Please wait a minute...
Journal of Integrative Agriculture  2024, Vol. 23 Issue (02): 724-730    DOI: 10.1016/j.jia.2023.05.001
Short Communication Advanced Online Publication | Current Issue | Archive | Adv Search |

Targeted mutations of BnPAP2 lead to a yellow seed coat in Brassica napus L.

Wei Huang1, 2, Ruyu Jiao2, Hongtao Cheng3, Shengli Cai3, Jia Liu3, Qiong Hu3, Lili Liu1, Bao Li1, Tonghua Wang1, Mei Li1, Dawei Zhang2#, Mingli Yan1, 2#

1 Hunan Research Center of Heterosis Utilization in Rapeseed/Crop Research Institute, Hunan Academy of Agricultural Sciences,     Changsha 410125, China

2 Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization/School of Life and Health Science, Hunan    University of Science and Technology, Xiangtan 411201, China

3 Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs/Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

黄籽性状因其提高甘蓝型油菜种子质量和商业价值而广受育种家的青睐。在本研究中,我们利用CRISPR/Cas9系统敲除了甘蓝型油菜BnPAP2基因的两个同源拷贝,创制了黄籽突变体。种皮组织化学染色表明,在pap2双突变体中原花青素的积累显著减少,其重要集中在种皮的内皮层和栅栏层细胞。转录组学和代谢分析表明,BnPAP2基因的敲除可以降低苯丙烷和类黄酮生物合成途径中结构和调节基因的表达。这些基因的广泛抑制表达可能会阻碍原花青素在种子发育过程中的积累,从而导致甘蓝型油菜出现黄籽性状上述研究结果表明BnPAP2可能在原花青素的调控网络中发挥着重要作用。



Abstract  The yellow seed trait is preferred by breeders for its potential to improve the seed quality and commercial value of Brassica napus.  In the present study, we produced yellow seed mutants using a CRISPR/Cas9 system when the two BnPAP2 homologs were knocked out.  Histochemical staining of the seed coat demonstrated that proanthocyanidin accumulation was significantly reduced in the pap2 double mutants and decreased specifically in the endothelial and palisade layer cells of the seed coat.  Transcriptomic and metabolite profiling analysis suggested that disruption of the BnPAP2 genes could reduce the expression of structural and regulated genes in the phenylpropanoid and flavonoid biosynthetic pathways.  The broad suppression of these genes might hinder proanthocyanidin accumulation during seed development, and thereby causing the yellow seed trait in Bnapus.  These results indicate that BnPAP2 might play a vital role in the regulatory network controlling proanthocyanidin accumulation.
Keywords:  yellow seed        BnPAP2        proanthocyanidins        CRISPR/Cas9   
Received: 13 January 2023   Accepted: 07 April 2023
Fund: This work was supported by the National Natural Science Foundation of China (31971980, U19A2029), The science and technology innovation Program of Hunan Province, China (2023RC1077), the Agricultural Science and Technology Innovation Foundation of Hunan, China (2022CX55), and the Scientific Research Fund of Hunan Provincial Science and Technology Department, China (2021JC0007).
About author:  Wei Huang, E-mail: 2646213662@qq.com; #Correspondence Dawei Zhang, Mobile: +86-19173213360, E-mail: zhangdawei@hnust.edu.cn; Mingli Yan, Tel: +86-731-84691287, E-mail: ymljack@126.com

Cite this article: 

Wei Huang, Ruyu Jiao, Hongtao Cheng, Shengli Cai, Jia Liu, Qiong Hu, Lili Liu, Bao Li, Tonghua Wang, Mei Li, Dawei Zhang, Mingli Yan. 2024.

Targeted mutations of BnPAP2 lead to a yellow seed coat in Brassica napus L. . Journal of Integrative Agriculture, 23(02): 724-730.

Chao H, Guo L, Zhao W, Li H, Li M. 2022. A major yellow-seed QTL on chromosome A09 significantly increases the oil content and reduces the fiber content of seed in Brassica napus. Theoretical and Applied Genetics, 135, 1293–1305.

Cheng H, Hao M, Ding B, Mei D, Wang W, Wang H, Zhou R, Liu J, Li C, Hu Q. 2021. Base editing with high efficiency in allotetraploid oilseed rape by A3A-PBE system. Plant Biotechnology Journal, 19, 87–97.

Fu H, Chao H, Zhao X, Wang H, Li H, Zhao W, Sun T, Li M, Huang J. 2022. Anthocyanins identification and transcriptional regulation of anthocyanin biosynthesis in purple Brassica napus. Plant Molecular Biology, 110, 53–68.

Fu W, Chen D, Pan Q, Li F, Zhao Z, Ge X, Li Z. 2018. Production of red-flowered oilseed rape via the ectopic expression of Orychophragmus violaceus OvPAP2. Plant Biotechnology Journal, 16, 367–380.

He D, Zhang D, Li T, Liu L, Zhou D, Kang L, Wu J, Liu Z, Yan M. 2021. Whole-genome identification and comparative expression analysis of anthocyanin biosynthetic genes in Brassica napus. Frontiers in Genetics, 12, 764835.

Hong M, Hu K, Tian T, Li X, Chen L, Zhang Y, Yi B, Wen J, Ma C, Shen J, Fu T D, Tu J. 2017. Transcriptomic analysis of seed coats in yellow-seeded Brassica napus reveals novel genes that influence proanthocyanidin biosynthesis. Frontiers in Plant Science, 8, 1674.

Hu Q, Hua W, Yin Y, Zhang X, Liu L, Shi J, Zhao Y, Qin L, Chen C, Wang H. 2017. Rapeseed research and production in China. The Crop Journal, 5, 127–135.

Hu R, Zhu M, Chen S, Li C, Zhang Q, Gao L, Liu X, Shen S, Fu F, Xu X, Liang Y, Liu L, Lu K, Yu H, Li J, Qu C. 2022. BnbHLH92a negatively regulates anthocyanin and proanthocyanidin biosynthesis in Brassica napus. The Crop Journal, 11, 374–385.

Lepiniec L, Debeaujon I, Routaboul J, Baudry A, Pourcel L, Nesi N, Caboche M. 2006. Genetics and biochemistry of seed flavonoids. Annual Review of Plant Biology, 57, 405–430.

Liu H, Ding Y, Zhou Y, Jin W, Xie K, Chen L. 2017. CRISPR-P 2.0: An improved CRISPR-Cas9 tool for genome editing in plants. Molecular Plant, 10, 530–532.

Liu L, Huang T, Ding S, Wang Y, Yan M. 2017. BANYULS genes from Brassica juncea and Brassica nigra: cloning, evolution and involvement in seed coat colour. The Journal of Agricultural Science, 155, 421–430.

Padmaja L, Agarwal P, Gupta V, Mukhopadhyay A, Sodhi Y, Pental D, Pradhan A. 2013. Natural mutations in two homoeologous TT8 genes control yellow seed coat trait in allotetraploid Brassica juncea (AABB). Theoretical and Applied Genetics, 127, 339–347.

Qu C, Fu F, Lu K, Zhang K, Wang R, Xu X, Wang M, Lu J, Wan H, Zhang L, Li J. 2013. Differential accumulation of phenolic compounds and expression of related genes in black- and yellow-seeded Brassica napus. Journal of Experimental Botany, 64, 2885–2898.

Rong H, Yang W, Xie T, Wang Y, Wang X, Jiang J, Wang Y. 2022. Transcriptional profiling between yellow- and black-seeded Brassica napus reveals molecular modulations on flavonoid and fatty acid content. Journal of Integrative Agriculture, 21, 2211–2226.

Xie T, Chen X, Guo T, Rong H, Chen Z, Sun Q, Batley J, Jiang J, Wang Y. 2020. Targeted knockout of BnTT2 homologues for yellow-seeded Brassica napus with reduced flavonoids and improved fatty acid composition. Journal of Agricultural and Food Chemistry, 68, 5676–5690.

Xu W, Dubos C, Lepiniec L. 2015. Transcriptional control of flavonoid biosynthesis by MYB-Bhlh-WDR complexes. Trends in Plant Science, 20, 176–185.

Xu W, Grain D, Bobet S, le Gourrierec J, Thévenin J, Kelemen Z, Lepiniec L, Dubos C. 2014. Complexity and robustness of the flavonoid transcriptional regulatory network revealed by comprehensive analyses of MYB-Bhlh-WDR complexes and their targets in Arabidopsis seed. New Phytologist, 202, 132–144.

Yan M, Liu X, Guan C, Chen X, Liu Z. 2011. Cloning and expression analysis of an anthocyanidin synthase gene homolog from Brassica juncea. Molecular Breeding, 28, 313–322.

Ye S, Hua S, Ma T, Ma X, Chen Y, Wu L, Zhao L, Yi B, Ma C, Tu J, Shen J, Fu T, Wen J. 2022. Genetic and multi-omics analyses reveal BnaA07.PAP2 In–184–317 as the key gene conferring anthocyanin-based color in Brassica napus flowers. Journal of Experimental Botany, 73, 6630–6645.

Zhai Y, Yu K, Cai S, Hu L, Amoo O, Xu L, Yang Y, Ma B, Jiao Y, Zhang C, Muhammad H, Shahid U, Fan C, Zhou Y. 2020. Targeted mutagenesis of BnTT8 homologs controls yellow seed coat development for effective oil production in Brassica napus L. Plant Biotechnology Journal, 18, 1153–1168.

Zhang D, Liu L, Zhou D, Liu X, Liu Z, Yan M. 2020. Genome-wide identification and expression analysis of anthocyanin biosynthetic genes in Brassica juncea. Journal of Integrative Agriculture, 19, 1250–1260.

Zhang Y, Zhang H, Zhao H, Xia Y, Zheng X, Fan R, Tan Z, Duan C, Fu Y, Li L, Ye J, Tang S, Hu H, Xie W, Yao X, Guo L. 2022. Multi-omics analysis dissects the genetic architecture of seed coat content in Brassica napus. Genome Biology, 23, 86.

Zhao H, Shang G, Yin N, Chen S, Shen S, Jiang H, Tang Y, Sun F, Zhao Y, Niu Y, Zhao Z, Xu L, Lu K, Du D, Qu C, Li J. 2022. Multi-omics analysis reveals the mechanism of seed coat color formation in Brassica rapa L. Theoretical and Applied Genetics, 135, 2083–2099.

Zhu M, Hu R, Zhao H, Tang Y, Shi X, Jiang H, Zhang Z, Fu F, Xu X, Tang Z, Liu L, Lu K, Li J, Qu C. 2021. Identification of quantitative trait loci and candidate genes controlling seed pigments of rapeseed. Journal of Integrative Agriculture, 20, 2862–2879. 
[1] OUYANG Chun-zheng, YE Fan, WU Qing-jun, WANG Shao-li, Neil CRICKMORE, ZHOU Xu-guo, GUO Zhao-jiang, ZHANG You-jun. CRISPR/Cas9-based functional characterization of PxABCB1 reveals its roles in the resistance of Plutella xylostella (L.) to Cry1Ac, abamectin and emamectin benzoate[J]. >Journal of Integrative Agriculture, 2023, 22(10): 3090-3102.
[2] JIANG Mao-cheng, HU Zi-xuan, WANG Ke-xin, YANG Tian-yu, LIN Miao, ZHAN Kang, ZHAO Guo-qi. CRISPR/Cas9-mediated knockout of SLC15A4 gene involved in the immune response in bovine rumen epithelial cells[J]. >Journal of Integrative Agriculture, 2023, 22(10): 3148-3158.
[3] JIN Ming-hui, TAO Jia-hui, LI Qi, CHENG Ying, SUN Xiao-xu, WU Kong-ming, XIAO Yu-tao . Genome editing of the SfABCC2 gene confers resistance to Cry1F toxin from Bacillus thuringiensis in Spodoptera frugiperda[J]. >Journal of Integrative Agriculture, 2021, 20(3): 815-820.
[4] ZHANG Ting-ting, WEN Ting-mei, YUE Yang, YAN Qiang, DU Er-xia, FAN San-hong, Siegfried ROTH, LI Sheng, ZHANG Jian-zhen, ZHANG Xue-yao, ZHANG Min. Egg tanning improves the efficiency of CRISPR/Cas9-mediated mutant locust production by enhancing defense ability after microinjection[J]. >Journal of Integrative Agriculture, 2021, 20(10): 2716-2726.
[5] ZHANG Ru, ZHANG Zhong-jie, YU Ye, HUANG Yong-ping, QIAN Ai-rong, TAN An-jiang. Proboscipedia and Sex combs reduced are essential for embryonic labial palpus specification in Bombyx mori[J]. >Journal of Integrative Agriculture, 2020, 19(6): 1482-1491.
[6] YANG Chang-hong, ZHANG Yang, HUANG Chao-feng. Reduction in cadmium accumulation in japonica rice grains by CRISPR/Cas9-mediated editing of OsNRAMP5[J]. >Journal of Integrative Agriculture, 2019, 18(3): 688-697.
[7] LIU Hui, LIU Chang, ZHAO Yu-hang, HAN Xue-jie, ZHOU Zheng-wei, WANG Chen, LI Rong-feng, LI Xue-ling . Comparing successful gene knock-in efficiencies of CRISPR/Cas9 with ZFNs and TALENs gene editing systems in bovine and dairy goat fetal fibroblasts[J]. >Journal of Integrative Agriculture, 2018, 17(2): 406-414.
No Suggested Reading articles found!