Please wait a minute...
Journal of Integrative Agriculture  2025, Vol. 24 Issue (6): 2266-2284    DOI: 10.1016/j.jia.2023.10.027
Plant Protection Advanced Online Publication | Current Issue | Archive | Adv Search |
The N-mannosyltransferase MoAlg9 plays important roles in the development and pathogenicity of Magnaporthe oryzae
Shulin Zhang1, 2*#, Yu Wang1, 2*, Jinmei Hu1, 2*, Xinyue Cui1, 2, Xiaoru Kang1, 2, Wei Zhao3#, Yuemin Pan1, 2#

1 Department of Plant Pathology, College of Plant Protection, Anhui Agricultural University, Hefei 230036, China

2 Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Agricultural University, Hefei 230036, China

3 Institute of Plant Protection and Agro-Products Safety, Anhui Academy of Agricultural Sciences, Hefei 230031, China

 Highlights 
MoAlg9 localizes to endoplasmic reticulum (ER) and plays critical roles in cell morphogenesis and pathogenesis in rice blast fungus.
The transcription levels of genes related to conidiation, appressorium formation, and cell wall integrity are regulated by MoALG9.
MoALG9 is involved in N-glycosylation and regulates the transcription levels of ER genes in M. oryzae.
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

由稻瘟病菌(Magnaporthe oryzae)侵染引起的水稻稻瘟病可以造成水稻减产,严重威胁水稻安全生产。蛋白质糖基化修饰在植物病原真菌侵染过程中发挥重要作用,已知甘露糖转移酶Alg9参与真核生物N-糖基化过程,但其在稻瘟病菌中的功能仍不清楚。鉴于此,本研究在稻瘟病菌中鉴定到Alg9同源蛋白MoAlg9,并对其功能进行研究。亚细胞定位结果显示MoAlg9定位于内质网,通过基因敲除和表型分析,研究结果表明,MoALG9基因敲除导致稻瘟病菌产孢量下降,分生孢子隔膜异常,对细胞壁胁迫因子和氧化胁迫因子敏感性降低,对盐胁迫因子敏感性增加,附着胞形成异常,致病性下降。此外,MoALG9影响稻瘟病菌附着胞形成阶段对糖原的利用及转移。这些结果表明稻瘟病菌MoALG9在发育、胁迫响应、物质利用和致病过程中均具有重要作用。随后采用qRT-PCR分析发现MoALG9参与调控稻瘟病菌产孢、附着胞形成和细胞壁完整性相关基因的转录。MoAlg9含有1个保守的Glyco_transf_22结构域,结构域缺失结果表明,该保守结构域对MoAlg9的生物学功能及其正确定位发挥功能。进一步采用Western blot分析发现,MoALG9基因敲除导致稻瘟病菌N糖基化蛋白含量显著降低。同时,qRT-PCR分析结果表明,MoALG9基因敲除导致稻瘟病菌N糖基化相关基因的转录水平显著下降。综上所述,本研究揭示了MoALG9介导N-糖基化调控稻瘟病菌发育和致病性,为研发针对蛋白N-糖基化修饰的水稻稻瘟病的防控方法提供了分子靶标。



Abstract  

Magnaporthe oryzae is the causal agent of rice blast.  Glycosylation plays key roles in vegetative growth, development, and infection of Moryzae.  However, several glycosylation-related genes have not been characterized.  In this study, we identified a Glyco_transf_22 domain-containing protein, MoAlg9, and found that MoAlg9 is localized to the endoplasmic reticulum (ER).  Deletion of MoALG9 significantly affected conidial production, normal appressorium formation, responses to stressors, and pathogenicity of Moryzae.  We also found that the ΔMoalg9 mutant was defective in glycogen utilization, appressorial penetration, and invasive growth in host cells.  Moreover, we further demonstrated that MoALG9 regulates the transcription of several target genes involved in conidiation, appressorium formation, and cell wall integrity.  In addition, we found that the Glyco_transf_22 domain is essential for normal MoAlg9 function and localization.  We also provide evidence that MoAlg9 is involved in N-glycosylation pathway in Moryzae.  Taken together, these results show that MoAlg9 is important for conidiation, appressorium formation, maintenance of cell wall integrity, and the pathogenesis of Moryzae.

Keywords:  glycosylation        N-mannosyltransferase        Alg9        pathogenicity        rice blast        Magnaporthe oryzae  
Received: 04 July 2023   Online: 21 October 2023   Accepted: 11 September 2023
Fund: This study was supported by the National Natural Science Foundation of China (32202253), the Natural Science Foundation of Anhui Higher Education Institutions, China (KJ2020A0102) and the Talent Research Project of Anhui Agricultural University, China (rc342001). 
About author:  Yu Wang, E-mail: wangyu2811@163.com; Jinmei Hu, E-mail: 3093292667@qq.com; #Correspondence Shulin Zhang, E-mail: zhangsl80h@ahau.edu.cn; Wei Zhao, E-mail: bioplay@sina.com; Yuemin Pan, E-mail: panyuemin2008@163.com * These authors contributed equally to this study.

Cite this article: 

Shulin Zhang, Yu Wang, Jinmei Hu, Xinyue Cui, Xiaoru Kang, Wei Zhao, Yuemin Pan. 2025. The N-mannosyltransferase MoAlg9 plays important roles in the development and pathogenicity of Magnaporthe oryzae. Journal of Integrative Agriculture, 24(6): 2266-2284.

Aebi M, Gassenhuber J, Domdey H, Te Heesen S. 1996. Cloning and characterization of the ALG3 gene of Saccharomyces cerevisiaeGlycobiology6, 439–444.

Besse W, Chang A R, Luo J Z, Triffo W J, Moore B S, Gulati A, Hartzel D N, Mane S, Regeneron Genetics C, Torres V E, Somlo S, Mirshahi T. 2019. ALG9 Mutation carriers develop kidney and liver cysts. Journal of the American Society of Nephrology30, 2037–2039.

Bickel T, Lehle L, Schwarz M, Aebi M, Jakob C A. 2005. Biosynthesis of lipid-linked oligosaccharides in Saccharomyces cerevisiae: Alg13p and Alg14p form a complex required for the formation of GlcNAc(2)-PP-dolichol. Journal of Biological Chemistry280, 34500–34506.

Burda P, Te Heesen S, Brachat A, Wach A, Dusterhoft A, Aebi M. 1996. Stepwise assembly of the lipid-linked oligosaccharide in the endoplasmic reticulum of Saccharomyces cerevisiae: Identification of the ALG9 gene encoding a putative mannosyl transferase. Proceedings of the National Academy of Sciences of the United States of America93, 7160–7165.

Burda P, Jakob C A, Beinhauer J, Hegemann J H, Aebi M. 1999. Ordered assembly of the asymmetrically branched lipid-linked oligosaccharide in the endoplasmic reticulum is ensured by the substrate specificity of the individual glycosyltransferases. Glycobiology9, 617–625.

Chen D, Hu H, He W, Zhang S, Tang M, Xiang S, Liu C, Cai X, Hendy A, Kamran M, Liu H, Zheng L, Huang J, Chen X, Xing J. 2022. Endocytic protein Pal1 regulates appressorium formation and is required for full virulence of Magnaporthe oryzaeMolecular Plant Pathology23, 133–147.

Chen X, Liu C, Tang B, Ren Z, Wang G, Liu W. 2020. Quantitative proteomics analysis reveals important roles of N-glycosylation on ER quality control system for development and pathogenesis in Magnaporthe oryzaePLoS Pathogens16, e1008355.

Chen X, Shi T, Yang J, Shi W, Gao X, Chen D, Xu X, Xu J, Talbot N J, Peng Y. 2014. N-glycosylation of effector proteins by an alpha–1,3-mannosyltransferase is required for the rice blast fungus to evade host innate immunity. Plant Cell26, 1360–1376.

Deng S, Sun W, Dong L, Cui G, Deng Y. 2019. MoGT2 is essential for morphogenesis and pathogenicity of Magnaporthe oryzaemSphere4, e00309–e00319.

Diaz-Jimenez D F. 2017. Fungal mannosyltransferases as fitness attributes and their contribution to virulence. Current Protein & Peptide Science18, 1065–1073.

Ebbole D J. 2007. Magnaporthe as a model for understanding host-pathogen interactions. Annual Review of Phytopathology45, 437–456.

Eckert V, Blank M, Mazhari-Tabrizi R, Mumberg D, Funk M, Schwarz R T. 1998. Cloning and functional expression of the human GlcNAc–1-P transferase, the enzyme for the committed step of the dolichol cycle, by heterologous complementation in Saccharomyces cerevisiaeGlycobiology8, 77–85.

Fernandez-Alvarez A, Elias-Villalobos A, Jimenez-Martin A, Marin-Menguiano M, Ibeas J I. 2013. Endoplasmic reticulum glucosidases and protein quality control factors cooperate to establish biotrophy in Ustilago maydisPlant Cell25, 4676–4690.

Foster A J, Ryder L S, Kershaw M J, Talbot N J. 2017. The role of glycerol in the pathogenic lifestyle of the rice blast fungus Magnaporthe oryzaeEnvironmental Microbiology19, 1008–1016.

Frank C G, Aebi M. 2005. ALG9 mannosyltransferase is involved in two different steps of lipid-linked oligosaccharide biosynthesis. Glycobiology15, 1156–1163.

Gao X, Moriyama S, Miura N, Dean N, Nishimura S. 2008. Interaction between the C termini of Alg13 and Alg14 mediates formation of the active UDP-N-acetylglucosamine transferase complex. Journal of Biological Chemistry283, 32534–32541.

Gao X, Nishikawa A, Dean N. 2004. Physical interactions between the Alg1, Alg2, and Alg11 mannosyltransferases of the endoplasmic reticulum. Glycobiology14, 559–570.

Gao X, Tachikawa H, Sato T, Jigami Y, Dean N. 2005. Alg14 recruits Alg13 to the cytoplasmic face of the endoplasmic reticulum to form a novel bipartite UDP-N-acetylglucosamine transferase required for the second step of N-linked glycosylation. Journal of Biological Chemistry280, 36254–36262.

Garcia-Rodriguez L J, Valle R, Duran A, Roncero C. 2005. Cell integrity signaling activation in response to hyperosmotic shock in yeast. FEBS Letters579, 6186–6190.

Gruszewska E, Grytczuk A, Chrostek L. 2021. Glycosylation in viral hepatitis. Biochimica et Biophysica Acta (BBA) - General Subjects1865, 129997.

Helenius A, Aebi M. 2001. Intracellular functions of N-linked glycans. Science291, 2364–2369.

Helenius A, Aebi M. 2004. Roles of N-linked glycans in the endoplasmic reticulum. Annual Review of Biochemistry73, 1019–1049.

Helenius J, Ng D T, Marolda C L, Walter P, Valvano M A, Aebi M. 2002. Translocation of lipid-linked oligosaccharides across the ER membrane requires Rft1 protein. Nature415, 447–450.

Hirata T, Kizuka Y. 2021. N-glycosylation. Advances in Experimental Medicine and Biology1325, 3–24.

Hohmann S. 2002. Osmotic stress signaling and osmoadaptation in yeasts. Microbiology and Molecular Biology Reviews66, 300–372.

Hohmann S. 2009. Control of high osmolarity signalling in the yeast Saccharomyces cerevisiaeFEBS Letters583, 4025–4029.

Kong S, Park S Y, Lee Y H. 2015. Systematic characterization of the bZIP transcription factor gene family in the rice blast fungus, Magnaporthe oryzae. Environmental Microbiology17, 1425–1443.

Kukuruzinska M A, Lennon-Hopkins K. 1999. ALG gene expression and cell cycle progression. Biochimica et Biophysica Acta (BBA: General Subjects), 1426, 359–372.

Lecointe K, Cornu M, Leroy J, Coulon P, Sendid B. 2019. Polysaccharides cell wall architecture of mucorales. Frontiers in Microbiology10, 469.

Levin D E. 2005. Cell wall integrity signaling in Saccharomyces cerevisiaeMicrobiology and Molecular Biology Reviews69, 262–291.

Li C L, Chen G, Webb A N, Shaulsky G. 2015. Altered N-glycosylation modulates TgrB1- and TgrC1-mediated development but not allorecognition in DictyosteliumJournal of Cell Science128, 3990–3996.

Li M, Liu X, Liu Z, Sun Y, Liu M, Wang X, Zhang H, Zheng X, Zhang Z. 2016. Glycoside hydrolase MoGls2 controls asexual/sexual development, cell wall integrity and infectious growth in the rice blast fungus. PLoS ONE11, e0162243.

Liu C, Shen N, Zhang Q, Qin M, Cao T, Zhu S, Tang D, Han L. 2022. Magnaporthe oryzae transcription factor MoBZIP3 regulates appressorium turgor pressure formation during pathogenesis. International Journal of Molecular Sciences23, 881.

Liu N, Qi L, Huang M, Chen D, Yin C, Zhang Y, Wang X, Yuan G, Wang R, Yang J, Peng Y, Lu X. 2022. Comparative secretome analysis of magnaporthe oryzae identified proteins involved in virulence and cell wall integrity. Genomics Proteomics Bioinformatics20, 728–746.

Liu W, Xie S, Zhao X, Chen X, Zheng W, Lu G, Xu J, Wang Z. 2010. A homeobox gene is essential for conidiogenesis of the rice blast fungus Magnaporthe oryzaeMolecular Plant–Microbe Interactions23, 366–375.

Loibl M, Strahl S. 2013. Protein O-mannosylation: What we have learned from baker’s yeast. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research1833, 2438–2446.

Lopez-Moya F, Martin-Urdiroz M, Oses-Ruiz M, Were V M, Fricker M D, Littlejohn G, Lopez-Llorca L V, Talbot N J. 2021. Chitosan inhibits septin-mediated plant infection by the rice blast fungus Magnaporthe oryzae in a protein kinase C and Nox1 NADPH oxidase-dependent manner. New Phytologist230, 1578–1593.

Mikolajczyk K, Kaczmarek R, Czerwinski M. 2020. How glycosylation affects glycosylation: The role of N-glycans in glycosyltransferase activity. Glycobiology30, 941–969.

Motteram J, Lovegrove A, Pirie E, Marsh J, Devonshire J, Van De Meene A, Hammond-Kosack K, Rudd J J. 2011. Aberrant protein N-glycosylation impacts upon infection-related growth transitions of the haploid plant-pathogenic fungus Mycosphaerella graminicolaMolecular Microbiology81, 415–433.

Pan Y, Pan R, Tan L, Zhang Z, Guo M. 2019. Pleiotropic roles of O-mannosyltransferase MoPmt4 in development and pathogenicity of Magnaporthe oryzaeCurrent Genetics65, 223–239.

Rodriguez-Pena J M, Garcia R, Nombela C, Arroyo J. 2010. The high-osmolarity glycerol (HOG) and cell wall integrity (CWI) signalling pathways interplay: A yeast dialogue between MAPK routes. Yeast27, 495–502.

Ryder L S, Dagdas Y F, Kershaw M J, Venkataraman C, Madzvamuse A, Yan X, Cruz-Mireles N, Soanes D M, Oses-Ruiz M, Styles V, Sklenar J, Menke F L H, Talbot N J. 2019. A sensor kinase controls turgor-driven plant infection by the rice blast fungus. Nature574, 423–427.

Sharma C B, Knauer R, Lehle L. 2001. Biosynthesis of lipid-linked oligosaccharides in yeast: The ALG3 gene encodes the Dol-P-Man: Man5GlcNAc2-PP-Dol mannosyltransferase. Biological Chemistry382, 321–328.

Shi Z, Christian D, Leung H. 1998. Interactions between spore morphogenetic mutations affect cell types, sporulation, and pathogenesis in Magnaporthe griseaMolecular Plant–Microbe Interactions11, 199–207.

Song J, Yin Y, Cheng W, Liu J, Hu S, Qiu L, Wang J. 2021. The N-mannosyltransferase gene BbAlg9 contributes to cell wall integrity, fungal development and the pathogenicity of Beauveria bassianaFungal Biology125, 776–784.

Sun L, Qian H, Wu M, Zhao W, Liu M, Wei Y, Zhu X, Li L, Lu J, Lin F, Liu X. 2022. A subunit of ESCRT-III, MoIst1, is involved in fungal development, pathogenicity, and autophagy in Magnaporthe oryzaeFrontiers in Plant Science13, 845139.

Tang W, Ru Y, Hong L, Zhu Q, Zuo R, Guo X, Wang J, Zhang H, Zheng X, Wang P, Zhang Z. 2015. System-wide characterization of bZIP transcription factor proteins involved in infection-related morphogenesis of Magnaporthe oryzaeEnvironmental Microbiology17, 1377–1396.

Thak E J, Lee S B, Xu-Vanpala S, Lee D J, Chung S Y, Bahn Y S, Oh D B, Shinohara M L, Kang H A. 2020. Core N-glycan structures are critical for the pathogenicity of Cryptococcus neoformans by modulating host cell death. mBio11, e00711-20.

Tham E, Eklund E A, Hammarsjo A, Bengtson P, Geiberger S, Lagerstedt-Robinson K, Malmgren H, Nilsson D, Grigelionis G, Conner P, Lindgren P, Lindstrand A, Wedell A, Albage M, Zielinska K, Nordgren A, Papadogiannakis N, Nishimura G, Grigelioniene G. 2016. A novel phenotype in N-glycosylation disorders: Gillessen-Kaesbach-Nishimura skeletal dysplasia due to pathogenic variants in ALG9European Journal of Human Genetics24, 198–207.

Varki A. 2017. Biological roles of glycans. Glycobiology27, 3–49.

Wang J, Wang Q, Huang P, Qu Y, Huang Z, Wang H, Liu X, Lin F, Lu J. 2022. An appressorium membrane protein, Pams1, controls infection structure maturation and virulence via maintaining endosomal stability in the rice blast fungus. Frontiers in Plant Science13, 955254.

Wang Z, Zhang H, Liu C, Xing J, Chen X. 2018. A deubiquitinating enzyme Ubp14 is required for development, stress response, nutrient utilization, and pathogenesis of Magnaporthe oryzaeFrontiers in Microbiology9, 769.

Wu M, Yu Q, Tao T, Sun L, Qian H, Zhu X, Li L, Liang S, Lu J, Lin F, Liu X. 2022. Genome-wide analysis of AGC kinases reveals that MoFpk1 is required for development, lipid metabolism, and autophagy in hyperosmotic stress of the rice blast fungus Magnaporthe oryzaemBio13, e0227922.

Yi M, Chi M H, Khang C H, Park S Y, Kang S, Valent B, Lee Y H. 2009. The ER chaperone LHS1 is involved in asexual development and rice infection by the blast fungus Magnaporthe oryzaePlant Cell21, 681–695.

Zacchi L F, Schulz B L. 2016. SWATH-MS glycoproteomics reveals consequences of defects in the glycosylation machinery. Molecular & Cellular Proteomics15, 2435–2447.

Zhang H, Zhao Q, Guo X, Guo M, Qi Z, Tang W, Dong Y, Ye W, Zheng X, Wang P, Zhang Z. 2014. Pleiotropic function of the putative zinc-finger protein MoMsn2 in Magnaporthe oryzaeMolecular & Cellular Proteomics27, 446–460.

Zhang S, Lin C, Zhou T, Zhang L H, Deng Y Z. 2020. Karyopherin MoKap119-mediated nuclear import of cyclin-dependent kinase regulator MoCks1 is essential for Magnaporthe oryzae pathogenicity. Cellular Microbiology22, e13114.

Zhou Z, Li G, Lin C, He C. 2009. Conidiophore stalk-less1 encodes a putative zinc-finger protein involved in the early stage of conidiation and mycelial infection in Magnaporthe oryzaeMolecular Plant–Microbe Interactions22, 402–410.

[1] Zhizhou Xu, Guichun Wu, Bo Wang, Baodian Guo, Cong Sheng, Yangyang Zhao, Bao Tang, Yancun Zhao, Fengquan Liu. Sigma factor 70 RpoD contributes to virulence by regulating cell motility, oxidative stress tolerance, and manipulating the expression of hrpG and hrpX in Xanthomonas oryzae pv. oryzae[J]. >Journal of Integrative Agriculture, 2025, 24(5): 1844-1859.
[2] ZHANG Li-mei, CHEN Shu-ting, QI Min, CAO Xue-qi, LIANG Nan, LI Qian, TANG Wei, LU Guo-dong, ZHOU Jie, YU Wen-ying, WANG Zong-hua, ZHENG Hua-kun. The putative elongator complex protein Elp3 is involved in asexual development and pathogenicity by regulating autophagy in the rice blast fungus[J]. >Journal of Integrative Agriculture, 2021, 20(11): 2944-2956.
[3] TAN Liu-gang, CHEN Zhao-kun, MA Xin-xin, HUANG Qing-hua, SUN Hai-ji, ZHANG Fan, YANG Shao-hua, XU Chuan-tian, CUI Ning. Glycosylation of the hemagglutinin protein of H9N2 subtype avian influenza virus influences its replication and virulence in mice[J]. >Journal of Integrative Agriculture, 2019, 18(7): 1443-1450.
[4] FEI Li-wang, LU Wen-bo, XU Xiao-zhou, YAN Feng-cheng, ZHANG Li-wei, LIU Jin-tao, BAI Yuan-jun, LI Zhen-yu, ZHAO Wen-sheng, YANG Jun, PENG You-liang. A rapid approach for isolating a single fungal spore from rice blast diseased leaves[J]. >Journal of Integrative Agriculture, 2019, 18(6): 1415-1418.
No Suggested Reading articles found!