil biosynthesis in maize kernels. Nature Genetic45, 43–50.

Li K, Yang X, Liu X, Hu X, Wu Y, Wang Q, Ma F, Li S, Wang H, Liu Z, Huang C. 2022. QTL analysis of the developmental changes in cell wall components and forage digestibility in maize (Zea mays L.). Journal of Integrative Agriculture21, 3501–3513.

Li X, Zhou Z, Ding J, Wu Y, Zhou B, Wang R, Ma J, Wang S, Zhang X, Xia Z, Chen J, Wu J. 2016. Combined linkage and association mapping reveals QTL and candidate genes for plant and ear height in maize. Frontiers in Plant Science7, 833.

Liao S, Xu Z, Fan X, Zhou Q, Liu X, Jiang C, Chen L, Lin D, Feng B, Wang T. 2024. Genetic dissection and validation of a major QTL for grain weight on chromosome 3B in bread wheat (Triticum aestivum L.). Journal of Integrative Agriculture23, 77–92.

Liu G, Jiang W, Tian L, Fu Y, Tan L, Zhu Z, Sun C, Liu F. 2022. Polyamine oxidase 3 is involved in salt tolerance at the germination stage in rice. Journal of Genetics and Genomics49, 458–468.

Liu H, Liu H, Zhou L, Zhang Z, Zhang X, Wang M, Li H, Lin Z. 2015. Parallel domestication of the heading date 1 gene in cereals. Molecular Biology and Evolution32, 2726–2737.

Liu H, Luo X, Niu L, Xiao Y, Chen L, Liu J, Wang X, Jin M, Li W, Zhang Q, Yan J. 2017. Distant eQTLs and non-coding sequences play critical roles in regulating gene expression and quantitative trait variation in maize. Molecular Plant10, 414–426.

Liu J, Ishitani M, Halfter U, Kim C S, Zhu J K. 2000. The Arabidopsis thaliana SOS2 gene encodes a protein kinase that is required for salt tolerance. Proceedings of the National Academy of Sciences of the United States of America97, 3730–3734.

Liu L, Du Y, Shen X, Li M, Sun W, Huang J, Liu Z, Tao Y, Zheng Y, Yan J, Zhang Z. 2015. KRN4 controls quantitative variation in maize kernel row number. PLoS Genetics11, e1005670.

Liu M, Tan X, Yang Y, Liu P, Zhang X, Zhang Y, Wang L, He Y, Ma L, Li Z, Zhang Y, Zou C, Lin H, Gao S, Lee M, Lübberstedt T, Pan G, Shen Y. 2020. Analysis of the genetic architecture of maize kernel size traits by combined linkage and association mapping. Plant Biotechnology Journal18, 207–221.

Liu Y, Chen X, Xue S, Quan T, Cui D, Han L, Cong W, Li M, Yun D J, Li B, Xu Z Y. 2021. SET DOMAIN GROUP 721 protein functions in saline–alkaline stress tolerance in the model rice variety Kitaake. Plant Biotechnology Journal19, 2576–2588.

Livak K J, Schmittgen T D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods25, 402–408.

Luo M, Zhang Y, Chen K, Kong M, Song W, Lu B, Shi Y, Zhan Y, Zhao J. 2019. Mapping of quantitative trait loci for seedling salt tolerance in maize. Molecular Breeding39, 1–12.

Luo M, Zhang Y, Li J, Zhang P, Chen K, Song W, Wang X, Yang J, Lu X, Lu B, Zhao Y, Zhao J. 2021. Molecular dissection of maize seedling salt tolerance using a genome-wide association analysis method. Plant Biotechnology Journal19, 1937–1951.

Luo M, Zhao Y, Zhang R, Xing J, Duan M, Li J, Wang N, Wang W, Zhang S, Chen Z, Zhang H, Shi Z, Song W, Zhao J. 2017. Mapping of a major QTL for salt tolerance of mature field-grown maize plants based on SNP markers. BMC Plant Biology17, 1–10.

Luo X, Wang B, Gao S, Zhang F, Terzaghi W, Dai M. 2019. Genome-wide association study dissects the genetic bases of salt tolerance in maize seedlings. Journal of Integrative Plant Biology61, 658–674.

Matsuoka Y, Vigouroux Y, Goodman M M, Sanchez G J, Buckler E, Doebley J. 2002. A single domestication for maize shown by multilocus microsatellite genotyping. Proceedings of the National Academy of Sciences of the United States of America99, 6080–6084.

Miller G A D, Suzuki N, Ciftci-Yilmaz S, Mittler R. 2010. Reactive oxygen species homeostasis and signalling during drought and salinity stresses. PlantCell & Environment33, 453–467.

Munns R, James R A, Xu B, Athman A, Conn S J, Jordans C, Byrt C S, Hare R A, Tyerman S D, Tester M, Plett D, Gilliham M. 2012. Wheat grain yield on saline soils is improved by an ancestral Na+ transporter gene. Nature Biotechnology30, 360–364.

Munns R, Tester M. 2008. Mechanisms of salinity tolerance. Annual Review of Plant Biology59, 651–681.

Osakabe Y, Yamaguchi-Shinozaki K, Shinozaki K, Tran L S P. 2014. ABA control of plant macroelement membrane transport systems in response to water deficit and high salinity. New Phytologist202, 35–49.

Palaisa K A, Morgante M, Williams M, Rafalski A. 2003. Contrasting effects of selection on sequence diversity and linkage disequilibrium at two phytoene synthase loci. The Plant Cell15, 1795–1806.

Pan Q, Li L, Yang X, Tong H, Xu S, Li Z, Li W, Muehlbauer G J, Li J S, Yan J B. 2016. Genome-wide recombination dynamics are associated with phenotypic variation in maize. New Phytologist210, 1083–1094.

Pang Y, Liu C, Wang D, Amand P S, Bernardo A, Li W, He F, Li L, Wang L, Yuan X, Dong L, Su Y, Zhang H, Zhao M, Liang Y, Jia H, Shen X, Lu Y, Jiang H, Wu Y, et al. 2020. High-resolution genome-wide association study identifies genomic regions and candidate genes for important agronomic traits in wheat. Molecular Plant13, 1311–1327.

Pérez-Enciso M, Zingaretti L M. 2019. A guide on deep learning for complex trait genomic prediction. Genes10, 553.

Quintero F J, Martinez-Atienza J, Villalta I, Jiang X, Kim W Y, Ali Z, Fujii H, Mendoza I, Yun D J, Zhu J K, Pardo J M. 2011. Activation of the plasma membrane Na+/H+ antiporter Salt-Overly-Sensitive 1 (SOS1) by phosphorylation of an auto-inhibitory C-terminal domain. Proceedings of the National Academy of Sciences of the United States of America108, 2611–2616.

Ranum P, Peña-Rosas J P, Garcia-Casal M N. 2014. Global maize production, utilization, and consumption. Annual of the New York Academy of Sciences1312, 105–112.

Ren L, Zhao T, Zhao Y, Du G, Yang S, Mu N, Tang D, Shen Y, Li Y, Cheng Z. 2021. The E3 ubiquitin ligase DESYNAPSIS1 regulates synapsis and recombination in rice meiosis. Cell Reports37, 109941.

Ren Z H, Gao J P, Li L G, Cai X L, Huang W, Chao D Y, Zhu M Z, Wang Z Y, Luan S, Lin H X. 2005. A rice quantitative trait locus for salt tolerance encodes a sodium transporter. Nature Genetics37, 1141–1146.

Santantonio N, Jannink J L, Sorrells M. 2019. A low resolution epistasis mapping approach to identify chromosome arm interactions in allohexaploid wheat. G3-Genes Genomes Genetics9, 675–684.

Sha X, Guan H, Zhou Y, Su E, Guo J, Li Y, Zhang D, Liu X, He G, Li Y, Wang T, Zou H, Li C. 2023. Genetic dissection of crown root traits and their relationship to aboveground agronomic traits in maize. Journal of Integrative Agriculture22, 3394–3407.

Shi H, Ishitani M, Kim C, Zhu J K. 2000. The Arabidopsis thaliana salt tolerance gene SOS1 encodes a putative Na+/H+ antiporter. Proceedings of the National Academy of Sciences of the United States of America97, 6896–6901.

Shi H, Quintero F J, Pardo J M, Zhu J K. 2002. The putative plasma membrane Na+/H+ antiporter SOS1 controls long-distance Na+ transport in plants. The Plant Cell14, 465–477.

Studer A, Zhao Q, Ross-Ibarra J, Doebley J. 2011. Identification of a functional transposon insertion in the maize domestication gene tb1Nature Genetics43, 1160–1163.

Sun K, Mehari T G, Fang H, Han J, Huo X, Zhang J, Chen Y, Wang D, Zhuang Z, Ditta A, Khan M K R, Zhang J, Wang K, Wang B. 2023. Transcriptome, proteome and functional characterization reveals salt stress tolerance mechanisms in upland cotton (Gossypium hirsutum L.). Frontiers in Plant Science14, 1092616.

Suo J, Zhao Q, David L, Chen S, Dai S. 2017. Salinity response in chloroplasts: Insights from gene characterization. International Journal of Molecular Sciences18, 1011.

Syed A, Tainer J A. 2018. The MRE11–RAD50–NBS1 complex conducts the orchestration of damage signaling and outcomes to stress in DNA replication and repair. Annual Review of Biochemistry87, 263–294.

Tenaillon M I, U’Ren J, Tenaillon O, Gaut B S. 2004. Selection versus demography: A multilocus investigation of the domestication process in maize. Molecular Biology and Evolution21, 1214–1225.

Tian J, Wang C, Xia J, Wu L, Xu G, Wu W, Li D, Qin W, Han X, Chen Q, Jin W, Tian F. 2019. Teosinte ligule allele narrows plant architecture and enhances high-density maize yields. Science365, 658–664.

Tsai H Y, Janss L L, Andersen J R, Orabi J, Jensen J D, Jahoor A, Jensen J. 2020. Genomic prediction and GWAS of yield, quality and disease-related traits in spring barley and winter wheat. Scientific Reports10, 1–15.

Wang F, Wan C, Niu H, Qi M, Li G, Zhang F, Hu L, Ye Y, Wang Z, Pei B, Chen X, Yuan C. 2023. OsMas1, a novel maspardin protein gene, confers tolerance to salt and drought stresses by regulating ABA signaling in rice. Journal of Integrative Agriculture22, 341–359.

Wang H, Nussbaum-Wagler T, Li B, Zhao Q, Vigouroux Y, Faller M, Bomblies-Yant K, Lukens L, Doebley J. 2005. The origin of the naked grains of maize. Nature436, 714–719.

Wang H, Studer A J, Zhao Q, Meeley R, Doebley J F. 2015. Evidence that the origin of naked kernels during maize domestication was caused by a single amino acid substitution in tga1Genetics200, 965–974.

Wang L, Yang X, Cui S, Mu G, Sun X, Liu L, Li Z. 2019. QTL mapping and QTL×environment interaction analysis of multi-seed pod in cultivated peanut (Arachis hypogaea L.). The Crop Journal7, 249–260.

Wang S, Basten C J, Zeng Z B. 2012. Windows QTL Cartographer 2.5. Department of Statistics, North Carolina State University, Raleigh, NC. [2012-8-1]. http://statgen.ncsu.edu/qtlcart/WQTLCart.htm

Wang X, Wang H, Liu S, Ferjani A, Li J, Yan J, Yang X, Qin F. 2016. Genetic variation in ZmVPP1 contributes to drought tolerance in maize seedlings. Nature Genetics48, 1233–1241.

Wen W, Liu H, Zhou Y, Jin M, Yang N, Li D, Luo J, Xiao Y, Pan Q, Tohge T, Fernie A R, Yan J. 2016. Combining quantitative genetics approaches with regulatory network analysis to dissect the complex metabolism of the maize kernel. Plant Physiology170, 136–146.

Wu H. 2018. Plant salt tolerance and Na+ sensing and transport. The Crop Journal6, 215–225.

Wu H, Zhang X, Giraldo J P, Shabala S. 2018. It is not all about sodium: Revealing tissue specificity and signalling roles of potassium in plant responses to salt stress. Plant and Soil431, 1–17.

Würschum T, Maurer H P, Dreyer F, Reif J C. 2013. Effect of inter-and intragenic epistasis on the heritability of oil content in rapeseed (Brassica napus L.). Theoretical and Applied Genetics126, 435–441.

Xu G, Wang X, Huang C, Xu D, Li D, Tian J, Chen Q, Wang C, Liang Y, Wu Y, Yang X, Tian F. 2017. Complex genetic architecture underlies maize tassel domestication. New Phytologist214, 852–864.

Xue Z Y, Zhi D Y, Xue G P, Zhang H, Zhao Y X, Xia G M. 2004. Enhanced salt tolerance of transgenic wheat (Tritivum aestivum L.) expressing a vacuolar Na+/H+ antiporter gene with improved grain yields in saline soils in the field and a reduced level of leaf Na+Plant Science167, 849–859.

Yang C, Zhao L, Zhang H, Yang Z, Wang H, Wen S, Zhang C, Rustgi S, von Wettstein D, Liu B. 2014. Evolution of physiological responses to salt stress in hexaploid wheat. Proceedings of the National Academy of Sciences of the United States of America111, 11882–11887.

Yin X Y, Yang A F, Zhang K W, Zhang J R. 2004. Production and analysis of transgenic maize with improved salt tolerance by the introduction of AtNHX1 gene. Acta Botanica Sinica46, 854–861. (in Chinese)

Yu J, Buckler E S. 2006. Genetic association mapping and genome organization of maize. Current Opinion in Biotechnology17, 155–160.

Yu J, Pressoir G, Briggs W H, Bi I V, Yamasaki M, Doebley J F, McMullen M D, Gaut B S, Nielsen D M, Holland J B, Kresovich S, Buckler E S. 2006. A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nature Genetics38, 203–208.

Zhang H X, Blumwald E. 2001. Transgenic salt-tolerant tomato plants accumulate salt in foliage but not in fruit. Nature Biotechnology19, 765–768.

Zhang M, Cao Y, Wang Z, Wang Z, Shi J, Liang X, Song W, Chen Q, Lai J, Jiang C. 2018. A retrotransposon in an HKT1 family sodium transporter causes variation of leaf Na+ exclusion and salt tolerance in maize. New Phytologist217, 1161–1176.

Zhang M, Li Y, Liang X, Lu M, Lai J, Song W, Jiang C. 2023. A teosinte-derived allele of an HKT1 family sodium transporter improves salt tolerance in maize. Plant Biotechnology Journal21, 97–108.

Zhang M, Liang X, Wang L, Cao Y, Song W, Shi J, Lai J, Jiang C. 2019. A HAK family Na+ transporter confers natural variation of salt tolerance in maize. Nature Plants5, 1297–1308.

Zhou C, Liu D, Zhang X, Wu Q, Liu S, Zeng Q, Wang Q, Wang C, Li C, Singh R P, Bhavani S, Kang Z, Han D, Zheng W, Wu J. 2022. Combined linkage and association mapping reveals two major QTL for stripe rust adult plant resistance in Shaanmai 155 and their haplotype variation in common wheat germplasm. The Crop Journal10, 783–792.

Zhu J, Wei X, Yin C, Zhou H, Yan J, He W, Yan J, Li H. 2023. ZmEREB57 regulates OPDA synthesis and enhances salt stress tolerance through two distinct signaling pathways in Zea maysPlantCell & Environment46, 1–17.

Zhu J K. 2016. Abiotic stress signaling and responses in plants. Cell167, 313–324.

[1] Peng Liu, Langlang Ma, Siyi Jian, Yao He, Guangsheng Yuan, Fei Ge, Zhong Chen, Chaoying Zou, Guangtang Pan, Thomas Lübberstedt, Yaou Shen. Population genomic analysis reveals key genetic variations and the driving force for embryonic callus induction capability in maize[J]. >Journal of Integrative Agriculture, 2024, 23(7): 2178-2195.
[2] Jiang Liu, Wenyu Yang. Soybean maize strip intercropping: A solution for maintaining food security in China[J]. >Journal of Integrative Agriculture, 2024, 23(7): 2503-2506.
[3] Hui Chen, Hongxing Chen, Song Zhang, Shengxi Chen, Fulang Cen, Quanzhi Zhao, Xiaoyun Huang, Tengbing He, Zhenran Gao. Comparison of CWSI and Ts-Ta-VIs in moisture monitoring of dryland crops (sorghum and maize) based on UAV remote sensing[J]. >Journal of Integrative Agriculture, 2024, 23(7): 2458-2475.
[4] Qilong Song, Jie Zhang, Fangfang Zhang, Yufang Shen, Shanchao Yue, Shiqing Li.

Optimized nitrogen application for maximizing yield and minimizing nitrogen loss in film mulching spring maize production on the Loess Plateau, China [J]. >Journal of Integrative Agriculture, 2024, 23(5): 1671-1684.

[5] Jiangkuan Cui, Haohao Ren, Bo Wang, Fujie Chang, Xuehai Zhang, Haoguang Meng, Shijun Jiang, Jihua Tang.

Hatching and development of maize cyst nematode Heterodera zeae infecting different plant hosts [J]. >Journal of Integrative Agriculture, 2024, 23(5): 1593-1603.

[6] Haiqing Gong, Yue Xiang, Jiechen Wu, Laichao Luo, Xiaohui Chen, Xiaoqiang Jiao, Chen Chen.

Integrating phosphorus management and cropping technology for sustainable maize production [J]. >Journal of Integrative Agriculture, 2024, 23(4): 1369-1380.

[7] Pengcheng , Shuangyi Yin, Yunyun Wang, Tianze Zhu, Xinjie Zhu, Minggang Ji, Wenye Rui, Houmiao Wang Chenwu Xu, Zefeng Yang.

Dynamics and genetic regulation of macronutrient concentrations during grain development in maize [J]. >Journal of Integrative Agriculture, 2024, 23(3): 781-794.

[8] Peng Wang, Lan Yang, Xichao Sun, Wenjun Shi, Rui Dong, Yuanhua Wu, Guohua Mi.

Lateral root elongation in maize is related to auxin synthesis and transportation mediated by N metabolism under a mixed NO3 and NH4+ supply [J]. >Journal of Integrative Agriculture, 2024, 23(3): 1048-1060.

[9] Weina Zhang, Zhigan Zhao, Di He, Junhe Liu, Haigang Li, Enli Wang.

Combining field data and modeling to better understand maize growth response to phosphorus (P) fertilizer application and soil P dynamics in calcareous soils [J]. >Journal of Integrative Agriculture, 2024, 23(3): 1006-1021.

[10] Cheng Guo, Xiaojie Zhang, Baobao Wang, Zhihuan Yang, Jiping Li, Shengjun Xu, Chunming Wang, Zhijie Guo, Tianwang Zhou, Liu Hong, Xiaoming Wang, Canxing Duan.

Identification, pathogenicity, and fungicide sensitivity of Eutiarosporella dactylidis associated with leaf blight on maize in China [J]. >Journal of Integrative Agriculture, 2024, 23(3): 888-900.

[11] Binbin Li, Xianmin Chen, Tao Deng, Xue Zhao, Fang Li, Bingchao Zhang, Xin Wang, Si Shen, Shunli Zhou.

Timing effect of high temperature exposure on the plasticity of internode and plant architecture in maize [J]. >Journal of Integrative Agriculture, 2024, 23(2): 551-565.

[12] Minghui Cao, Yan Duan, Minghao Li, Caiguo Tang, Wenjie Kan, Jiangye Li, Huilan Zhang, Wenling Zhong, Lifang Wu.

Manure substitution improves maize yield by promoting soil fertility and mediating the microbial community in lime concretion black soil [J]. >Journal of Integrative Agriculture, 2024, 23(2): 698-710.

[13] Jingui Wei, Qiang Chai, Wen Yin, Hong Fan, Yao Guo, Falong Hu, Zhilong Fan, Qiming Wang. Grain yield and N uptake of maize in response to increased plant density under reduced water and nitrogen supply conditions[J]. >Journal of Integrative Agriculture, 2024, 23(1): 122-140.
[14] YUE Kai, LI Ling-ling, XIE Jun-hong, Zechariah EFFAH, Sumera ANWAR, WANG Lin-lin, MENG Hao-feng, LI Lin-zhi. Integrating microRNAs and mRNAs reveals the hormones synthesis and signal transduction of maize under different N rates[J]. >Journal of Integrative Agriculture, 2023, 22(9): 2673-2686.
[15] WANG Xing-long, ZHU Yu-peng, YAN Ye, HOU Jia-min, WANG Hai-jiang, LUO Ning, WEI Dan, MENG Qing-feng, WANG Pu. Irrigation mitigates the heat impacts on photosynthesis during grain filling in maize [J]. >Journal of Integrative Agriculture, 2023, 22(8): 2370-2383.
No Suggested Reading articles found!