Please wait a minute...
Journal of Integrative Agriculture  2024, Vol. 23 Issue (8): 2723-2734    DOI: 10.1016/j.jia.2023.12.030
Plant Protection Advanced Online Publication | Current Issue | Archive | Adv Search |
A dicistrovirus increases pupal mortality in Spodoptera frugiperda by suppressing protease activity and inhibiting larval diet consumption
Meixue Sun1*, Tong Li2*, Yingjie Liu3, Kenneth Wilson4, Xingyu Chen1, Robert I. Graham5, Xianming Yang6, Guangwei Ren1#, Pengjun Xu1#
1 Key Laboratory of Tobacco Pest Monitoring & Integrated Management, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China
2 Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou 450000, China
3 Staff Development Institute of China National Tobacco Corporation, Zhengzhou 450000, China
4 Lancaster Environment Centre, Lancaster University, Lancaster LA14YW, UK
5 Department of Rural Land Use, Scotland's Rural College, Craibstone Campus, Aberdeen AB01AB, UK
6 State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  
明确病毒与宿主之间的相互作用可更好地将病毒应用为生防治剂。寄生蜂携带的某些病毒通过保护寄生蜂若虫免受鳞翅目寄主免疫系统的攻击,提高了寄生蜂若虫的寄生效率。然而,在捕食性天敌中发现的病毒与其猎物之间的关系尚不清楚。在此,我们报道了一种最初从捕食性天敌蠋蝽Arma chinensis(半翅目,蝽科)中分离到的病毒(Arma chinensis virus-1, AcV-1)与其猎物之一草地贪夜蛾Spodoptera frugiperda(鳞翅目,夜蛾科)之间的相互作用关系。结果表明,AcV-1病毒通过抑制幼虫的取食和提高蛹的死亡率,对新寄主草地贪夜蛾产生了危害。同时,测序数据表明,该病毒改变了草地贪夜蛾的基因表达谱。KEGG分析显示,与蛋白质降解和免疫应答相关的蛋白酶体通路和吞噬体通路显著富集。虽然消化酶基因表达水平没有显著变化,但AcV-1病毒阳性个体的总蛋白酶活性显著降低,说明病毒通过下调消化酶活性抑制了草地贪夜蛾幼虫的取食。这些结果表明,最初从捕食性天敌中分离出来的病毒影响了其猎物与蛋白质降解和免疫相关的蛋白酶体通路和吞噬体通路,降低新寄主的适合度,为提高害虫控制效率提供了潜在的新策略。


Abstract  
Understanding interactions between viruses and their hosts is conducive to enabling better application of viruses as biocontrol agents.  Certain viruses carried by parasitic wasps enhance the parasitic efficiency of wasp-larvae by protecting them against the immune system of their Lepidopteran host.  However, the relationship between prey pests and viruses found in predatory natural enemies remains unclear.  Herein, we report the interaction between Arma chinensis virus-1 (AcV-1), originally isolated from a predatory natural enemy, Arma chinensis (Hemiptera: Pentatomidae), and one of its prey species, Spodoptera frugiperda (Lepidoptera: Noctuidae).  The results showed that the AcV-1 virus appeared harmful to the novel host Sfrugiperda by inhibiting larval diet consumption and increasing pupal mortality.  Meanwhile, sequencing data indicated that the virus altered the gene expression profiles of Sfrugiperda.  KEGG analysis showed that the proteasome and phagosome pathways related to protein degradation and immune response were significantly enriched.  Although the expression levels of digestive enzyme genes did not change significantly, the total protease activity of AcV-1 virus-positive individuals was significantly decreased, suggesting that the virus inhibited diet consumption of Sfrugiperda via the down-regulation of digestive enzyme activities.  These results indicate that a virus initially isolated in a predatory natural enemy can decrease the fitness of its prey species.  The virus was found to impact the host proteasome and phagosome pathways related to protein degradation and immunity, providing a potential mechanism to enhance controlling efficiency.



Keywords:  Arma chinensis virus-1       diet consumption        fitness        transcriptome        protease activity  
Received: 19 September 2023   Accepted: 01 December 2023
Fund: 
This work was supported by the Major Special Projects for Green Pest Control, China (110202101028(LS-03), 201938, 110202201017(LS-01) and 110202001035(LS-04)), the National Natural Science Foundation of China (31901893) and the Agricultural Science and Technology Innovation Program of Chinese Academy of Agricultural Sciences (ASTIP-TRIC04).
About author:  Meixue Sun, E-mail: 18254310586@163.com; Tong Li, E-mail: holy518125@126.com; #Correspondence Guangwei Ren, Tel: +86-532-88701012, E-mail: renguangwei@caas.cn; Pengjun Xu, Tel: +86-532-88701012, E-mail: xupengjun@163.com * These authors contributed equally to this study. *These authors contributed equally to this study.

Cite this article: 

Meixue Sun, Tong Li, Yingjie Liu, Kenneth Wilson, Xingyu Chen, Robert I. Graham, Xianming Yang, Guangwei Ren, Pengjun Xu. 2024. A dicistrovirus increases pupal mortality in Spodoptera frugiperda by suppressing protease activity and inhibiting larval diet consumption. Journal of Integrative Agriculture, 23(8): 2723-2734.

Bhattacharyya A, Mazumdar L S, Babu C R. 2007. Bioinsecticidal activity of Archidendron ellipticum trypsin inhibitor on growth and serine digestive enzymes during larval development of Spodoptera lituraComparative Biochemistry and Physiology (Part C: Toxicology & Pharmacology), 145, 669–677.

Chen Y, Evans J, Feldlaufer M. 2006. Horizontal and vertical transmission of viruses in the honey bee, Apis melliferaJournal of Invertebrate Pathology92, 152–159.

Dainese M, Schneider G, Krauss J, Steffan-Dewenter I. 2017. Complementarity among natural enemies enhances pest suppression. Scientific Reports7, 8172–8179.

Dheilly N M, Maure F, Ravallec M, Galinier R, Doyon J, Duval D, Leger L, Volkoff A, Missé D, Nidelet S, Demolombe V, Brodeur J, Gourbal B, Thomas F, Mitta G. 2015. Who is the puppet master? Replication of a parasitic wasp-associated virus correlates with host behaviour manipulation. Proceedings of the Royal Society (B: Biological Sciences), 282, 20142773.

Dickman A J, Macdonald E A, Macdonald D W. 2011. A review of financial instruments to pay for predator conservation and encourage human-carnivore coexistence. Proceedings of the National Academy of Sciences of the United States of America108, 13937–13944.

Dong Y, Xu P, Ren G, Feng C, Liu D, Jiang L, Jia F, Zhang C, Gao Q, Liu Y. 2021. Sequencing and phylogenetic characterization of a novel RNA virus in Arma chinensisActa Virologica65, 320–323.

Duneau D F, Kondolf H C, Im J H, Ortiz G A, Chow C, Fox M A, Eugenio A T, Revah J, Buchon N, Lazzaro B P. 2017. The Toll pathway underlies host sexual dimorphism in resistance to both Gram-negative and Gram-positive bacteria in mated DrosophilaBMC Biology15, 124.

Early R, González-Moreno P, Murphy S T, Day R. 2018. Forecasting the global extent of invasion of the cereal pest Spodoptera frugiperda, the fall armyworm. Neobiota40, 25–50.

Edson K M, Vinson S B, Stoltz D B, Summers M D. 1981. Virus in a parasitoid wasp: Suppression of the cellular immune response in the parasitoid’s host. Science211, 582–583.

Gasmi L, Boulain H, Gauthier J, Hua-Van A, Musset K, Jakubowska A K, Aury J M, Volkoff A N, Huguet E, Herrero S, Drezen J M. 2015. Recurrent domestication by Lepidoptera of genes from their parasites mediated by bracoviruses. PLoS Genetics11, e1005470.

Gasmi L, Sieminska E, Okuno S, Ohta R, Coutu C, Vatanparast M, Harris S, Baldwin D, Hegedus D D, Theilmann D A, Kida A, Kawabata M, Sagawa S, Takatsuka J, Tateishi K, Watanabe K, Inoue M N, Kunimi Y, Kim Y, Erlandson M A, et al. 2021. Horizontally transmitted parasitoid killing factor shapes insect defense to parasitoids. Science373, 535–541.

Haase S, Sciocco-Cap A, Romanowski V. 2015. Baculovirus insecticides in Latin America: Historical overview, current status and future perspectives. Viruses (Basel), 7, 2230–2267.

Hardke J T, Leonard B R, Huang F, Jackson R E. 2011. Damage and survivorship of fall armyworm (Lepidoptera: Noctuidae) on transgenic field corn expressing Bacillus thuringiensis Cry proteins. Crop Protection30, 168–172.

Herniou E A, Huguet E, Theze J, Bezier A, Periquet G, Drezen J M. 2013. When parasitic wasps hijacked viruses: Genomic and functional evolution of polydnaviruses. Philosophical Transactions of the Royal Society (B: Biological Sciences), 368, 20130051.

Jing D, Guo J, Jiang Y, Zhao J, Sethi A, He K, Wang Z. 2020. Initial detections and spread of invasive Spodoptera frugiperda in China and comparisons with other noctuid larvae in cornfields using molecular techniques. Insect Science27, 780–790.

Kanost M R, Clem R J. 2012. Insect proteases. In: Gilbert L I, ed., Insect Molecular Biology and Biochemistry. Academic Press, San Diego, USA. pp. 346–364.

Kim-Jo C, Gatti J, Poirié M. 2019. Drosophila cellular immunity against parasitoid wasps: A complex and time-dependent process. Frontiers in Physiology10, 603.

Lacey L A, Grzywacz D, Shapiro-Ilan D I, Frutos R, Brownbridge M, Goettel M S. 2015. Insect pathogens as biological control agents: Back to the future. Journal of Invertebrate Pathology132, 1–41.

Lai S, Qin Y, Cowling B J, Ren X, Wardrop N A, Gilbert M, Tsang T K, Wu P, Feng L, Jiang H, Peng Z, Zheng J, Liao Q, Li S, Horby P W, Farrar J J, Gao G F, Tatem A J, Yu H. 2016. Global epidemiology of avian influenza A H5N1 virus infection in humans, 1997–2015: A systematic review of individual case data. Lancet Infectious Diseases16, e108–e118.

van Lenteren J C. 2012. The state of commercial augmentative biological control: Plenty of natural enemies, but a frustrating lack of uptake. Biocontrol57, 1–20.

Levin R, Grinstein S, Canton J. 2016. The life cycle of phagosomes: Formation, maturation, and resolution. Immunological Reviews273, 156–179.

Liang G, Tan W, Guo Y. 1999. An improvement in the technique of artificial rearing cotton bollworm. Plant Protection25, 15–17. (in Chinese)

Li B, Dewey C N. 2011. RSEM: Accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics12, 323.

Li X, Xu P, Yang X, Yuan H, Chen L, Lu Y. 2017. The genome sequence of a novel RNA virus in Adelphocoris suturalisArchives of Virology162, 1397–1401.

Li Y, Liu Z, Liu C, Shi Z, Pang L, Chen C, Chen Y, Pan R, Zhou W, Chen X, Rokas A, Huang J, Shen X. 2022. HGT is widespread in insects and contributes to male courtship in lepidopterans. Cell185, 2975–2987.

de Miranda J R, Genersch E. 2010. Deformed wing virus. Journal of Invertebrate Pathology103 (Suppl.1), S48–S61.

Montezano D G, Specht A, Sosa-Gómez D R, Roque-Specht V F, Sousa-Silva J C, Paula-Moraes S V, Peterson J A, Hunt T E. 2018. Host plants of Spodoptera frugiperda (Lepidoptera: Noctuidae) in the Americas. African Entomology26, 286–300.

Pan M, Zhang H, Zhang L, Chen H. 2019. Effects of starvation and prey availability on predation and dispersal of an omnivorous predator Arma chinensis Fallou. Journal of Insect Behavior32, 134–144.

Park S J, Kim Y I, Park A, Kwon H I, Kim E H, Si Y J, Song M S, Lee C H, Jung K, Shin W J, Zeng J, Choi Y, Jung J U, Choi Y K. 2019. Ferret animal model of severe fever with thrombocytopenia syndrome phlebovirus for human lethal infection and pathogenesis. Nature Microbiology4, 438–446.

Patankar A G, Giri A P, Harsulkar A M, Sainani M N, Deshpande V V, Ranjekar P K, Gupta V S. 2001. Complexity in specificities and expression of Helicoverpa armigera gut proteinases explains polyphagous nature of the insect pest. Insect Biochemistry and Molecular Biology31, 453–464.

Scotti P D, Longworth J F, Plus N, Croizier G, Reinganum C. 1981. The biology and ecology of strains of an insect small RNA virus complex. Advances in Virus Research26, 117–143.

Shi M, Lin X, Tian J, Chen L, Chen X, Li C, Qin X, Li J, Cao J, Eden J S, Buchmann J, Wang W, Xu J, Holmes E C, Zhang Y. 2016. Redefining the invertebrate RNA virosphere. Nature540, 539–543.

Sorokin A V, Kim E R, Ovchinnikov L P. 2009. Proteasome system of protein degradation and processing. Biochemistry (Moscow), 74, 1411–1442.

Strand M R, Burke G R. 2014. Polydnaviruses: Nature’s genetic engineers. Annual Review of Virology1, 333–354.

Sun M, Zhang C, Gao Q, Li W, Jia F, Xu P, Ren G. 2021. Cloning and sequence analysis of Arma chinensis virus-1 genome. Tobacco Science & Technology54, 9–16. (in Chinese)

Sun X, Hu C, Jia H, Wu Q, Shen X, Zhao S, Jiang Y, Wu K. 2021. Case study on the first immigration of fall armyworm, Spodoptera frugiperda invading into China. Journal of Integrative Agriculture20, 664–672.

Tang Y, Li Y, Liu C, Mao J, Chen H, Zhang L, Wang M. 2019. Predation and behavior of Arma chinensis to Spodoptera frugiperdaPlant Protection45, 65–68. (in Chinese)

Wang S, Cheng R, Lu J, Yu X, Zhang C. 2016. A Cripavirus in the brown planthopper, Nilaparvata lugensJournal of General Virology97, 706–714.

Wang Y, Zhang H, Yin Y, Li X, Zhao X, Tang Y, Wang M, Chen A, Chen F, Zhang L. 2019. Predation of adult of Arma chinensis is to larvae of Spodoptera frugiperdaPlant Protection45, 42–46. (in Chinese)

Warsaba R, Sadasivan J, Jan E. 2020. Dicistrovirus-host molecular interactions. Current Issues in Molecular Biology34, 83–112.

Xiao Y, Li W, Yang X, Xu P, Jin M, Yuan H, Zheng W, Soberon M, Bravo A, Wilson K, Wu K. 2021. Rapid spread of a densovirus in a major crop pest following wide-scale adoption of Bt-cotton in China. elife10, e66913.

Xu P, Liu Y, Graham R I, Wilson K, Wu K. 2014. Densovirus is a mutualistic symbiont of a global crop pest (Helicoverpa armigera) and protects against a baculovirus and Bt biopesticide. PLoS Pathogens10, e1004490.

Xu P, Rice A, Li T, Wang J, Yang X, Yuan H, Graham R I, Wilson K. 2022. Partiti-like viruses from African armyworm increase larval and pupal mortality of a novel host: The Egyptian cotton leafworm. Pest Management Science78, 1529–1537.

Xu P, Song X, Yang X, Tang Z, Ren G, Lu Y. 2017. A novel single-stranded RNA virus in Nesidiocoris tenuisArchives of Virology162, 1125–1128.

Xu P, Yang L, Yang X, Li T, Graham R I, Wu K, Wilson K. 2020. Novel partiti-like viruses are conditional mutualistic symbionts in their normal Lepidopteran host, African armyworm, but parasitic in a novel host, fall armyworm. PLoS Pathogens16, e1008467.

Yan Z, Chen B, Yang Y, Yi X, Wei M, Ecklu-Mensah G, Buschmann M M, Liu H, Gao J, Liang W, Liu X, Yang J, Ma W, Liang Z, Wang F, Chen D, Wang L, Shi W, Stampfli M R, et al. 2022. Multi-omics analyses of airway host-microbe interactions in chronic obstructive pulmonary disease identify potential therapeutic interventions. Nature Microbiology7, 1361–1375.

Yang N, Zang L, Wang S, Guo J, Xu H, Zhang F, Wan F. 2014. Biological pest management by predators and parasitoids in the greenhouse vegetables in China. Biological Control68, 92–102.

Yang T, Liu J, Yuan L, Zhang Y, Peng Y, Li D, Chen J. 2017. Main predators of insect pests: Screening and evaluation through comprehensive indices. Pest Management Science73, 2302–2309.

Ye X, Shi M, Huang J H, Chen X X. 2018. Parasitoid polydnaviruses and immune interaction with secondary hosts. Developmental and Comparative Immunology83, 124–129.

Zhang J, Wang F, Yuan B, Yang L, Yang Y, Fang Q, Kuhn J H, Song Q, Ye G. 2021. A novel Cripavirus of an ectoparasitoid wasp increases pupal duration and fecundity of the wasp’s Drosophila melanogaster host. The Isme Journal279, 20959–20965.

Zhang M, Macdonald A I, Hoyt M A, Coffino P. 2004. Proteasomes begin ornithine decarboxylase digestion at the C terminus. Journal of Biological Chemistry279, 20959–20965.

Zou D, Coudron T A, Wu H, Gu X, Xu W, Zhang L, Chen H. 2015. Performance and cost comparisons for continuous rearing of Arma chinensis (Hemiptera: Pentatomidae: Asopinae) on a zoophytogenous artificial diet and a secondary prey. Journal of Economic Entomology108, 454–461.

Zou D, Coudron T A, Zhang L, Gu X, Xu W, Liu X, Wu H. 2019. Performance of Arma chinensis reared on an artificial diet formulated using transcriptomic methods. Bulletin of Entomological Research109, 24–33.

[1] Qian Wang, Huimin Cao, Jingcheng Wang, Zirong Gu, Qiuyun Lin, Zeyan Zhang, Xueying Zhao, Wei Gao, Huijun Zhu, Hubin Yan, Jianjun Yan, Qingting Hao, Yaowen Zhang. Fine-mapping and primary analysis of candidate genes associated with seed coat color in mung bean (Vigna radiata L.)[J]. >Journal of Integrative Agriculture, 2024, 23(8): 2571-2588.
[2] FAN Xiao-xue, BIAN Zhong-hua, SONG Bo, XU Hai. Transcriptome analysis reveals the differential regulatory effects of red and blue light on nitrate metabolism in pakchoi (Brassica campestris L.)[J]. >Journal of Integrative Agriculture, 2022, 21(4): 1015-1027.
[3] WU Zhe, YANG Xuan, ZHAO Yu-xuan, JIA Li. Identifying candidate genes involved in trichome formation on carrot stems by transcriptome profiling and resequencing [J]. >Journal of Integrative Agriculture, 2022, 21(12): 3589-3599.
No Suggested Reading articles found!