Antonoglou O, Moustaka J, Adamakis I D S, Sperdouli I, Pantazaki A A, Moustakas M, Dendrinou-Samara C. 2018. Nanobrass CuZn nanoparticles as foliar spray nonphytotoxic fungicides. ACS Applied Materials & Interfaces, 10, 4450-4461.
Arciniegas-Grijalba P A, Patino-Portela M C, Mosquera-Sanchez L P, Guerrero-Vargas J A, Rodriguez-Paez J E. 2017. ZnO nanoparticles (ZnO-NPs) and their antifungal activity against coffee fungus Erythricium salmonicolor. Applied Nanoscience, 7, 225-241.
Bamford C V, Nobbs A H, Barbour M E, Lamont R J, Jenkinson H F. 2015. Functional regions of Candida albicans hyphal cell wall protein Als3 that determine interaction with the oral bacterium Streptococcus gordonii. Microbiology, 161, 18-29.
Bhabra G, Sood A, Fisher B, Cartwright L, Saunders M, Evans W H, Surprenant A, Lopez-Castejon G, Mann S, Davis S A, Hails L A, Ingham E, Verkade P, Lane J, Heesom K, Newson R, Case C P. 2009. Nanoparticles can cause DNA damage across a cellular barrier. Nature Nanotechnology, 4, 876-883.
Bittner R J, Mila A L. 2016. Effects of oxathiapiprolin on Phytophthora nicotianae, the causal agent of black shank of tobacco. Crop Protection, 81, 57-64.
Borgatta J, Ma CX, Hudson-Smith N, Elmer W, Perez C D P, De la Torre-Roche R, Zuverza-Mena N, Haynes C L, White J C, Hamers R J. 2018. Copper based nanomaterials suppress root fungal disease in watermelon (Citrullus lanatus): role of particle morphology, composition and dissolution behavior. ACS Sustainable Chemistry & Engineering, 6, 14847-14856.
Buchman J T, Elmer W H, Ma C X, Landy K M, White J C, Haynes C L. 2019. Chitosan-coated mesoporous silica nanoparticle treatment of Citrullus lanatus (watermelon): enhanced fungal disease suppression and modulated expression of stress-related genes. ACS Sustainable Chemistry & Engineering, 7, 19649-19659.
Cai L, Chen J N, Liu Z W, Wang H C, Yang H K, Ding W. 2018. Magnesium oxide nanoparticles: effective agricultural antibacterial agent against Ralstonia solanacearum. Frontiers in Microbiology, 9, 790.
Chen J N, Li S L, Luo J X, Wang R S, Ding W. 2016a. Enhancement of the antibacterial activity of silver nanoparticles against phytopathogenic bacterium Ralstonia solanacearum by stabilization. Journal of Nanomaterials, 2016.
Chen J N, Li S L, Luo J X, Zhang Y Q, Ding W. 2017. Graphene oxide induces toxicity and alters energy metabolism and gene expression in Ralstonia solanacearum. Journal of Nanoscience and Nanotechnology, 17, 186-195.
Chen J N, Mao S Y, Xu Z F, Ding W. 2019. Various antibacterial mechanisms of biosynthesized copper oxide nanoparticles against soilborne Ralstonia solanacearum. RSC Advances, 9, 3788-3799.
Chen J N, Peng H, Wang X P, Shao F, Yuan Z D, Han H Y. 2014. Graphene oxide exhibits broad-spectrum antimicrobial activity against bacterial phytopathogens and fungal conidia by intertwining and membrane perturbation. Nanoscale, 6, 1879-1889.
Chen J N, Sun L, Cheng Y, Lu Z C, Shao K, Li T T, Hu C, Han H Y. 2016b. Graphene oxide-silver nanocomposite: novel agricultural antifungal agent against Fusarium graminearum for crop disease prevention. ACS Applied Materials & Interfaces, 8, 24057-24070.
Chen J N, Wu L T, Lu M, Lu S S, Li Z Y, Ding W. 2020. Comparative study on the fungicidal activity of metallic MgO nanoparticles and macroscale MgO against soilborne fungal phytopathogens. Frontiers in Microbiology, 11, 365.
Chmielowska J, Veloso J, Gutierrez J, Silvar C, Diaz J. 2010. Cross-protection of pepper plants stressed by copper against a vascular pathogen is accompanied by the induction of a defence response. Plant Science, 178, 176-182.
Cohu C M, Abdel-Ghany S E, Reynolds K A G, Onofrio A M, Bodecker J R, Kimbrel J A, Niyogi K K, Pilon M. 2009. Copper delivery by the copper chaperone for chloroplast and cytosolic copper/zinc-superoxide dismutases: regulation and unexpected phenotypes in an Arabidopsis mutant. Molecular Plant, 2, 1336-1350.
Cumplido-Najera C F, Gonzalez-Morales S, Ortega-Ortiz H, Cadenas-Pliego G, Benavides-Mendoza A, Juarez-Maldonado A. 2019. The application of copper nanoparticles and potassium silicate stimulate the tolerance to Clavibacter michiganensis in tomato plants. Scientia Horticulturae, 245, 82-89.
Devipriya D, Roopan S M. 2017. Cissus quadrangularis mediated ecofriendly synthesis of copper oxide nanoparticles and its antifungal studies against Aspergillus niger, Aspergillus flavus. Materials Science and Engineering C: Materials for Biological Applications, 80, 38-44.
Dong X L, Tang Y A, Wu M, Vlahovic B, Yang L J. 2013. Dual effects of single-walled carbon nanotubes coupled with near-infrared radiation on Bacillus anthracis spores: inactivates spores and stimulates the germination of surviving spores. Journal of Biological Engineering, 7, 1-12.
Elmer W, De La Torre-Roche R, Pagano L, Majumdar S, Zuverza-Mena N, Dimkpa C, Gardea-Torresdey J, White J C. 2018. Effect of metalloid and metal oxide nanoparticles on Fusarium wilt of watermelon. Plant Disease, 102, 1394-1401.
Elmer W H, White J C. 2016. The use of metallic oxide nanoparticles to enhance growth of tomatoes and eggplants in disease infested soil or soilless medium. Environmental Science-Nano, 3, 1072-1079.
Fang Y T, Zhang L M, Jiao Y G, Liao J J, Luo L F, Ji S G, Li J Z, Dai K, Zhu S S, Yang M. 2016. Tobacco rotated with rapeseed for soil-borne phytophthora pathogen biocontrol: mediated by rapeseed root exudates. Frontiers in Microbiology, 7, 894.
Fisher M C, Henk D A, Briggs C J, Brownstein J S, Madoff L C, McCraw S L, Gurr S J. 2012. Emerging fungal threats to animal, plant and ecosystem health. Nature, 484, 186-194.
Giannousi K, Avramidis I, Dendrinou-Samara C. 2013. Synthesis, characterization and evaluation of copper based nanoparticles as agrochemicals against Phytophthora infestans. RSC Advances, 3, 21743-21752.
Glawischnig E. 2006. The role of cytochrome P450 enzymes in the biosynthesis of camalexin. Biochemical Society Transactions, 34, 1206-1208.
Gogos A, Knauer K, Bucheli T D. 2012. Nanomaterials in plant protection and fertilization: current state, foreseen applications, and research priorities. Journal of Agricultural and Food Chemistry, 60, 9781-9792.
Hans M, Erbe A, Mathews S, Chen Y, Solioz M, Muecklich F. 2013. Role of copper oxides in contact killing of bacteria. Langmuir, 29, 16160-16166.
Hao Y, Cao X Q, Ma C X, Zhang Z T, Zhao N, Ali A, Hou T Q, Xiang Z Q, Zhuang J, Wu S J, Xing B S, Zhang Z, Rui Y K. 2017. Potential applications and antifungal activities of engineered nanomaterials against gray mold disease agent Botrytis cinerea on rose petals. Frontiers in Plant Science, 8, 1332.
Hao Y, Fang P H, Ma C X, White J C, Xiang Z Q, Wang H T, Zhang Z, Rui Y K, Xing B S. 2019. Engineered nanomaterials inhibit Podosphaera pannosa infection on rose leaves by regulating phytohormones. Environmental Research, 170, 1-6.
Heinlaan M, Ivask A, Blinova I, Dubourguier H C, Kahru A. 2008. Toxicity of nanosized and bulk ZnO, CuO and TiO2 to bacteria Vibrio fischeri and crustaceans Daphnia magna and Thamnocephalus platyurus. Chemosphere, 71, 1308-1316.
Herrnida-Montero L A, Pariona N, Mtz-Enriquez A I, Carrion G, Paraguay-Delgado F, Rosas-Saito G. 2019. Aqueous-phase synthesis of nanoparticles of copper/copper oxides and their antifungal effect against Fusariurn oxysporum. Journal of Hazardous Materials, 380, 120850.
Imada K, Sakai S, Kajihara H, Tanaka S, Ito S. 2016. Magnesium oxide nanoparticles induce systemic resistance in tomato against bacterial wilt disease. Plant Pathology, 65, 551-560.
Ingle A P, Rai M, 2017. Copper nanoflowers as effective antifungal agents for plant pathogenic fungi. IET Nanobiotechnology, 11, 546-551.
Ji P S, Csinos A S, Hickman L L, Hargett U. 2014. Efficacy and application methods of oxathiapiprolin for management of black shank on tobacco. Plant Disease, 98, 1551-1554.
Judelson H S, Blanco F A, 2005. The spores of Phytophthora: weapons of the plant destroyer. Nature Reviews Microbiology, 3, 47-58.
Kanhed P, Birla S, Gaikwad S, Gade A, Seabra A B, Rubilar O, Duran N, Rai M. 2014. In vitro antifungal efficacy of copper nanoparticles against selected crop pathogenic fungi. Materials Letters, 115, 13-17.
Koo A J K, Cooke T F, Howe G A. 2011. Cytochrome P450 CYP94B3 mediates catabolism and inactivation of the plant hormone jasmonoyl-L-isoleucine. Proceedings of the National Academy of Sciences of the United States of America, 108, 9298-9303.
Kumari M, Giri V P, Pandey S, Kumar M, Katiyar R, Nautiyal C S, Mishra A. 2019. An insight into the mechanism of antifungal activity of biogenic nanoparticles than their chemical counterparts. Pesticide Biochemistry and Physiology, 157, 45-52.
Lemire J, Milandu Y, Auger C, Bignucolo A, Appanna V P, Appanna V D. 2010. Histidine is a source of the antioxidant, alpha-ketoglutarate, in Pseudomonas fluorescens challenged by oxidative stress. FEMS Microbiology Letters, 309, 170-177.
Leung Y H, Ng A M C, Xu X Y, Shen Z Y, Gethings L A, Wong M T, Chan C M N, Guo M Y, Ng Y H, Djurisic A B, Lee P K H, Chan W K, Yu L H, Phillips D L, Ma A P Y, Leung F C C. 2014. Mechanisms of antibacterial activity of MgO: non-ROS mediated toxicity of MgO nanoparticles towards Escherichia coli. Small, 10, 1171-1183.
Li J L, Sang H, Guo H Y, Popko J T, He L L, White J C, Dhankher O P, Jung G, Xing B S. 2017. Antifungal mechanisms of ZnO and Ag nanoparticles to Sclerotinia homoeocarpa. Nanotechnology, 28, 155101.
Liu B K, Xue Y F, Zhang J T, Han B, Zhang J, Suo X Y, Mu L L, Shi H Z. 2017. Visible-light-driven TiO2/Ag3PO4 heterostructures with enhanced antifungal activity against agricultural pathogenic fungi Fusarium graminearum and mechanism insight. Environmental Science-Nano, 4, 255-264.
Ma C X, Borgatta J, De La Torre-Roche R, Zuverza-Mena N, White J C, Hamers R J, Elmer W H. 2019. Time-dependent transcriptional response of tomato (Solanum lycopersicum L.) to Cu nanoparticle exposure upon infection with Fusarium oxysporum f. sp. lycopersici. ACS Sustainable Chemistry & Engineering, 7, 10064-10074.
Ma C X, Borgatta J, Hudson B G, Tamijani A A, de la Torre-Roche R, Zuverza-Mena N, Shen Y, Elmer W, Xing B S, Mason S E, Hamers R J, White J C. 2020. Advanced material modulation of nutritional and phytohormone status alleviates damage from soybean sudden death syndrome. Nature Nanotechnology, 15, 1033-1042.
Malandrakis A A, Kavroulakis N, Chrysikopoulos C V. 2019. Use of copper, silver and zinc nanoparticles against foliar and soil-borne plant pathogens. Science of the Total Environment, 670, 292-299.
Meghana S, Kabra P, Chakraborty S, Padmavathy N. 2015. Understanding the pathway of antibacterial activity of copper oxide nanoparticles. RSC Advances, 5, 12293-12299.
Mishra S, Singh B R, Singh A, Keswani C, Naqvi A H, Singh H B. 2014. Biofabricated silver nanoparticles act as a strong fungicide against Bipolaris sorokiniana causing spot blotch disease in wheat. Plos One, 9, e97881.
Money N P. 1990. Measurement of pore-size in the hyphal cell-wall of achlya-bisexualis. Experimental Mycology, 14, 234-242.
Pan XH, Wang YH, Chen Z, Pan DM, Cheng, YJ, Liu ZJ, Lin Z, Guan,X. 2013. Investigation of antibacterial activity and related mechanism of a series of nano-Mg(OH)2. ACS Applied Materials & Interfaces, 5, 1137-1142.
Peng C, Tong H, Yuan P, Sun LJ, Jiang L, Shi J Y. 2019. Aggregation, sedimentation, and dissolution of copper oxide nanoparticles: influence of low-molecular-weight organic acids from root exudates. Nanomaterials-Basel, 9, 13364-13365.
Perez CDP, Roche RD, Zuverza-Mena N, Ma CX, Shen Y, White JC, Pozza EA, Pozza AAA, Elrner WH. 2020. Metalloid and metal oxide nanoparticles suppress sudden death syndrome of soybean. Journal of Agricultural and Food Chemistry, 68, 77-87.
Rastogi A, Zivcak M, Sytar O, Kalaji HM, He XL, Mbarki S, Brestic M. 2017. Impact of metal and metal oxide nanoparticles on plant: a critical review. Frontiers in Chemistry, 5, 78.
Sarkar J, Chakraborty N, Chatterjee A, Bhattacharjee A, Dasgupta D, Acharya K. 2020. Green synthesized copper oxide nanoparticles ameliorate defence and antioxidant enzymes in Lens culinaris. Nanomaterials-Basel, 10, 312.
Sathiyabama M, Manikandan A. 2018. Application of copper-chitosan nanoparticles stimulate growth and induce resistance in finger Millet (Eleusine coracana Gaertn.) plants against blast disease. Journal of Agricultural and Food Chemistry, 66, 1784-1790.
Savi GD, Vitorino V, Bortoluzzi AJ, Scussel VM. 2013. Effect of zinc compounds on Fusarium verticillioides growth, hyphae alterations, conidia, and fumonisin production. Journal of Agricultural and Food Chemistry, 93, 3395-3402.
Shang HP, Ma CX, Li CY, White JC, Polubesova T, Chefetz B, Xing BS. 2020. Copper sulfide nanoparticles suppress Gibberella fujikuroi infection in rice (Oryza sativa L.) by multiple mechanisms: contact-mortality, nutritional modulation and phytohormone regulation. Environmental Science-Nano, 7, 2632-2643.
Shen Y, Borgatta J, Ma CX, Elmer W, Hamers RJ, White JC. 2020. Copper nanomaterial morphology and composition control foliar transfer through the cuticle and mediate resistance to root fungal disease in tomato (Solanum lycopersicum). Journal of Agricultural and Food Chemistry, 68, 11327-11338.
Shenashen M, Derbalah A, Hamza A, Mohamed A, El Safty S. 2017. Antifungal activity of fabricated mesoporous alumina nanoparticles against root rot disease of tomato caused by Fusarium oxysporium. Pest Management Science, 73, 1121-1126.
Silva Y, Portieles R, Pujol M, Terauchi R, Matsumura H, Serrano M, Borras-Hidalgo O. 2013. Expression of a microbial serine proteinase inhibitor gene enhances the tobacco defense against oomycete pathogens. Physiology Molecular Plant Pathology, 84, 99-106.
Sun Q, Li JM, Le T. 2018. Zinc oxide nanoparticle as a novel class of antifungal agents: current advances and future perspectives. Journal of Agricultural and Food Chemistry, 66, 11209-11220.
Terzi E, Kartal SN, Yilgor N, Rautkari L, Yoshimura T. 2016. Role of various nano-particles in prevention of fungal decay, mold growth and termite attack. in wood, and their effect on weathering properties and water repellency. International Biodeterioration & Biodegradation, 107, 77-87.
Toqeer I, Raza A, Naz MY, Ghaffar A, Hussain Z, Ghuffar A. 2020. Synthesis and application of controlled size copper oxide nanoparticles for improving biochemical and growth parameters of maize seedling. Journal of Plant Nutrition, 43, 2622-2632.
Wang HF, Gu LR, Lin Y, Lu FS, Meziani MJ, Luo PGJ, Wang W, Cao L, Sun YP. 2006. Unique aggregation of anthrax (Bacillus anthracis) spores by sugar-coated single-walled carbon nanotubes. Journal of the American Chemical Society, 128, 13364-13365.
Wang Y, Deng CY, Cota-Ruiz K, Peralta-Videa JR, Sun YP, Rawat S, Tan WJ, Reyes A, Hernandez-Viezcas JA, Niu GH, Li CQ, Gardea-Torresdey JL. 2020. Improvement of nutrient elements and allicin content in green onion (Allium fistulosum) plants exposed to CuO nanoparticles. Science of the Total Environment, 725, 138837.
Weitz IS, Maoz M, Panitz D, Eichler S, Segal E. 2015. Combination of CuO nanoparticles and fluconazole: preparation, characterization, and antifungal activity against Candida albicans. Journal of Nanoparticle Research, 17, 1-9.
Young M, Ozcan A, Myers ME, Johnson EG, Graham JH, Santra S. 2018. Multimodal generally recognized as safe ZnO/nanocopper composite: a novel antimicrobial material for the management of citrus phytopathogens. Journal of Agricultural and Food Chemistry, 66, 6604-6608.
Zhao LJ, Hu QR, Huang YX, Keller AA. 2017. Response at genetic, metabolic, and physiological levels of maize (Zea mays) exposed to a Cu(OH)2 nanopesticide. ACS Sustainable Chemistry & Engineering, 5, 8294-8301.
|