Please wait a minute...
Journal of Integrative Agriculture  2023, Vol. 22 Issue (9): 2719-2728    DOI: 10.1016/j.jia.2023.07.020
Horticulture Advanced Online Publication | Current Issue | Archive | Adv Search |
Core collection construction of tea plant germplasm in Anhui Province based on genetic diversity analysis using simple sequence repeat markers

TAO Ling-ling*, TING Yu-jie*, CHEN Hong-rong, WEN Hui-lin, XIE Hui, LUO Ling-yao, HUANG Ke-lin, ZHU Jun-yan, LIU Sheng-rui#, WEI Chao-ling#

State Key Laboratory of Tea Plant Biology and Utilization/Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture and Rural Affairs/Anhui Provincial Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, P.R.China
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

茶树是中国主要经济作物之一,安徽省茶树栽培历史悠久具有丰富的种质资源和遗传多样性茶树的高度杂合性导致其种质资源收集、管理及保护等方面工作进展缓慢,并且长期保存管理成本高,因此提高安徽省茶树种质资源的管理质量和效率,构建核心种质迫在眉睫本研究从安徽省6个主要产茶区收集了573份有代表性的茶树基于60SSR分子标记进行系统发育关系、群体结构和主坐标分析。聚类结果显示安徽省573茶树被分5个类群,这些类群分布地区收集样品的地理位置相关,聚类结果PCoA分群结果也基本一致。最后,我们构建了一个由115茶树品种组成的核心种质,占原始种质的20%。核心种质观察到的等位基因数(Na)具有90.9%的保留率,并且核心种质和原始种质的香农信息指数(I)及其他遗传多样性参数之间没有显著性差异所有代表性茶区均保留了部分代表性品种,其中黄山地区保留了39份茶树,占核心种质的33.9%金寨县保留了10份茶树,占核心种质的8.9%PCoA结果表明构建的核心种质均匀的分布在收集的安徽省茶树种质中,说明构建的核心种质能够代表安徽省茶树种质的遗传多样性。本研究对安徽省茶树种质资源的高效保存和利用具有一定的参考价值。



Abstract  

The tea plant [Camellia sinensis (L.) O. Kuntze] is an industrial crop in China.  The Anhui Province has a long history of tea cultivation and has a large resource of tea germplasm with abundant genetic diversity.  To reduce the cost of conservation and utilization of germplasm resources, a core collection needs to be constructed.  To this end, 573 representative tea accessions were collected from six major tea-producing areas in Anhui Province.  Based on 60 pairs of simple sequence repeat (SSR) markers, phylogenetic relationships, population structure and principal coordinate analysis (PCoA) were conducted.  Phylogenetic analysis indicated that the 573 tea individuals clustered into five groups were related to geographical location and were consistent with the results of the PCoA.  Finally, we constructed a core collection consisting of 115 tea individuals, accounting for 20% of the whole collection.  The 115 core collections were considered to have a 90.9% retention rate for the observed number of alleles (Na), and Shannon’s information index (I) of the core and whole collections were highly consistent.  Of these, 39 individuals were preserved in the Huangshan area, accounting for 33.9% of the core collection, while only 10 individuals were reserved in the Jinzhai County, accounting for 8.9% of the core set.  PCoA of the accessions in the tea plant core collection exhibited a pattern nearly identical to that of the accessions in the entire collection, further supporting the broad representation of the core germplasm in Anhui Province.  The results demonstrated that the core collection could represent the genetic diversity of the original collection.  Our present work is valuable for the high-efficiency conservation and utilization of tea plant germplasms in Anhui Province

Keywords:  tea plant        core collection        genetic diversity        SSR markers  
Received: 20 March 2023   Accepted: 04 July 2023
Fund: This study was supported by the Project of Major Science and Technology of Anhui Province, China (202003a06020021), the National Key Research and Development Program of China (2021YFD1200200, 2021YFD1200203), the National Natural Science Foundation of China (U20A2045), the Base of Introducing Talents for Tea Plant Biology and Quality Chemistry (D20026), and the Anhui Provincial Natural Science Foundation, China (2108085QC121).
About author:  TAO Ling-ling, E-mail: taoll0716@163.com; TING Yu-jie, E-mail: 18485364862@163.com; #Correspondence WEI Chao-ling, E-mail: weichl@ahau.edu.cn; LIU Sheng-rui, E-mail: liushengrui@ahau.edu.cn * These authors contributed equally to this study.

Cite this article: 

TAO Ling-ling, TING Yu-jie, CHEN Hong-rong, WEN Hui-lin, XIE Hui, LUO Ling-yao, HUANG Ke-lin, ZHU Jun-yan, LIU Sheng-rui, WEI Chao-ling. 2023. Core collection construction of tea plant germplasm in Anhui Province based on genetic diversity analysis using simple sequence repeat markers. Journal of Integrative Agriculture, 22(9): 2719-2728.

Bourguiba H, Batnini M A, Krichen L, Trifi-Farah N, Audergon J M. 2017. Population structure and core collection construction of apricot (Prunus armeniaca L.) in North Africa based on microsatellite markers. Plant Genetic Resources15, 21–28.

Brown A H D. 1989. Core collections: A practical approach to genetic resources management. Genome31, 818–824.

Chen L. 2006. Germplasm and Genetic Improvement of Tea Plant. China Agricultural Sciences and Technology Press, China. (in Chinese)

Chen L, Zhou Z X. 2005. Variations of main quality components of tea genetic resources [Camellia sinensis (L.) O. Kuntze] preserved in the China National Germplasm Tea Repository. Plant Foods for Human Nutrition60, 31–35.

Chen R, Hara T, Ohsawa R, Yoshioka Y. 2017. Analysis of genetic diversity of rapeseed genetic resources in Japan and core collection construction. Breeding Science67, 239–247.

Clarke J. 2009. Cetyltrimethyl ammonium bromide (CTAB) DNA miniprep for plant DNA isolation. Cold Spring Harbor Protocols3, 20147112.

Evanno G, Regnaut S, Goudet J. 2005. Detecting the number of clusters of individuals using the software STRUCTURE: A simulation study. Molecular Ecology14, 2611–2620.

Frankel O H, Brown A H D. 1984. Current plant genetic resources - a critical appraisal. In: Genetics: New Frontiers.vol.4. Oxford & IBH Publishing, New Delhi. pp. 1–11.

Guo R, Xia X B, Chen J, An Y L, Mi X, Li R, Zhang C, Chen M Y, Wei C L, Liu S R. 2021. Genetic relationship analysis and molecular fingerprint identification of the tea germplasms from Guangxi Province. Breeding Science71, 584–593.

Herrmann D, Flajoulot S, Barre P, Huyghe C, Ronfort J, Julier B. 2017. Comparison of morphological traits and molecular markers to analyse diversity and structure of alfalfa (Medicago sativa L.) cultivars. Genetic Resources and Crop Evolution65, 527–540.

Huang F Y, Duan J H, Lei Y, Liu Z, Kang Y K, Luo Y, Chen Y Y, Li Y Y, Liu S Q, Li S J, Liu Z H. 2022. Genetic diversity, population structure and core collection analysis of Hunan tea plant germplasm through genotyping-by-sequencing. Beverage Plant Research2, 1–7.

Ji P Z, Jiang H B, Huang W Q, Zhang J, Liang M Z, Wang P S. 2009. Genetic diversity of ancient tea gardens and tableland tea gardens from Yunnan Province as revealed by AFLP marker. Hereditas31, 101–108. (in Chinese)

Ji P Z, Li H, Gao L Z, Zhang J, Cheng Z Q, Huang X Q. 2011. ISSR diversity and genetic differentiation of ancient tea (Camellia sinensis var. assamica) plantations from China: Implications for precious tea germplasm conservation. Pakistan Journal of Botany43, 281–291.

Jiang C J, Li Y Y, Wei C L. 2009. Investigation of Anhui local tea germplasm resources. Journal of Anhui Agricultural University36, 340–343. (in Chinese)

Jiang H B. 2013. Diversity of tea landraces based on agronomic and quality traits in Yunnan Province. Journal of Plant Genetic Resources14, 634–640. (in Chinese)

Kim J H, Oh Y, Lee G A, Soon Kwon Y, Kim S A, Kwon S I, Do Y S, Choi C. 2019. Genetic diversity, structure, and core collection of Korean apple germplasm using simple sequence repeat markers. Horticulture88, 329–337.

Lee Y J, Mun J H, Jeong Y M, Joo S H, Yu H J. 2018. Assembly of a radish core collection for evaluation and preservation of genetic diversity. Horticulture Environment and Biotechnology5, 711–721.

Letunic I, Bork P. 2019. Interactive tree of life (iTOL) v4: Recent updates and new developments. Nucleic Acids Research47, W256–W259.

Li J W, Li H, Liu Z W, Wang Y X, Chen Y, Yang N, Hu Z H, Li T, Zhuang J. 2023. Molecular markers in tea plant (Camellia sinensis): Applications to evolution, genetic identification, and molecular breeding. Plant Physiology and Biochemistry198, 107704.

Li Y X, Li T H, Zhang H, Qi Y W. 2007. Sampling strategy for a primary core collection of peach (Prunus persica (L.) Batsch.) germplasm. European Journal of Horticultural Science72, 268–274.

Liang Y R, Shi M. 2015. Advances in tea plant genetics and breeding. Journal of Tea Science35, 103–109.

Liu K, Muse S. 2005. PowerMaker: An integrated analysis environment for genetic marker analysis. Bioinformatics21, 2128–2129.

Liu S R, An Y L, Li F D, Li S J, Liu L L, Zhou Q Y, Zhao S Q, Wei C L. 2018. Genome-wide identification of simple sequence repeats and development of polymorphic SSR markers for genetic studies in tea plant (Camellia sinensis). Molecular Breeding38, 59.

Liu S R, An Y L, Tong W, Qin X J, Samarina L, Guo R, Xia X B, Wei C L. 2019. Characterization of genome-wide genetic variations between two varieties of tea plant (Camellia sinensis) and development of InDel markers for genetic research. BMC Genomics20, 935.

Liu S R, Liu H W, Wu A L, Hou Y, An Y L, Wei C L. 2017. Construction of fingerprinting for tea plant (Camellia sinensis) accessions using new genomic SSR markers. Molecular Breeding37, 93.

Lu L, Chen H F, Wang X J, Zhao Y C, Yao X Z, Xiong B, Deng Y L, Zhao D. 2021. Genome-level diversification of eight ancient tea populations in the Guizhou and Yunnan regions identifies candidate genes for core agronomic traits. Horticulture Research8, 190.

Ma J, Yao M, Chen L. 2015. Research progress on germplasms of tea plant (Camellia sinensis). Journal of Tea Science1, 11–16.

Mongkolporn O, Hanyong S, Chunwongse J, Wasee S. 2014. Establishment of a core collection of chilli germplasm using microsatellite analysis. Plant Genetic Resources13, 104–110.

Nie X H, Wang Z H, Liuy N W, Song L, Yan B Q, Xing Y, Zhang Q, Fang K F, Zhao Y L, Chen X. 2021. Fingerprinting 146 Chinese chestnut (Castanea mollissima Blume) accessions and selecting a core collection using SSR markers. Journal of Integrative Agriculture20, 1277–1286.

Niu S F, Koiwa H, Song Q F, Qiao D H, Chen J, Zhao D, Chen Z W, Wang Y, Zhang T Y. 2020. Development of core-collections for Guizhou tea genetic resources and GWAS of leaf size using SNP developed by genotyping-by-sequencing. PeerJ8, e8572.

Peakall R, Smouse P E. 2006. GENALEX 6: Genetic analysis in Excel. Population genetic software for teaching and research. Molecular Ecology Notes6, 288–295.

Qiao T T, Ma C L, Zhou Y H, Yao M, Liu R, Chen L. 2010. EST-SSR genetic diversity and population structure of tea landraces and developed cultivars (lines) in Zhejiang Province, China. Acta Agronomica Sinica36, 744–753.(in Chinese)

Su H, Wu W, Wan X, Ning J. 2019. Discriminating geographical origins of green tea based on amino acid, polyphenol, and caffeine content through high-performance liquid chromatography: Taking Lu’an guapian tea as an example. Plant Foods for Human Nutrition7, 2167–2175.

Tai Y L, Wei C L, Yang H, Zhang L, Chen Q, Deng W W, Wei S, Zhang J, Fang C B, Ho C T, Wan X C. 2015. Transcriptomic and phytochemical analysis of the biosynthesis of characteristic constituents in tea (Camellia sinensis) compared with oil tea (Camellia oleifera). BMC Plant Biology15, 190.

Tamura K, Nei M, Kumar S. 2007. MEGA4: Molecular evolutionary genetics analysis (MEGA) software version 4.0. Molecular Biology and Evolution24, 1596–1599.

Tan L Q, Peng M, Xu L Y, Wang L Y, Chen S X, Zou Y, Qi G N, Cheng H. 2015. Fingerprinting 128 Chinese clonal tea cultivars using SSR markers provides new insights into their pedigree relationships. Tree Genetics & Genomes11, 90.

Taniguchi F, Kimura K, Saba T, Ogino A, Yamaguchi S, Tanaka J. 2014. Worldwide core collections of tea (Camellia sinensis) based on SSR markers. Tree Genetics & Genomes10, 1555–1565.

Thachuk C, Crossa J, Franco J, Dreisigacker S, Warburton M, Davenport G F. 2009. Core Hunter: An algorithm for sampling genetic resources based on multiple genetic measures. BMC Bioinformatics10, 243.

Wang R J, Gao X F, Kong X R, Yang J. 2016. An efficient identification strategy of clonal tea cultivars using long-core motif SSR markers. Springerplus5, 1152.

Xia E, Tong W, Hou Y, An Y L, Chen L L, Wu Q, Liu Y L, Yu J, Li F D, Li R P, Li P H, Zhao H J, Ge R H, Huang J, Mallano A I, Zhang Y R, Liu S R, Deng W W, Song C K, Zhang Z L, et al. 2020. The reference genome of tea plant and resequencing of 81 diverse accessions provide insights into its genome evolution and adaptation. Molecular Plant13, 1013–1026.

Yang G, Zhou D, Wan R, Wang C, Xie J, Ma C, Li Y. 2022. HPLC and high-throughput sequencing revealed higher tea-leaves quality, soil fertility and microbial community diversity in ancient tea plantations: Compared with modern tea plantations. BMC Plant Biology22, 239.

Yao M Z, Ma C L, Qiao T T, Jin J Q, Chen L. 2012. Diversity distribution and population structure of tea germplasms in China revealed by EST-SSR markers. Tree Genetics & Genomes8, 205–220.

Zhang Y, Zhang X, Chen X, Sun W, Li J. 2018. Genetic diversity and structure of tea plant in Qinba area in China by three types of molecular markers. Hereditas155, 22.

Zhao Y, Wang R, Liu Q, Dong X, Zhao D G. 2021. Genetic diversity of ancient Camellia sinensis (L.) O. Kuntze in Sandu County of Guizhou Province in China. Diversity13, 276.

Zhou Q, Mu K M, Ni Z X, Liu X H, Li Y G, Xu L A. 2020. Analysis of genetic diversity of ancient Ginkgo populations using SSR markers. Industrial Crops and Products145, 111942.

Zhu J X, Zhang H X, Huang K L, Guo R, Zhao J J, Xie H, Zhu J Y, Gu H L, Chen H R, Li G Q, Wei C L, Liu S R. 2023. Comprehensive analysis of the laccase gene family in tea plant highlights its roles in development and stress responses. BMC Plant Biology, 23, 129.

[1] Wenting Li, Chaoqun Gao, Zhao Cai, Sensen Yan, Yanru Lei, Mengya Wei, Guirong Sun, Yadong Tian, Kejun Wang, Xiangtao Kang.

Assessing the conservation impact of Chinese indigenous chicken populations between ex-situ and in-situ using genome-wide SNPs [J]. >Journal of Integrative Agriculture, 2024, 23(3): 975-987.

[2] ZHANG Ying, CAO Yu-fen, HUO Hong-liang, XU Jia-yu, TIAN Lu-ming, DONG Xing-guang, QI Dan, LIU Chao. An assessment of the genetic diversity of pear (Pyrus L.) germplasm resources based on the fruit phenotypic traits[J]. >Journal of Integrative Agriculture, 2022, 21(8): 2275-2290.
[3] NIE Xing-hua, WANG Ze-hua, LIU Ning-wei, SONG Li, YAN Bo-qian, XING Yu, ZHANG Qing, FANG Ke-feng, ZHAO Yong-lian, CHEN Xin, WANG Guang-peng, QIN Ling, CAO Qing-qin. Fingerprinting 146 Chinese chestnut (Castanea mollissima Blume) accessions and selecting a core collection using SSR markers[J]. >Journal of Integrative Agriculture, 2021, 20(5): 1277-1286.
[4] ZHU Hong, ZHOU Yuan-yuan, ZHAI Hong, HE Shao-zhen, ZHAO Ning, LIU Qing-chang. Transcriptome profiling reveals insights into the molecular mechanism of drought tolerance in sweetpotato[J]. >Journal of Integrative Agriculture, 2019, 18(1): 9-24.
[5] LI Ming-na, LONG Rui-cai, FENG Zi-rong, LIU Feng-qi, SUN Yan, ZHANG Kun, KANG Jun-mei, WANG Zhen, CAO Shi-hao. Transcriptome analysis of salt-responsive genes and SSR marker exploration in Carex rigescens using RNA-seq[J]. >Journal of Integrative Agriculture, 2018, 17(01): 184-196.
[6] Kiflom Weldu Okubazghi, LI Xiao-na, CAI Xiao-yan, WANG Xing-xing, CHEN Hao-dong, ZHOU Zhong-li, WANG Chun-ying, WANG Yu-hong, LIU Fang, WANG Kun-bo. Genome-wide assessment of genetic diversity and fiber quality traits characterization in Gossypium hirsutum races[J]. >Journal of Integrative Agriculture, 2017, 16(11): 2402-2412.
No Suggested Reading articles found!