Please wait a minute...
Journal of Integrative Agriculture  2025, Vol. 24 Issue (6): 2285-2298    DOI: 10.1016/j.jia.2023.11.046
Plant Protection Advanced Online Publication | Current Issue | Archive | Adv Search |
Application of dsRNA of FgPMA1 for disease control on Fusarium graminearum

Luoyu Wu1, Furong Chen1, Pengwei Wang1, Chongjing Xu1, Weidong Wen1, Matthias Hahn2, Mingguo Zhou1#, Yiping Hou1#

1 State Key Laboratory of Agricultural and Forestry Biosecurity, College of Plant Protection, Nanjing Agricultural University,  Nanjing 210095, China

2 Plant Pathology, University of Kaiserslautern, Kaiserslautern 67663, Germany

 Highlights 
FgPMA1 could serve as a new target for controlling Fusarium head blight using its dsRNA.
FgPMA1 was divided into 6 segments to construct RNAi vectors.  FgPMA1RNAi-1, -2, and -5 significantly reduced the expression of FgPMA1, inhibited fungal development, and shortened the lesions on wheat.
Applying the dsRNA of FgPMA1RNAi-1, -2, and -5 to wheat ears could reduce pathogenicity.
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

小麦赤霉病(Fusarium head blight)是一种世界性的病害,在全球小麦产区广泛发生,造成严重的经济损失,并且小麦赤霉病菌会产生真菌毒素污染小麦,降低小麦品质。由于缺乏抗病品种,防治小麦赤霉病的主要手段是使用杀菌剂。但是,由于化学药剂的长期和大量使用,抗性问题日益严重,因此,筛选具有新型作用机制的药剂十分重要前期研究发现禾谷镰刀菌中的质膜ATPFgPMA1与氰烯菌酯的靶标肌球蛋白互作,并且各项生命活动中发挥许多重要的功能,因此具有成为靶标的潜力近年来,研究发现植物与病原菌之间存在一种新的沟通机制,称为跨物种RNA干扰(RNA interference, RNAi目前,许多研究发现根据RNAi机制开发的核酸农药可以用于有害生物的防治。因此,本研究利用RNAi的方法探究了FgPMA1作为靶标防治小麦赤霉病的可能性。通过将FgPMA1基因划分为6段(PMA1RNAi-1-2-3-4-5,和-6),并构建了干扰载体及干扰突变体,发现FgPMA1RNAi-1-2,和-5突变体FgPMA1的表达量显著降低,菌丝生长受到抑制;产子囊壳能力出现缺陷;分生孢子的产量及形态等受到抑制;毒素的合成受到抑制;致病力下降。通过表型的筛选,我们发现PMA1RNAi-1-2-5这三个区段能够起到干扰效果。因此,我们在体外的条件下合成了以这三个区段为模板的dsRNA。在离体条件下,当用25 ng µL-1 PMA1RNAi-1-2-5dsRNA处理后,禾谷镰刀菌PH-1、亚洲镰刀菌2021和氰烯菌酯抗性菌株YP-1的菌丝生长受到抑制,菌丝中出现膨大的畸形结构,并且失去了产孢能力。在田间,当用PMA1RNAi-1-2-5dsRNA处理麦穗后,禾谷镰刀菌侵染的病斑长度显著下降。这些结果表明:FgPMA1在禾谷镰刀菌中可以作为一个新型的药剂靶标,并且在田间直接施用FgPMA1dsRNA可以减轻病害的发生。



Abstract  

Fusarium graminearum is a fungal plant pathogen which causes Fusarium head blight (FHB), a devastating disease on cereal crops.  Here we report that FgPMA1 could be a new target to control FHB by the application of double-stranded RNA (dsRNA) of FgPMA1.  FgPMA1 was divided into 6 segments to generated RNA interference (RNAi) constructs (FgPMA1RNAi-1, -2, -3, -4, -5, and -6), and these constructs were transformed in Fgraminearum strain PH-1.  The expression of FgPMA1 reduced by 18.48, 33.48 and 56.93% in FgPMA1RNAi-1, FgPMA1RNAi-2 and FgPMA1RNAi-5, respectively.  FgPMA1RNAi-1, -2, and -5 mutants inhibited fungal development, including mycelium growth, mycelial morphology, asexual and sexual development, and toxin production.  The length of lesions on wheat leaves, wheat coleoptiles and wheat ears were shorter after infection with FgPMA1RNAi-1, -2, and -5 mutants than wild type PH-1.  These results showed that three segments (FgPMA1RNAi-1, -2, and -5) exhibited effective silencing effects.  After treatment with 25 ng µL–1 dsRNA of these segments in vitro, the growth rate of mycelium growth was significant decreased, mycelium became deformed with bulbous structure at the tip, and the mycelium lost the ability to produce conidia in Fgraminearum strain PH-1, Fusarium asiacitum strain 2021 and phenamacril-resistant strain YP-1.  After application of FgPMA1RNAi-1-dsRNA and FgPMA1RNAi-2-dsRNA to wheat ears, pathogenicity reduced 34.21–35.40%.

Keywords:  RNA interference        FgPMA1        Fusarium graminearum        nucleic acid pesticide  
Received: 05 July 2023   Online: 28 November 2023   Accepted: 28 September 2023
Fund: This study was sponsored by the National Natural Science Foundation of China (32272585), the National Key R&D Program of China (2022YFD1400900) and the Fundamental Research Funds for the Central Universities, China (KYCXJC2023003).
About author:  #Correspondience Mingguo Zhou, E-mail: mgzhou@njau.edu.cn; Yiping Hou, E-mail: houyiping@njau.edu.cn

Cite this article: 

Luoyu Wu, Furong Chen, Pengwei Wang, Chongjing Xu, Weidong Wen, Matthias Hahn, Mingguo Zhou, Yiping Hou. 2025. Application of dsRNA of FgPMA1 for disease control on Fusarium graminearum. Journal of Integrative Agriculture, 24(6): 2285-2298.

Bai G H, Shaner G. 2004. Management and resistance in wheat and barley to Fusarium head blight. Annual Review of Phytopathology42, 135–161.

Bechtel D B, Kaleikau L A, Gaines R L, Seitz L M. 1985. The effect of Fusarium graminearum infection on wheat kernels. Cereal Chemistry62, 191–197.

Bublitz M, Kjelleru L, Cohrt K O H, Gordon S, Winther A M L. 2018. Tetrahydrocarbazoles are a novel class of potent P-type ATPase inhibitors with antifungal activity. PLoS ONE13, e0188620.

Bublitz M, Morth J P, Nissen P. 2011. P-type ATPases at a glance. Journal of Cell Science124, 2515–2519.

Chen Y, Wang W X, Zhang A F, Gu C Y, Zhou M G, Gao T C. 2011. Activity of the fungicide JS399-19 against Fusarium head blight of wheat and the risk of resistance. Agricultural Science in China10, 1906–1913.

Goffeau A, Slayman C W. 1981. The proton-translocating ATPase of the fungal plasma membrane. BBA Reviews on Bioenergetics, 639, 197–223.

Goswami R S, Kistler H C. 2004. Heading for disaster: Fusarium graminearum on cereal crops. Molecular Plant Pathology5, 515–525.

Gu K X, Song X S, Xiao X M, Duan X X, Wang J X, Duan Y B, Hou Y P, Zhou M G. 2019. A β2-tubulin dsRNA detrived from Fusarium asiaticum confers plant resistance to multiple phytopathogens and reduces fungicide resistance. Pesticide Biochemistry Physiology153, 36–46.

Hammond S M, Bernstein E, Beach D, Hannon G J. 2000. An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells. Nature404, 293–296.

Hammond S M, Boettcher S, Caudy A A, Kobayashi R, Hannon G J. 2001. Agronaute2, a link between genetic and biochemical analyses of RNAi. Science293, 1146–1150.

Heit S, Geurts M M G, Murphy B J, Corey R A, Mills D J, Kühlbrandt W, Bublitz M. 2021. Structure of the hexameric fungal plasma membrane proton pump in its autoinhibited state. Science Advances7, eabj5255.

Hou Z M, Xue C Y, Peng Y L, Katan T, Kistler H C, Xu J R. 2002. A mitogen-activated protein kinase gene (MGV1) in Fusarium graminearum is required for female fertility, heterokaryon formation, and plant infection. Molecular Plant–Microbe Interaction15, 1119–1127.

Huang C Y, Wang H, Hu P, Hamby R, Jin H L. 2019. Small RNAs-big players in plant-microbe interactions. Cell Host and Microbe25, 7–9.

Kalyandurg P B, Sundararajan P, Dubey M, Ghadamgahi F, Zahid M A, Whisson S C, Vetukuri R R. 2021. Spary-induced gene silencing as potential tool to control potato late blight disease. Phytopathology111, 2168–2175.

Kjellerup L, Gordon S, Cohrt K O H, Brown W D, Fuglsang A T, Winther A M L. 2017. Identification of antifungal H+-ATPase inhibitors with effect on plasma membrane potential. Antimicrobial Agents and Chemotherapy61, e00032–17.

Kühlbrandt W. 2004. Biology, structure and mechanism of P-type ATPase. Nature Reviews Molecular Cell Biology5, 282–295.

Kühlbrandt W, Zeelen J, Dietrich J. 2002. Structure, mechanism, and regulation of the Neurospora plasma membrane H+-ATPase. Science297, 1692–1996.

Lee H J, Ryu D. 2017. Worldwide occurrence of mycotoxins in cereals and cereal-derived food products: Public health perspectives of their co-occurence. Journal of Agricultural Food and Chemistry65, 7034–7051.

Li B, Zheng Z T, Liu X M, Cai Y Q, Mao X W, Zhou M G. 2016. Genotypes and characteristics of phenamacril-resistant mutants in Fusarium asiaticumPlant Disease100, 1754–1761.

Li H K, Diao Y M, Wang J X, Chen C J, Ni J P, Zhou M G. 2008. JS399-19, a new fungicide against wheat scab. Crop Protection27, 90–95.

Li T, Xu J K, Gao H, Cao Z G, Wang J X, Cai Y Q, Duan Y B, Zhou M G. 2022. The G143A/S substitution of mitochondrially encoded cytochrome b (Cytb) in Magnaporthe oryzae confers resistance to quinone outside inhibitors. Pest Management Science78, 4850–4858.

Liu Z, Wu S S, Chen Y, Han X Y, Gu Q, Yin Y N, Ma Z H. 2017. The microtubule end-binding protein FgEB1 regulates polar growth and fungicide sensitivity via different interactors in Fusarum graminearumEnvironmental Microbiology19, 1791–1807.

Malínská K, Malínský J, Opekarová M, Tanner W. 2003. Visualization of protein compartmentation within the plasma membrane of living yeast cells. Molecular Biology of the Cell14, 4427–4436.

Mao X W, Wu Z W, Chen F R, Zhou M G, Hou Y P. 2022. FfCOX17 is involved in fumonisins production, growth, asexual reproduction, and fungicide sensitivity on Fusarium fujikuroiToxin14, 14070427.

Nakayashiki H, Hanada S, Nguyen B Q, Kadotani N, Tosa Y, Mayama S. 2005. RNA silencing as a tool for exploring gene function in ascomycete fungi. Fungal Genetic Biology42, 275–283.

Nightingale M J, Marchylo B A, Clear R M, Dexter J E, Preston K R. 1999. Fusarium head blight: Effect of fungal proteases on wheat storage proteins. Cereal Chemistry76, 150–158.

Nowara D, Gray A, Lacomme L, Shaw J, Ridout C, Douchkov D, Hensel G, Kumlehn J, Schweizer P. 2010. HIGS: Host-induced gene silencing in the obligate biotrophic fungal pathogen Blumeria graminisPlant Cell22, 3130–3141.

Palmgren M, Morsomme P. 2019. The plasma membrane H+-ATPase, a simple polypeptide with a long history. Yeast36, 201–210.

Remy E, Meyer M, Blaise F, Chabirand M, Wolff N, Balesdent M H, Rouxel T. 2008. The Lmpma1 gene of Leptosphaeria maculans encodes a plasma membrane H+-ATPase isoform essential for pathogenicity towards oilseed rape. Fungal Genetic Biology45, 1122–11334.

Sarkar A, Roy-Barman S. 2021. Spray-inducing silencing of pathogenicity gene MoDES1 via exogenous double-stranded RNA can confer partial resistance against fungal blast in rice. Frontiers in Plant Science12, 733129.

Schmale D G, Munkvold G P. 2012. Mycotoxins in Crops - A threat to human and domestic animal health. [2016-3-15]. http://www.apsnet.org/edcenter/intropp/topics/Mycotoxins/Pages/EconomicImpact.aspx

Serrano R. 1989. Structure and function of plasma membrane ATPase. Annual Review of Plant Physiology and Plant Molecular Biology40, 61–94.

Serrano R, Kielland-Brandt M C, Flink G R. 1986. Yeast plasma membrane ATPase is essential for growth and has homology with (Na++K+), K+- and Ca2+-ATPases. Nature319, 689–693.

Sobrova P, Adam V, Vasatkova A, Beklova M, Zeman L, Kizek R. 2010. Deoxynivalenol and its toxicity. Toxicology3, 94–99.

Song X S, Gu K X, Duan X X, Xiao X M, Hou Y P, Duan Y B, Wang J X, Zhou M G. 2018a. A myosin-5 dsRNA that reduces the fungicide resistance and pathogenicity of Fusarium graminearumPesticide Biochemistry Physiology150, 1–9.

Song X S, Gu K X, Duan X X, Xiao X M, Hou Y P, Duan Y B, Wang J X, Zhou M G. 2018b. Secondary amplification of siRNA machinery limits the application of spray-induced gene silencing. Molecular Plant Pathology19, 2543–2560.

Soteropoulos P, Vaz T, Santangelo R, Paderu P, Huang D Y, Tamás M J, Perlin D S. 2000. Molecular characterization of the plasma membrane H+-ATPase, an antifungal target in Cryptococcus neoformansAntimicrobial Agents and Chemotherapy44, 2349–2355.

Spolti P, Ponte E M D, Dong Y H, Cummings J A, Bergstrom G C. 2014. Triazole sensitivity in a contemporary population of Fusarium graminearum from New York wheat and competitiveness of a tebuconazole-resistant isolate. Plant Disease98, 607–613.

Tang G F, Chen Y, Xu J R, Kistler H C, Ma Z H. 2018. The fungal myosin I is essential for Fusarium toxisome formation. PLoS Pathogens14, e1006827.

Tomari Y, Zamore P D. 2022. Perspective: Machines for RNAi. Gene & Development19, 517–529.

Verdel A, Jia S, Gerber S, Sugiyama T, Gygi S, Grewal S I S, Moazed D. 2004, RNAi-mediated targeting of heterochromatin by the RITS complex. Science303, 672–676.

Wang M, Jin H L. 2017. Spray-induced gene silencing: A powerful innovative strategy for crop protection. Trends in Microbiolology25, 4–6.

Werner B T, Gaffar F Y, Schuemann J, Biedenkopf D, Koch A M. 2020. RNA-spray-mediated silencing of Fusarium graminearum AGO and DCL genes improve barley disease resistance. Frontiers in Plant Science11, 476.

Wolf E D D, Madden L V, Lipps P E. 2003. Risk assessment models for wheat Fusarium head blight epidemics based on within-season weather data. Phytopathology93, 428–435.

Wu L Y, Yuan Z L, Wang P W, Mao X W, Zhou M G, Hou Y P. 2022. The plasma membrane H+-ATPase FgPMA1 regulates the development, pathogenicity, and phenamacril sensitivity of Fusarium graminearum by interacting with FgMyo-5 and FgBmh2. Molecular Plant Pathology23, 489–502.

Yang P, Yi S Y, Nian J N, Yuan Y S, He W L, Zhang J B, Liao Y C. 2021. Application of double-strand RNAs targeting chitin synthase, glucan synthase, and protein kinase reduces Fusarium graminearum spreading in wheat. Frontiers in Microbiology12, 660976.

Yang Y, Li M X, Duan Y B, Li T, Shi Y Y, Zhao D L, Zhou Z Z, Xin W J, Wu J, Pan X Y, Li Y J, Zhu Y Y, Zhou M G. 2018. A new point mutation in β2-tubulin confers resistance to carbendazim in Fusarium asiatiumPesticide Biochemistry Physiology145, 15–21.

Yin C Y, Hulbert S H. 2018. Host-induced gene silencing (HIGS) for elucidating Puccinia gene function in wheat. Methods in Molecular Biology1848, 139–150.

Yin J R, Hao C F, Niu G, Wang W, Wang G H, Xiang P, Xu J R, Zhang X. 2020. FgPal1 regulates morphogenesis and pathogenesis in Fusarium graminearumEnvironmental Microbiology22, 5373–5386.

Zhang Y, Chen W C, Shao W Y, Wang J X, Lv C Y, Ma H, Chen C J. 2017. Molecular, biological and physiological characterizations of resistance to phenamacril in Fusarium graminearumPlant Pathology66, 1404–1412.

Zhao P, Zhao C R, Chen D D, Yun C H, Li H L, Bai L. 2021. Structure and activation mechanism of the hexameric plasma membrane H+-ATPase. Nature Communications12, 6439.

Zheng H W, Li P P, Yu Z, Yuan Y P, Zheng Q J, Xie Q R, Li G P, Abubakar Y S, Zhou J, Wang Z H, Zheng W H. 2021. FgSpa2 recruits FgMsb3, a Rab8 GAP, to the polarisome to regulate polarized trafficking, growth and pathogenicity in Fusarium graminearumNew Phytologist229, 1665–1683.

Zheng Z T, Hou Y P, Cai Y Q, Zhang Y, Li Y J, Zhou M G. 2015. Whole-genome sequencing reveals that mutations in mysin-5 confer resistance to the fungicide phenamacril in Fusarium graminearumScientific Report5, 8248.

Zhou Y X, Zhou X E, Gong Y P, Zhu Y Y, Cao X M, Brunzelle J S, Xu H E, Zhou M G, Melcher K, Zhang F. 2020. Sturctural basis of Fusarium myosin I inhibition by phenamacril. PLoS Pathogens16, e1008323.

Zhou Z H, Duan Y B, Zhou M G. 2020. Carbendazim-resistance associated beta(2)-tubulin substitutions increase deoxynivalenol biosynthesis by reducing the interaction between beta(2)-tubulin and IDH3 in Fusarium graminearumEnvironmental Microbiology22, 598–614.

Zhu Y Y, Zhang Y S, He Z Z, Duan Y B, Li Y J, Wang J X, Zhou M G. 2020. Detrimental effects of multiple mutations in position 240 of Fusarium gramineatum β2-Tublin. Phytopathology110, 1522–1529.

[1] Qin Ma, Zizhen Fan, Ping Wang, Siya Ma, Jian Wen, Fengqin Cao, Xianwu Lin, Rihui Yan.

Silencing transformer and transformer-2 in Zeugodacus cucurbitae causes defective sex determination with inviability of most pseudomales [J]. >Journal of Integrative Agriculture, 2024, 23(3): 938-947.

[2] Zhenchao Fu, Huiqian Zhuang, Vincent Ninkuu, Jianpei Yan, Guangyue Li, Xiufen Yang, Hongmei Zeng. A novel secreted protein FgHrip1 from Fusarium graminearum triggers immune responses in plants[J]. >Journal of Integrative Agriculture, 2024, 23(11): 3774-3787.
[3] FAN Zi-zhen, MA Qin, MA Si-ya, CAO Feng-qin, YAN Ri-hui, LIN Xian-wu.

Maleness-on-the-Y (MoY) orthologue is a key regulator of male sex determination in Zeugodacus cucurbitae (Diptera: Tephritidae) [J]. >Journal of Integrative Agriculture, 2023, 22(2): 505-513.

No Suggested Reading articles found!