Please wait a minute...
Journal of Integrative Agriculture  2023, Vol. 22 Issue (12): 3731-3743    DOI: 10.1016/j.jia.2023.06.002
Plant Protection Advanced Online Publication | Current Issue | Archive | Adv Search |
Thelytokous Diglyphus wani: A more promising biological control agent against agromyzid leafminers than its arrhenotokous counterpart
DU Su-jie1, YE Fu-yu1, XU Shi-yun1, 2, WAN Wei-jie1, GUO Jian-yang1#, YANG Nian-wan13#, LIU Wan-xue1#
1 State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, P.R.China
2 College of Life Sciences, Hunan Normal University, Changsha 410081, P.R.China
3 Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji 831100, P.R.China
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

万氏潜蝇姬小蜂(膜翅目:姬小蜂科)是潜叶蝇上的优势寄生蜂,该蜂具有两性生殖(交配且受精时产生雌蜂,未受精时产生雄蜂)和孤雌产雌生殖(雌蜂不需要与雄蜂交配而持续产生二倍体雌性后代,且其后代一般全部或主要由雌蜂组成)。作为田间的优势控害力量,研究比较两种品系的生物学特性差异是非常必要的。在本研究中,我们比较评价了两种品系的生命表参数和寄主致死率参数。结果表明,孤雌品系在生命表参数上优于两性品系。孤雌品系表现出更高的繁殖力、净增殖率、周限增长率和内禀增长率。而且,孤雌品系的净寄生致死率、净取食致死、净叮蛰致死率和净总致死率均高于两性品系。因此,孤雌品系的种群增长速度更快,控害潜力更强。综上所述,与两性品系相比,孤雌品系在防控潜叶蝇害虫上更具应用前景。此外,由于孤雌品系无需与雄蜂交配和仅产雌蜂降低了饲养成本故建议在未来的生物防治应用中应优先考虑释放和推广应用孤雌品系



Abstract  

Diglyphus wani (Hymenoptera: Eulophidae) is a dominant parasitoid that attacks agromyzid leafminers.  Two reproductive types occur in Dwani: arrhenotoky (in which virgin females produce only male offspring; and virgin females mate with males to produce bisexual offspring) and thelytoky (in which virgin females produce female offspring).  As a potential biological control agent, exploring the differences in the relevant biological parameters of both strains is necessary.  In this study, comparisons between the two strains of Dwani were performed by evaluating the life table and host-killing rate.  The thelytokous strain exhibited significantly better life table parameters than its arrhenotokous counterpart.  Higher values for the intrinsic rate of increase, finite rate of increase, net reproductive rate, and fecundity were found in the thelytokous strain.  The thelytokous strain also performed better than the arrhenotokous strain in terms of net parasitism, host-feeding, host-stinging, and total host-killing rates.  Thus, populations of the thelytokous strain could grow fast and kill more hosts.  In conclusion, the thelytokous strain of Dwani may be the more promising biological agent against agromyzid leafminers compared to its arrhenotokous counterpart.  Also, since the thelytokous strain of Dwani is only known to produce females, it should be given priority in future biocontrol applications owing to the cost savings of breeding only females.

Keywords:  parasitoid       life table        arrhenotoky        thelytoky        biocontrol applications  
Received: 22 December 2022   Accepted: 16 March 2023
Fund: 

This study was supported by the National Natural Science Foundation of China (31972344 and 31772236), the National Key R&D Program of China (2021YFC2600400) and the Science and Technology Innovation Program of Chinese Academy of Agricultural Sciences (caascx-2022-2025-IAS). 

About author:  DU Su-jie, E-mail: dsujie@126.com; #Correspondence GUO Jian-yang, E-mail: guojianyang@caas.cn; YANG Nian-wan, E-mail: yangnianwan@caas.cn; LIU Wan-xue, Tel: +86-10-82109572, E-mail: liuwanxue@caas.cn

Cite this article: 

DU Su-jie, YE Fu-yu, XU Shi-yun, WAN Wei-jie, GUO Jian-yang, YANG Nian-wan, LIU Wan-xue. 2023. Thelytokous Diglyphus wani: A more promising biological control agent against agromyzid leafminers than its arrhenotokous counterpart. Journal of Integrative Agriculture, 22(12): 3731-3743.

Ameri M, Rasekh A, Mohammadi Z. 2015. A comparison of life history traits of sexual and asexual strains of the parasitoid wasp, Lysiphlebus fabarum (Braconidae: Aphidiinae). Ecological Entomology40, 50–61.

Bernardo U, Pedata P A, Viggiani G. 2006. Life history of Pnigalio soemius (Walker) (Hymenoptera: Eulophidae) and its impact on a leafminer host through parasitization, destructive host-feeding and host-stinging behavior. Biological Control37, 98–107.

Beukeboom L W, Pijnacker L P. 2000. Automictic parthenogenesis in the parasitoid Venturia canescens (Hymenoptera: Ichneumonidae) revisited. Genome43, 939–944.

Blacket M J, Rice A D, Semeraro L, Malipatil M B. 2015. DNA-based identifications reveal multiple introductions of the vegetable leafminer Liriomyza sativae (Diptera: Agromyzidae) into the Torres Strait Islands and Papua New Guinea. Bulletin of Entomological Research105, 533–544.

Cheng X Q, Cao F Q, Zhang Y B, Guo, J Y, Wan F H, Liu W X. 2017. Life history and life table of the host-feeding parasitoid Hemiptarsenus varicornis (Hymenoptera: Eulophidae). Applied Entomology and Zoology52, 287–293.

Chi H. 1988. Life-table analysis incorporating both sexes and variable development rates among individuals. Environmental Entomology17, 26–34.

Chi H. 2022a. CONSUME-MSChart: A computer program for consumption rate analysis based on the age stage, two-sex life table analysis. National Chung Hsing University, Taiwan of China. [2022-11-10]. http://140.120.197.173/Ecology/Download/CONSUME-MSChart-exe.rar

Chi H. 2022b. TIMING-MSChart: A computer program for the population projection based on age-stage, two-sex life table. National Chung Hsing University, Taiwan of China. [2022-11-10]. http://140.120.197.173/Ecology/Download/Timing-MSChart.rar

Chi H. 2022c. TWOSEX-MSChart: A computer program for the age-stage, two-sex life table analysis. National Chung Hsing University, Taiwan of China. [2022-11-10]. http://140.120.197.173/Ecology/Download/Twosex-MSChart-exe-B100000.rar

Chi H, Huang Y B, Allahyari H, Yu J Z, Mou D F, Yang T C, Farhadi R, Gholizadeh M. 2011. Finite predation rate: A novel parameter for the quantitative measurement of predation potential of predator at population level. In: Nature Precedings. [2022-12-20]. https://www.nature.com/articles/npre.2011.6651.1

Chi H, Liu H. 1985. Two new methods for the study of insect population ecology. Bulletin of the Institute of Zoology24, 225–240.

Chi H, Yang T C. 2003. Two-sex life table and predation rate of Propylaea japonica Thunberg (Coleoptera: Coccinellidae) fed on Myzus persicae (Sulzer) (Homoptera: Aphididae). Environmental Entomology32, 327–333.

Chi H, You M, Atlihan R, Smith C L, Kavousi A, Özgökçe M S, Tuan S J, Fu J W, Xu Y Y, Zheng F Q, Ye B H, Chu D, Yu Y, Gharekhani G, Saska P, Gotoh T, Ines Schneider M, Bussaman P, Gokce A, Liu T X. 2020. Age-stage, two-sex life table: An introduction to theory, data analysis, and application. Entomologia Generalis40, 103–124.

Du S J, Ye F Y, Wang Q J, Liang Y X, Wan W F, Guo J Y, Liu W X. 2022. Multiple data demonstrate that bacteria regulating reproduction could be not the cause for the thelytoky of Diglyphus wani (Hymenoptera: Eulophidae). Insects13, 9.

Du S J, Yefremova Z, Ye F Y, Zhu C D, Guo J Y, Liu W X. 2021. Morphological and molecular identification of arrhenotokous strain of Diglyphus wani (Hymenoptera, Eulophidae) found in China as a control agent against agromyzid leafminers. Zookeys1071, 109–126.

Farahani H K, Ashouri A, Goldansaz S H, Farrokhi S, Ainouche A, van Baaren J. 2015. Does Wolbachia infection affect decision-making in a parasitic wasp? Entomologia Experimentalis et Applicata155, 102–116.

Gitonga Z M, Chabi-Olaye A, Mithöfer D, Okello J J, Ritho C N. 2010. Control of invasive Liriomyza leafminer species and compliance with food safety standards by small scale snow pea farmers in Kenya. Crop Protection29, 1472–1477.

Goodman D. 1982. Optimal life histories, optimal notation, and the value of reproductive value. The American Naturalist119, 803–823.

Heimpel G E, de Boer J G. 2008. Sex determination in the Hymenoptera. Annual Review of Entomology53, 209–230.

Hernández R, Harris M, Liu T X. 2011. Impact of insecticides on parasitoids of the leafminer, Liriomyza trifolii, in pepper in south Texas. Journal of Insect Science11, 61.

Hohmann C L, Luck R F, Stouthamer R. 2001. Effect of Wolbachia on the survival and reproduction of Trichogramma kaykai Pinto Stouthamer (Hymenoptera: Trichogrammatidae). Neotropical Entomology30, 607–612.

Huigens M E, Hohmann C L, Luck R F, Gort G, Stouthamer R. 2004. Reduced competitive ability due to Wolbachia infection in the parasitoid wasp Trichogramma kaykaiEntomologia Experimentalis Et Applicata110, 115–123.

Jervis M A, Kidd N A C. 1986. Host-feeding strategies in hymenopteran parasitoids. Biological Reviews61, 395–434.

Kang L, Chen B, Wei J N, Liu T X. 2009. Roles of thermal adaptation and chemical ecology in Liriomyza distribution and control. Annual Review of Entomology54, 127–145.

van der Kooi C J, Matthey-Doret C, Schwander T. 2017. Evolution and comparative ecology of parthenogenesis in haplodiploid arthropods. Evolution Letters1, 304–316.

Liu W X, Wang W X, Zhang Y B, Wang W, Lu S L, Wan F H. 2015. Adult diet affects the life history and host-killing behavior of a host-feeding parasitoid. Biological Control81, 58–64.

Maharjan R, Oh H W, Jung C. 2014. Morphological and genetic characteristics of Liriomyza huidobrensis (Blanchard) (Diptera: Agromyzidae) infesting potato crops in Korea. Journal of Asia-Pacific Entomology17, 281–286.

Miura K, Tagami Y. 2004. Comparison of life history characters of arrhenotokous and Wolbachia-associated thelytokous Trichogramma kaykai Pinto and Stouthamer (Hymenoptera: Trichogrammatidae). Annals of the Entomological Society of America97, 765–769.

Parrella M P. 1987. Biology of LiriomyzaAnnual Review of Entomology32, 201–224.

Pelosse P, Amat I, Bernstein C, Desouhant E. 2010. The dynamics of energy allocation in adult arrhenotokous and thelytokous Venturia canescensEntomologia Experimentalis et Applicata135, 68–76.

Pelosse P, Bernstein C, Desouhant E. 2007. Differential energy allocation as an adaptation to different habitats in the parasitic wasp Venturia canescensEvolutionary Ecology21, 669–685.

Prabhulinga T, Jalali S, Kumar K, Doddabasappa B. 2016. Biological characteristics of arrhenotokous and thelytokous Trichogramma pretiosum Riley. In: Arthropod Diversity and Conservation in the Tropics and Sub-tropics. Springer, Singapore. pp. 327–333.

Pratt C F, Constantine K L, Murphy S T. 2017. Economic impacts of invasive alien species on African smallholder livelihoods. Global Food Security-Agriculture Policy Economics and Environment14, 31–37.

Rahimi-Kaldeh S, Ashouri A, Bandani A. 2017. Long-term storage of sexual and asexual Trichogramma brassicae (Hymenoptera: Trichogrammatidae). Biocontrol Science and Technology27, 1339–1347.

Ramirez-Romero R, Sivinski J, Copeland C, Aluja M. 2012. Are individuals from thelytokous and arrhenotokous populations equally adept as biocontrol agents? Orientation and host searching behavior of a fruit fly parasitoid. BioControl57, 427–440.

Ramos Aguila L C, Atlihan R, Ashraf H J, Keppanan R, Lei L, Bamisile B S, Cerda H, Wang L. 2021. Temperature-dependent biological control effectiveness of Tamarixia radiata (Hymenoptera: Eulophidea) under laboratory conditions. Journal of Economic Entomology114, 2009–2017.

Ridland P M, Umina P A, Pirtle E I, Hoffmann A A. 2020. Potential for biological control of the vegetable leafminer, Liriomyza sativae (Diptera: Agromyzidae), in Australia with parasitoid wasps. Austral Entomology59, 16–36.

Roopa G R, Jalali S K, Nagaraja H, Lalitha Y. 2009. Life table studies on thelytokous and antibiotically cured trichogrammatids. Annals of Plant Protection Sciences17, 362–365.

Schneider M, Gimenez B, Driessen G, Van Alphen J. 2001. Longevity in sexual and parthenogenetic Venturia canescens (Hymenoptera). Proceedings of the Section Experimental and Applied Entomology Netherlands Entomological Society12, 37–39.

Spencer K A. 1973. Agromyzidae (Diptera) of Economic Importance. Series Entomologica (Junk, The Hague). vol. 9.
Springer, Berlin, pp. 1–405.

Stouthamer R. 1993. The use of sexual versus asexual wasps in biological control. Entomophaga38, 3–6.

Stouthamer R. 2003. The use of unisexual wasps in biological control. In: Quality Control and Production af Biological Control AgentsTheory and Testing Procedures. CAB International, UK. pp. 93–113.

Stouthamer R, Luck R F, Hamilton W D. 1990. Antibiotics cause parthenogenetic Trichogramma (Hymenoptera/Trichogrammatidae) to revert to sex. Proceedings of the National Academy of Sciences of the United States of America87, 2424–2427.

Tagami Y, Miura K, Stouthamer R. 2001. How does infection with parthenogenesis-inducing Wolbachia reduce the fitness of TrichogrammaJournal of Invertebrate Pathology78, 267–271.

Tsutsui Y, Maeto K, Hamaguchi K, Isaki Y, Takami Y, Naito T, Miura K. 2014. Apomictic parthenogenesis in a parasitoid wasp Meteorus pulchricornis, uncommon in the haplodiploid order Hymenoptera. Bulletin of Entomological Research104, 307–313.

Xiao Z T, Tao X B, Xu X, Zhu C Y, Nian X G, Han D L, Wang D, He Y R. 2021. A comparative study on the biological characteristics of parthenogenetic and bisexual restored Trichogramma pretiosum lines. Journal of Economic Entomology114, 2355–2360.

Xuan J L, Xiao Y, Ye F Y, Zhang Y B, Tao S X, Guo J Y, Liu W X. 2022. High temperatures do not decrease biocontrol potential for the host-killing parasitoid Neochrysocharis formosa (Hymenoptera: Eulophidae) on agromyzid leafminers. Journal of Integrative Agriculture21, 1722–1730.

Ye F Y, Yang Y M, Zhang Y B, Pan L T, Yefremova Z, Yang L Y, Guo J Y, Liu W X. 2023. The thelytokous strain of the parasitoid Neochrysocharis formosa outperforms the arrhenotokous strain in reproductive capacity and biological control of agromyzid leafminers. Pest Management Science79, 729–774.

Ye F Y, Zhu C D, Yefremova Z, Liu W X, Guo J Y, Wan F H. 2018. Life history and biocontrol potential of the first female-producing parthenogenetic species of Diglyphus (Hymenoptera: Eulophidae) against agromyzid leafminers. Scientific Reports8, 3222.

Yu J Z, Chi H, Chen B H. 2005. Life table and predation of Lemnia biplagiata (Coleoptera: Coccinellidae) fed on Aphis gossypii (Homoptera: Aphididae) with a proof on relationship among gross reproduction rate, net reproduction rate, and preadult survivorship. Annals of the Entomological Society of America98, 475–482.

Yu J Z, Chi H, Chen B H. 2013. Comparison of the life tables and predation rates of Harmonia dimidiata (F.) (Coleoptera: Coccinellidae) fed on Aphis gossypii Glover (Hemiptera: Aphididae) at different temperatures. Biological Control64, 1–9.

Zhang Y B. Lu S L, Liu W X, Wang W X, Wang W, Wan F H. 2014. Comparing immature development and life history traits in two coexisting host-feeding parasitoids, Diglyphus isaea and Neochrysocharis formosa (Hymenoptera: Eulophidae). Journal of Integrative Agriculture13, 2690–2700.

Zhang Y B, Tian X C, Wang H, Casteňé C, Arnó J, Collatz J, Romeis J, Wu S R, Xian X Q, Liu W X, Wan F H, Zhang G F. 2022. Host selection behavior of the host-feeding parasitoid Necremnus tutae on Tuta absolutaEntomologia Generalis42, 445–456.

Zhao Y, Zhao C L, Yang X, Chi H, Dai P, Desneux N, Benelli G, Zang L S. 2021. Yacon as an alternative host plant for Encarsia formosa mass-rearing: validating a multinomial theorem for bootstrap technique in life table research. Pest Management Science77, 2324–2336.

[1] Yanfei Song, Tai’an Tian, Yichai Chen, Keshi Zhang, Maofa Yang, Jianfeng Liu. A mite parasitoid, Pyemotes zhonghuajia, negatively impacts the fitness traits and immune response of the fall armyworm, Spodoptera frugiperda[J]. >Journal of Integrative Agriculture, 2024, 23(1): 205-216.
[2] XUAN Jing-li, XIAO Yue, YE Fu-yu, ZHANG Yi-bo, TAO Shu-xia, GUO Jian-yang, LIU Wan-xue. High temperatures do not decrease biocontrol potential for the host-killing parasitoid Neochrysocharis formosa (Hymenoptera: Eulophidae) on agromyzid leafminers[J]. >Journal of Integrative Agriculture, 2022, 21(6): 1722-1730.
[3] HUANG Xiao-long, JIANG Ting, WU Zhen-ping, ZHANG Wan-na, XIAO Hai-jun . Overwintering parasitism is positively associated with population density in diapausing larvae of Chilo suppressalis[J]. >Journal of Integrative Agriculture, 2020, 19(3): 785-792.
[4] ZHENG Ya-qiang, ZHANG Li-min, CHEN Bin, YAN Nai-sheng, GUI Fu-rong, ZAN Qing-an, DU Guang-zu, HE Shu-qi, LI Zheng-yue, GAO Yu-lin, XIAO Guan-li.
Potato/Maize intercropping reduces infestation of potato tuber moth, Phthorimaea operculella (Zeller) by the enhancement of natural enemies
[J]. >Journal of Integrative Agriculture, 2020, 19(2): 394-405.
[5] WANG Zhi-zhi, LIU Yin-quan, SHI Min, HUANG Jian-hua, CHEN Xue-xin. Parasitoid wasps as effective biological control agents[J]. >Journal of Integrative Agriculture, 2019, 18(4): 705-715.
[6] ZHANG Yi-bo, LU Shu-long, LIU Wan-xue, WANG Wen-xia, WANG Wei , WAN Fang-hao. Comparing Immature Development and Life History Traits in Two Coexisting Host-Feeding Parasitoids, Diglyphus isaea and Neochrysocharis formosa (Hymenoptera: Eulophidae)[J]. >Journal of Integrative Agriculture, 2014, 13(12): 2690-2700.
No Suggested Reading articles found!