Please wait a minute...
Journal of Integrative Agriculture  2022, Vol. 21 Issue (11): 3263-3277    DOI: 10.1016/j.jia.2022.08.002
Special Issue: 线虫合辑Nematology
Plant Protection Advanced Online Publication | Current Issue | Archive | Adv Search |
Potassium sulphate induces resistance of rice against the root-knot nematode Meloidogyne graminicola
LIU Mao-Yan1, 2, 3, PENG De-liang2, SU Wen1, XIANG Chao2, JIAN Jin-zhuo2, ZHAO Jie2, PENG Huan2, LIU Shi-ming2, KONG Ling-an2, DAI Liang-ying1, HUANG Wen-kun2, LIU Jing1

1 Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, College of Plant Protection, Hunan Agricultural University, Changsha 410128, P.R.China

2 State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, P.R.China

3 School of Agricultural Science, Xichang University, Xichang 615013, P.R.China

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      

钾(K)是一种重要的营养元素,可以提高作物的抗逆性/耐受性。K在抗植物寄生线虫中的应用表明,K处理可以减少线虫病的发生,提高作物产量。然而,K在水稻抗拟禾谷根结线虫(Meloidogyne graminicola)中的研究仍然缺乏。本研究首先用K2SO4直接处理线虫,发现K2SO4对线虫的死亡率、侵染率以及发育水平无显著影响;接着通过温室盆栽接种,发现0.5 mM K2SO4处理水稻后,根中的根结和线虫数量分别下降了57.2±4.4% 59.2±6.6%,成年雌虫比例(70.9±5.6%)显著低于对照(90.7±5.1%),同时幼虫比例(27.0±6.3%)显著高于对照(6.0±3.2%),而水稻的生长不受影响;统计Pluronic明胶中水稻根尖吸引的线虫数量,发现接种后6小时K2SO4处理与清水处理之间并无显著差异;对接种后7天根结中巨细胞的形态、大小和数量进行显微观察,发现两个处理间也不存在显著差异;接着检测根结中胼胝质沉积,发现K2SO4处理后其沉积面积增加了67.9%,同时其合成基因OsGSL1和降解基因OsGNS5分别显著上调和下调;另外检测H2O2累积发现,接种后824 小时K2SO4处理的根中H2O2含量分别增加了78.2% 118.7%,同时其合成基因OsRbohB也显著上调;再对水杨酸、茉莉酸、乙烯以及油菜素内酯等信号通路相关基因和病程相关蛋白基因的表达进行定量分析,发现在线虫侵染初期K2SO4处理显著上调了某些抗病相关基因的表达;最后对K通道基因OsAKT1和转运蛋白基因OsHAK5缺陷型植株进行接种,发现根结和线虫数量显著增加并且线虫的发育加快,同时K2SO4的作用降低。这些说明K2SO4通过激发基础防御反应提高了水稻对线虫的抗性,并且K通道和转运蛋白积极参与了寄主抗性。K及其通道和转运蛋白在寄主抗性中的应用,为进一步研究水稻抗线虫机制以及钾在植物抗生物胁迫中的功能奠定了基础。低钾能诱导水稻对拟禾谷根结线虫的抗性,为田间有效利用钾肥防控线虫病害提供了理论依据。


Potassium (K), an important nutrient element, can improve the stress resistance/tolerance of crops.  The application of K in resisting plant-parasitic nematodes shows that the K treatment can reduce the occurrence of nematode diseases and increase crop yield.  However, data on K2SO4 induced rice resistance against the root-knot nematode Meloidogyne graminicola are still lacking.  In this work, K2SO4 treatment reduced galls and nematodes in rice plants and delayed the development of nematodes.  Rather than affecting the attractiveness of roots to nematodes and the morphological phenotype of giant cells at feeding sites, such an effect is achieved by rapidly priming hydrogen peroxide (H2O2) accumulation and increasing callose deposition.  Meanwhile, galls and nematodes in rice roots were more in the potassium channel OsAKT1 and transporter OsHAK5 gene-deficient plants than in wild-type, while the K2SO4-induced resistance showed weaker in the defective plants.  In addition, during the process of nematode infection, the expression of jasmonic acid (JA)/ethylene (ET)/brassinolide (BR) signaling pathway-related genes and pathogenesis-related (PR) genes OsPR1a/OsPR1b was up-regulated in rice after K2SO4 treatment.  In conclusion, K2SO4 induced rice resistance against M. graminicola.  The mechanism of inducing resistance was to prime the basal defense and required the participation of the K+ channel and transporter in rice.  These laid a foundation for further study on the mechanism of rice defense against nematodes and the rational use of potassium fertilizer on improving rice resistance against nematodes in the field.

Keywords:  rice       Meloidogyne graminicola       potassium       induced resistance       H2O2       callose       potassium channel and transporter  
Received: 27 November 2021   Accepted: 07 May 2022

This work was supported by the Natural Science Foundation of China (32172382, 31801716, and 31571986), the National Key Research and Development Program of China (2021YFC2600404), and the Scientific Research Project of Hunan Provincial Department of Education of China (19B259).  

About author:  * Correspondence:;

Cite this article: 

LIU Mao-Yan, PENG De-liang, SU Wen, XIANG Chao, JIAN Jin-zhuo, ZHAO Jie, PENG Huan, LIU Shi-ming, KONG Ling-an, DAI Liang-ying, HUANG Wen-kun, LIU Jing. 2022. Potassium sulphate induces resistance of rice against the root-knot nematode Meloidogyne graminicola. Journal of Integrative Agriculture, 21(11): 3263-3277.

Agrawal G K, Rakwal R, Jwa N S, Agrawal V P. 2001. Signalling molecules and blast pathogen attack activates rice OsPR1a and OsPR1b genes: A model illustrating components participating during defence/stress response. Plant Physiology & Biochemistry, 39, 1095–1103.
Ali J G, Alborn H T, Stelinski L L. 2011. Constitutive and induced subterranean plant volatiles attract both entomopathogenic and plant parasitic nematodes. Journal of Ecology, 99, 26–35.
Baldacci-Cresp F, Chang C, Maucourt M, Deborde C, Hopkins J, Lecomte P, Bernillon S, Brouquisse R, Moing A, Abad P, Hérouart D, Puppo A, Favery B, Frendo P. 2012. (Homo) glutathione deficiency impairs root-knot nematode development in Medicago truncatula. PLoS Pathogens, 8, e1002471. 
Bellafiore S, Jougla C, Chapuis É, Besnard G, Suong M, Vu P N, De W D, Gantet P, Thi X N. 2015. Intraspecific variability of the facultative meiotic parthenogenetic root-knot nematode (Meloidogyne graminicola) from rice fields in Vietnam. Comptes Rendus Biologies, 338, 471–483. 
Bian C, Duan Y, Wang J, Xiu Q, Wang J, Hou Y, Song X, Zhou M. 2020. Validamycin A induces broad-spectrum resistance involving salicylic acid and jasmonic acid/ethylene signaling pathways. Molecular Plant–Microbe Interactions, 33, 1424–1437.
Bird D M. 1996. Manipulation of host gene expression by root-knot nematodes. Journal of Parasitology, 82, 881–888.
Brauer E K, Ahsan N, Dale R, Kato N, Coluccio A E, Piñeros M A, Kochian L V, Thelen J J, Popescu S C. 2016. The Raf-like kinase ILK1 and the high affinity K+ transporter HAK5 are required for innate immunity and abiotic stress response. Plant Physiology, 171, 1470–1484.
Castagnone-Sereno P. 2006. Genetic variability and adaptive evolution in parthenogenetic root-knot nematodes. Heredity, 96, 282–289.
Chen S Y, Dickson D W. 2000. A technique for determining live second-stage juveniles of Heterodera glycines. Journal of Nematology, 32, 117–121.
Cock J, Yoshida S, Forno D A. 1976. Routine procedures for growing rice plants in culture solution. In: Laboratory Manual for Physiological Studies of Rice. The International Rice Research Institute, Philippines. p. 62. 
Edreva A. 2005. Pathogenesis-related proteins: Research progress in the last 15 years. Bulgarian Journal of Plant Physiology, 31, 105–124.
El-Gendy A G, El-Gohary A E, Ome E A, Hendawy S F, Hussein M S, Petrova V, Stancheva I. 2015. Effect of nitrogen and potassium fertilizer on herbage and oil yield of chervil plant (Anthriscus cerefolium L.). Industrial Crops and Products, 69, 167–174.
El-Garhy H A, Rashid I A, Abou-Ali R M, Moustafa M M. 2016. Field application of safe chemical elicitors induced the expression of some resistance genes against grey mold and cottony rot diseases during snap bean pods storage. Gene, 576, 358–365.
Ellinger D, Naumann M, Falter C, Zwikowics C, Jamrow T, Manisseri C, Somerville S C, Voigt C A. 2013. Elevated early callose deposition results in complete penetration resistance to powdery mildew in Arabidopsis. Plant Physiology, 161, 1433–1444. 
Golden A M, Birchfield W. 1965. Meloidogyne graminicola (Heteroderidae) a new species of root-knot nematode from grass. Proceedings of the Helminthological Society of Washington, 32, 228–231.
Hawamda A I M, Zahoor A, Abbas A, Ali M A, Bohlmann H. 2020. The Arabidopsis RboHB encoded by At1g09090 is important for resistance against nematodes. International Journal of Molecular Sciences, 21, 5556.
Holzmueller E J, Jose S, Jenkins M A. 2007. Influence of calcium, potassium, and magnesium on Cornus florida L. density and resistance to dogwood anthracnose. Plant and Soil, 290, 189–199.
Htay C, Peng H, Huang W K, Kong L A, He W, Holgado R, Peng D L. 2016. The development and molecular characterization of a rapid detection method for rice root-knot nematode (Meloidogyne graminicola). European Journal of Plant Pathology, 146, 281–291.
Huang W K, Ji H L, Gheysen G, Godelieve G, Jane D, Tina K. 2015. Biochar-amended potting medium reduces the susceptibility of rice to root-knot nematode infections. BMC Plant Biology, 15, 267.
Huang W K, Ji H L, Gheysen G, Kyndt T. 2016. Thiamine-induced priming against root-knot nematode infection in rice involves lignification and hydrogen peroxide generation. Molecular Plant Pathology, 17, 614–624. 
Liu Y, Ding Z, Peng D L, Liu S M, Kong L A, Peng H, Xiang C, Li Z C, Huang W K. 2019. Evaluation of the biocontrol potential of Aspergillus welwitschiae against the root-knot nematode Meloidogyne graminicola in rice (Oryza sativa L.). Journal of Integrative Agriculture, 18, 2561–2570.
Livak K J, Schmittgen T D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods, 25, 402–408.
Ji H L, Kyndt T, He W, Vanholme B, Gheysen G. 2015. β-Aminobutyric acid-induced resistance against root-knot nematodes in rice is based on increased basal defense. Molecular Plant–Microbe Interactions, 28, 519–533.
Kondrashov A S. 1993. Classification of hypotheses on the advantage of amphimixis. Journal of Heredity, 84, 372–387.
Kyndt T, Zemene H Y, Haeck A, Singh R, De Vleesschauwer D, Denil S, De Meyer T, Höfte M, Demeestere K, Gheysen G. 2017. Below-ground attack by the root knot nematode Meloidogyne graminicola predisposes rice to blast disease. Molecular Plant–Microbe Interactions, 30, 255–266.
Lahari Z, Ullah C, Kyndt T, Gershenzon J, Gheysen G. 2019. Strigolactones enhance root-knot nematode (Meloidogyne graminicola) infection in rice by antagonizing the jasmonate pathway. New Phytologist, 224, 454–465.
Leigh R A, Wyn Jones R G. 1984. A hypothesis relating critical potassium concentrations for growth to the distribution and functions of this ion in the plant cell. New Phytologist, 97, 1–13.
Maathuis F J M. 2009. Physiological functions of mineral macronutrients. Current Opinion in Plant Biology, 12, 250–258.
Mahmoud S M. 2007. Management of brown rot disease of potato. Arab Universities Journal of Agricultural Sciences, 15, 457–463.
Mantelin S, Bellafiore S, Kyndt T. 2016. Meloidogyne graminicola: A major threat to rice agriculture. Molecular Plant Pathology, 18, 3.
Mauch-Mani B, Baccelli I, Luna E, Flors V. 2017. Defense priming: An adaptive part of induced resistance. Annual Review of Plant Biology, 68, 485–512.
Millet Y A, Danna C H, Clay N K, Songnuan W, Simon M D, Werck-Reichhart D, Ausubel F M. 2010. Innate immune responses activated in Arabidopsis roots by microbe-associated molecular patterns. Plant Cell, 22, 973–990.
Nakashita H, Yasuda M, Nitta T, Asami T, Fujioka S, Arai Y, Sekimata K, Takatsuto S, Yamaguchi I, Yoshida S. 2003. Brassinosteroid functions in a broad range of disease resistance in tobacco and rice. The Plant Journal, 33, 887–898.
Nahar K, Kyndt T, Hause B, Höfte M, Gheysen G. 2013. Brassinosteroids suppress rice defense against root-knot nematodes through antagonism with the jasmonate pathway. Molecular Plant–Microbe Interactions, 26, 106–115.
Nahar K, Kyndt T, De Vleesschauwer D, Höfte M, Gheysen G. 2011. The jasmonate pathway is a key player in systemically induced defense against root knot nematodes in rice. Plant Physiology, 157, 305–316.
Neill S, Desikan R, Hancock J. 2002. Hydrogen peroxide signalling. Current Opinion in Plant Biology, 5, 388–395. 
Nusbaum C J, Barker K R. 1966. A rapid flotation-sieving technique for extracting nematodes from soil. Plant Disease Reporter, 50, 954–957.
Panstruga R, Parker J E, Schulze-Lefert P. 2009. SnapShot: Plant immune response pathways. Cell, 136, 978, e1–e3.
Pokharel R R, Abawi G S, Zhang N, Duxbury J M, Smart C D. 2007. Characterization of isolates of Meloidogyne from rice-wheat production fields in Nepal. Journal of Nematology, 39, 21. 
Reversat G, Boyer J, Pando-Bahuon A, Sannier C. 1999. Use of a mixture of sand and water-absorbent synthetic polymer as substrate for the xenic culturing of plant-parasitic nematodes in the laboratory. Nematology, 1, 209–212.
Rubio F, Fon M, Ródenas R, Nieves-Cordones M, Alemán F, Rivero RM, Martínez V. 2014. A low K+ signal is required for functional high-affinity K+ uptake through HAK5 transporters. Physiologia Plantarum, 152, 558–570.
Sahebani N, Hadavi N. 2009. Induction of H2O2 and related enzymes in tomato roots infected with root knot nematode (M. javanica) by several chemical and microbial elicitors. Biocontrol Science and Technology, 19, 301–313.
Sahebani N, Hadavi N S, Zade F O. 2011. The effects of β-amino-butyric acid on resistance of cucumber against root-knot nematode Meloidogyne javanica. Acta Physiologiae Plantarum, 33, 443–450.
Sander J D, Joung J K. 2014. CRISPR-Cas systems for editing, regulating and targeting genomes. Nature Biotechnology, 32, 347–355.
Sarwar M. 2012. Effects of potassium fertilization on population build up of rice stem borers (lepidopteron pests) and rice (Oryza sativa L.) yield. Journal of Cereals and Oilseeds, 3, 6–9.
Shi X, Long Y, He F, Zhang C, Wang R, Zhang T, Wu W, Hao Z, Wang Y, Wang G L, Ning Y. 2018. The fungal pathogen Magnaporthe oryzae suppresses innate immunity by modulating a host potassium channel. PLoS Pathogens, 14, e1006878.
Singh R R, Verstraeten B, Siddique S, Tegene A M, Tenhaken R, Frei M, Haeck A, Demeestere K, Pokhare S, Gheysen G, Kyndt T. 2020. Ascorbate oxidation activates systemic defence against root-knot nematode Meloidogyne graminicola in rice. Journal of Experimental Botany, 71, 4271–4284. 
Soares M R C, Dias-Arieira C R. 2021. Induction of resistance to Meloidogyne graminicola in rice. Canadian Journal of Plant Pathology, 43, 108–117. 
Song L X, Xu X C, Wang F N, Wang Y, Xia X J, Shi K, Zhou Y H, Zhou J, Yu J Q. 2018. Brassinosteroids act as a positive regulator for resistance against root-knot nematode involving RESPIRATORY BURST OXIDASE HOMOLOG-dependent activation of MAPKs in tomato. Plant, Cell & Environment, 41, 1113–1125. 
Tohamey S, Ebrahim S A. 2015. Inducing resistance against leaf rust disease of wheat by some microelements and tilt fungicide. Plant Pathology Journal (Faisalabad), 14, 175–181.
Velikova V, Yordanov I, Edreva A. 2000. Oxidative stress and some antioxidant systems in acid rain-treated bean plants. Plant Science, 151, 59–66.
Venkatesan M, Gaur H S, Datta S P. 2013. Effect of root-knot nematode Meloidogyne graminicola on the uptake of macronutrients and arsenic and plant growth of rice. International Journal of Plant Research, 26, 112–120.
Walters D R, Jaan R, Havis N D. 2013. Controlling crop diseases using induced resistance: Challenges for the future. Journal of Experimental Botany, 64, 1263–1280.
Wang C, Williamson V, Lower S. 2009. Application of Pluronic gel to the study of root-knot nematode behaviour. Nematology, 11, 453–464.
Wang R, Ning Y, Shi X, He F, Zhang C, Fan J, Jiang N, Zhang Y, Zhang T, Hu Y, Bellizzi M, Wang G L. 2016. Immunity to rice blast disease by suppression of effector-triggered necrosis. Current Biology, 26, 2399–2411.
Wang Y, Wu W H. 2013. Potassium transport and signaling in higher plants. Annual Review of Plant Biology, 64, 451–476.
Williamson V M, Hussey R S. 1996. Nematode pathogenesis and resistance in plants. Plant Cell, 8, 1735–1745.
Wong H L, Pinontoan R, Hayashi K, Tabata R, Yaeno T, Hasegawa K, Kojima C, Yoshioka H, Iba K, Kawasaki T, Shimamoto K. 2007. Regulation of rice NADPH oxidase by binding of Rac GTPase to its N-terminal extension. Plant Cell, 19, 4022–4034. 
Xia X J, Wang Y J, Zhou Y H, Tao Y, Mao W H, Shi K, Asami T, Chen Z, Yu J Q. 2009. Reactive oxygen species are involved in brassinosteroid-induced stress tolerance in cucumber. Plant Physiology, 150, 801–814. 
Xiang C, Liu Y, Liu S M, Huang Y F, Kong L A, Peng H, Liu M Y, Liu J, Peng D L, Huang W K. 2020. αβ-Dehydrocurvularin isolated from the fungus Aspergillus welwitschiae effectively inhibited the behaviour and development of the root-knot nematode Meloidogyne graminicola in rice roots. BMC Microbiology, 20, 1–10.
Xiang G, Shuxiang Z, Xiujuan Z, Qihua W, Ricardo A. 2018. Potassium-induced plant resistance against soybean cyst nematode via root exudation of phenolic acids and plant pathogen-related genes. PLoS ONE, 13, e0200903.
Yang T, Zhang S, Hu Y, Wu F, Hu Q, Chen G, Cai J, Wu T, Moran N, Yu L, Xu G. 2014. The role of a potassium transporter OsHAK5 in potassium acquisition and transport from roots to shoots in rice at low potassium supply levels. Plant Physiology, 166, 945–959. 
Yimer H Z, Nahar K, Kyndt T, Haeck A, Van Meulebroek L, Vanhaecke L, Demeestere K, Höfte M, Gheysen G. 2018. Gibberellin antagonizes jasmonate-induced defense against Meloidogyne graminicola in rice. New Phytologist, 218, 646–660.
Yuan L, Fang W Z, Luo D M. 2008. Histopathological response of giant cell induced by root-knot nematode, Meloidogyne javanica, in tomato roots under potassium stress. Acta Phytopathologica Sinica, 38, 100–103. 
Zhan L P, Ding Z, Peng D L, Peng H, Kong L A, Liu S M, Liu Y, Li Z C, Huang W K. 2018a. Evaluation of Chinese rice varieties resistant to the root-knot nematode Meloidogyne graminicola. Journal of Integrative Agriculture, 17, 621–630.
Zhan L P, Peng D L, Wang X L, Kong L A, Peng H, Liu S M, Huang W K. 2018b. Priming effect of root-applied silicon on the enhancement of induced resistance to the root-knot nematode Meloidogyne graminicola in rice. BMC Plant Biology, 18, 50.
Zhao X J, Hu W, Zhang S X, Zhao Q, Wang Q. 2016. Effect of potassium levels on suppressing root-knot nematode (Meloidogyne incognita) and resistance enzymes and compounds activities for tomato (Solanum lycopersicum L.). Academia Journal of Agricultural Research, 4, 306–314.
[1] GUO Kai, GAO Wei, ZHANG Tao-rui, WANG Zu-ying, SUN Xiao-ting, YANG Peng, LONG Lu, LIU Xue-ying, WANG Wen-wen, TENG Zhong-hua, LIU Da-jun, LIU De-xin, TU Li-li, ZHANG Zheng-sheng. Comparative transcriptome and lipidome reveal that a low K+ signal effectively alleviates the effect induced by Ca2+ deficiency in cotton fibers[J]. >Journal of Integrative Agriculture, 2023, 22(8): 2306-2322.
[2] ZHAO Jun-yang, LU Hua-ming, QIN Shu-tao, PAN Peng, TANG Shi-de, CHEN Li-hong, WANG Xue-li, TANG Fang-yu, TAN Zheng-long, WEN Rong-hui, HE Bing. Soil conditioners improve Cd-contaminated farmland soil microbial communities to inhibit Cd accumulation in rice[J]. >Journal of Integrative Agriculture, 2023, 22(8): 2521-2535.
[3] GAO Peng, ZHANG Tuo, LEI Xing-yu, CUI Xin-wei, LU Yao-xiong, FAN Peng-fei, LONG Shi-ping, HUANG Jing, GAO Ju-sheng, ZHANG Zhen-hua, ZHANG Hui-min. Improvement of soil fertility and rice yield after long-term application of cow manure combined with inorganic fertilizers[J]. >Journal of Integrative Agriculture, 2023, 22(7): 2221-2232.
[4] SHI Shi-jie, ZHANG Gao-yu, CAO Cou-gui, JIANG Yang . Untargeted UHPLC–Q-Exactive-MS-based metabolomics reveals associations between pre- and post-cooked metabolites and the taste quality of geographical indication rice and regular rice[J]. >Journal of Integrative Agriculture, 2023, 22(7): 2271-2281.
[5] WEI Huan-he, GE Jia-lin, ZHANG Xu-bin, ZHU Wang, DENG Fei, REN Wan-jun, CHEN Ying-long, MENG Tian-yao, DAI Qi-gen. Decreased panicle N application alleviates the negative effects of shading on rice grain yield and grain quality[J]. >Journal of Integrative Agriculture, 2023, 22(7): 2041-2053.
[6] CHEN Guang-yi, PENG Li-gong, LI Cong-mei, TU Yun-biao, LAN Yan, WU Chao-yue, DUAN Qiang, ZHANG Qiu-qiu, YANG Hong, LI Tian. Effects of the potassium application rate on lipid synthesis and eating quality of two rice cultivars[J]. >Journal of Integrative Agriculture, 2023, 22(7): 2025-2040.
[7] DU Xiang-bei, XI Min, WEI Zhi, CHEN Xiao-fei, WU Wen-ge, KONG Ling-cong. Raised bed planting promotes grain number per spike in wheat grown after rice by improving spike differentiation and enhancing photosynthetic capacity[J]. >Journal of Integrative Agriculture, 2023, 22(6): 1631-1644.
[8] LIU Yu, LIU Wen-wen, LI Li, Frederic FRANCIS, WANG Xi-feng. Transcriptome analysis reveals different response of resistant and susceptible rice varieties to rice stripe virus infection[J]. >Journal of Integrative Agriculture, 2023, 22(6): 1750-1762.
[9] ZHANG Zi-han, NIE Jun, LIANG Hai, WEI Cui-lan, WANG Yun, LIAO Yu-lin, LU Yan-hong, ZHOU Guo-peng, GAO Song-juan, CAO Wei-dong. The effects of co-utilizing green manure and rice straw on soil aggregates and soil carbon stability in a paddy soil in southern China[J]. >Journal of Integrative Agriculture, 2023, 22(5): 1529-1545.
[10] LI Min, ZHU Da-wei, JIANG Ming-jin, LUO De-qiang, JIANG Xue-hai, JI Guang-mei, LI Li-jiang, ZHOU Wei-jia. Dry matter production and panicle characteristics of high yield and good taste indica hybrid rice varieties[J]. >Journal of Integrative Agriculture, 2023, 22(5): 1338-1350.
[11] TIAN Zhong-ling, ZHOU Jia-yan, ZHENG Jing-wu, HAN Shao-jie.

mgr-mir-9 implicates Meloidogyne graminicola infection in rice by targeting the effector MgPDI [J]. >Journal of Integrative Agriculture, 2023, 22(5): 1445-1454.

[12] WANG Xin-yu, YANG Guo-dong, XU Le, XIANG Hong-shun, YANG Chen, WANG Fei, PENG Shao-bing. Grain yield and nitrogen use efficiency of an ultrashort-duration variety grown under different nitrogen and seeding rates in direct-seeded and double-season rice in Central China[J]. >Journal of Integrative Agriculture, 2023, 22(4): 1009-1020.
[13] CHEN Chang-zhao, WANG Ya-Liang, HE Meng-xing, LI Zhi-wen, SHEN Lan, LI Qing, RE De-yong, HU Jiang, ZHU Li, ZHANG Guang-heng, GAO Zhen-yu, ZENG Da-li, GUO Long-biao, QIAN Qian, ZHANG Qiang. OsPPR9 encodes a DYW-type PPR protein that affects editing efficiency of multiple RNA editing sites and is essential for chloroplast development[J]. >Journal of Integrative Agriculture, 2023, 22(4): 972-980.
[14] REN Chuan-ying, ZHANG Shan, HONG Bin, GUAN Li-jun, HUANG Wen-gong, FENG Jun-ran, SHA Di-xin, YUAN Di, LI Bo, JI Ni-na, LIU Wei, LU Shu-wen. Germinated brown rice relieves hyperlipidemia by alleviating gut microbiota dysbiosis[J]. >Journal of Integrative Agriculture, 2023, 22(3): 945-957.
[15] WANG Yuan-zheng, Olusegun IDOWU, WANG Yun, HOMMA Koki, NAKAZAKI Tetsuya, ZHENG Wen-jing, XU Zheng-jin, SHIRAIWA Tatsuhiko.
Effects of erect panicle genotype and environment interactions on rice yield and yield components
[J]. >Journal of Integrative Agriculture, 2023, 22(3): 716-726.
No Suggested Reading articles found!