Please wait a minute...
Journal of Integrative Agriculture  2022, Vol. 21 Issue (11): 3245-3262    DOI: 10.1016/j.jia.2022.08.086
Plant Protection Advanced Online Publication | Current Issue | Archive | Adv Search |
Nonphytotoxic copper oxide nanoparticles are powerful “nanoweapons” that trigger resistance in tobacco against the soil-borne fungal pathogen Phytophthora nicotianae

CHEN Juan-ni1, WU Lin-tong2, SONG Kun1, ZHU Yun-song1, DING Wei1

1 Laboratory of Natural Product Pesticides, College of Plant Protection, Southwest University, Chongqing 400715, P.R.China

2 Jingxi Marketing Department of Basie of Guangxi Tobacco Company, Baise, Guangxi 533899, P.R.China

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  由于金属纳米颗粒具有较高的抗菌性能,且不易导致病原体产生耐药性的风险,纳米颗粒作为杀菌剂在可持续农业中的潜在应用发展迅速。近几年,氧化铜纳米颗粒(CuO NPs)因其低毒、经济以及高效的抗菌性被广泛应用于农业病害防控领域,但是有关 CuO NPs对土传真菌的抑制作用还不清楚。本研究通过室内毒力测定和盆栽试验方法,旨在探讨CuO NPs对烟草疫霉菌(Phytophthora nicotianae)的体外抗真菌活性及灌根施用对烟草黑胫病的防治效果。结果表明,CuO NPs极大地干扰了该真菌的生殖生长过程,在特定浓度下显著性抑制了菌丝生长、孢子萌发和孢子囊的产生,且抑真菌效应表现出明显的浓度依赖性。此外,菌丝形态损伤、细胞内ROS积累和菌丝SOD酶活性升高也是CuO NPs的抗真菌作用机制。另外,盆栽试验发现相比于对照,100 mg/L CuO NPs灌根处理对烟草黑胫病的防治效果达到33.69%,且未影响作物生长。CuO NPs能显著激活烟草的一系列防御酶和抗性基因,这进一步解释CuO NPs抑制真菌侵染烟草植株的机制。另外,100 mg/L CuO NPs处理后烟叶和根中的铜含量分别比健康烟叶提高了50.03%和27.25%,根中铜含量明显高于叶片。本研究探索了CuO NPs作为纳米杀菌剂和真菌抗性诱导剂的潜力,通过抑制病原菌侵染和刺激植物防御来防控烟草黑胫病,研究结果为拓宽金属纳米粒子在植保抗菌领域中的应用提供了有力的科学依据。


Investigations into the potential application of nanoparticles acting as nanofungicides in sustainable agriculture are rapidly expanding due to the high antimicrobial properties of these compounds, which do not risk inducing pathogen resistance to fungicides.  A detailed understanding of the impact of copper oxide nanoparticles (CuO NPs) on soil-borne phytopathogenic fungi is yet to be obtained.  This study aimed to explore the in vitro antifungal activity and control efficacy of CuO NPs applied via irrigation with respect to tobacco black shank (TBS) disease caused by Phytophthora nicotianae.  The results revealed that CuO NPs greatly interfered with the reproductive growth process of this fungus, repressing hyphal growth, spore germination and sporangium production.  Additionally, morphological damage, intracellular ROS accumulation and increased SOD enzyme activity in hyphae were the antifungicidal mechanisms of these NPs.  In pot experiments, treatment with CuO NPs at 100 mg L–1 significantly suppressed TBS development, compared with the effect on control plants, and the control efficacy reached 33.69% without inducing phytotoxicity.  Exposure to CuO NPs significantly activated a series of defense enzymes, and resistance genes in tobacco can further explain the mechanisms by which CuO NPs suppressed fungal infection.  The Cu content in both the leaves and roots of Pnicotianae-infested plants increased by 50.03 and 27.25%, respectively, after treatment with 100 mg L–1 CuO NPs, compared with that of healthy plants.  In particular, a higher Cu content was observed in infected roots than in leaves.  Therefore, this study showed the potential of CuO NPs applied as nanofungicides and as nanoinducers of fungus resistance genes for the management of TBS through inhibition of pathogen infection and stimulation of plant defenses.

Keywords:  Nicotiana tabacum L.        tobacco black shank disease       cupper oxide nanoparticles       fungicidal activities       defense response stimulant  
Received: 29 November 2021   Accepted: 26 April 2022

The authors acknowledge the financial support by the National Natural Science Foundation of China (32001934) and the Key science and technology project of Sichuan Tobacco Company (SCYC202114).

About author:  CHEN Juan-ni,; Correspondence DING Wei, Tel/Fax: +86-23-68250953, E-mail:

Cite this article: 

CHEN Juan-ni, WU Lin-tong, SONG Kun, ZHU Yun-song, DING Wei. 2022. Nonphytotoxic copper oxide nanoparticles are powerful “nanoweapons” that trigger resistance in tobacco against the soil-borne fungal pathogen Phytophthora nicotianae. Journal of Integrative Agriculture, 21(11): 3245-3262.

Antonoglou O, Moustaka J, Adamakis I D S, Sperdouli I, Pantazaki A A, Moustakas M, Dendrinou-Samara C. 2018. Nanobrass CuZn nanoparticles as foliar spray nonphytotoxic fungicides. ACS Applied Materials & Interfaces, 10, 4450-4461.

Arciniegas-Grijalba P A, Patino-Portela M C, Mosquera-Sanchez L P, Guerrero-Vargas J A, Rodriguez-Paez J E. 2017. ZnO nanoparticles (ZnO-NPs) and their antifungal activity against coffee fungus Erythricium salmonicolor. Applied Nanoscience, 7, 225-241.

Bamford C V, Nobbs A H, Barbour M E, Lamont R J, Jenkinson H F. 2015. Functional regions of Candida albicans hyphal cell wall protein Als3 that determine interaction with the oral bacterium Streptococcus gordonii. Microbiology, 161, 18-29.

Bhabra G, Sood A, Fisher B, Cartwright L, Saunders M, Evans W H, Surprenant A, Lopez-Castejon G, Mann S, Davis S A, Hails L A, Ingham E, Verkade P, Lane J, Heesom K, Newson R, Case C P. 2009. Nanoparticles can cause DNA damage across a cellular barrier. Nature Nanotechnology, 4, 876-883.

Bittner R J, Mila A L. 2016. Effects of oxathiapiprolin on Phytophthora nicotianae, the causal agent of black shank of tobacco. Crop Protection, 81, 57-64.

Borgatta J, Ma CX, Hudson-Smith N, Elmer W, Perez C D P, De la Torre-Roche R, Zuverza-Mena N, Haynes C L, White J C, Hamers R J. 2018. Copper based nanomaterials suppress root fungal disease in watermelon (Citrullus lanatus): role of particle morphology, composition and dissolution behavior. ACS Sustainable Chemistry & Engineering, 6, 14847-14856.

Buchman J T, Elmer W H, Ma C X, Landy K M, White J C, Haynes C L. 2019. Chitosan-coated mesoporous silica nanoparticle treatment of Citrullus lanatus (watermelon): enhanced fungal disease suppression and modulated expression of stress-related genes. ACS Sustainable Chemistry & Engineering, 7, 19649-19659.

Cai L, Chen J N, Liu Z W, Wang H C, Yang H K, Ding W. 2018. Magnesium oxide nanoparticles: effective agricultural antibacterial agent against Ralstonia solanacearum. Frontiers in Microbiology, 9, 790.

Chen J N, Li S L, Luo J X, Wang R S, Ding W. 2016a. Enhancement of the antibacterial activity of silver nanoparticles against phytopathogenic bacterium Ralstonia solanacearum by stabilization. Journal of Nanomaterials, 2016.

Chen J N, Li S L, Luo J X, Zhang Y Q, Ding W. 2017. Graphene oxide induces toxicity and alters energy metabolism and gene expression in Ralstonia solanacearum. Journal of Nanoscience and Nanotechnology, 17, 186-195.

Chen J N, Mao S Y, Xu Z F, Ding W. 2019. Various antibacterial mechanisms of biosynthesized copper oxide nanoparticles against soilborne Ralstonia solanacearum. RSC Advances, 9, 3788-3799.

Chen J N, Peng H, Wang X P, Shao F, Yuan Z D, Han H Y. 2014. Graphene oxide exhibits broad-spectrum antimicrobial activity against bacterial phytopathogens and fungal conidia by intertwining and membrane perturbation. Nanoscale, 6, 1879-1889.

Chen J N, Sun L, Cheng Y, Lu Z C, Shao K, Li T T, Hu C, Han H Y. 2016b. Graphene oxide-silver nanocomposite: novel agricultural antifungal agent against Fusarium graminearum for crop disease prevention. ACS Applied Materials & Interfaces, 8, 24057-24070.

Chen J N, Wu L T, Lu M, Lu S S, Li Z Y, Ding W. 2020. Comparative study on the fungicidal activity of metallic MgO nanoparticles and macroscale MgO against soilborne fungal phytopathogens. Frontiers in Microbiology, 11, 365.

Chmielowska J, Veloso J, Gutierrez J, Silvar C, Diaz J. 2010. Cross-protection of pepper plants stressed by copper against a vascular pathogen is accompanied by the induction of a defence response. Plant Science, 178, 176-182.

Cohu C M, Abdel-Ghany S E, Reynolds K A G, Onofrio A M, Bodecker J R, Kimbrel J A, Niyogi K K, Pilon M. 2009. Copper delivery by the copper chaperone for chloroplast and cytosolic copper/zinc-superoxide dismutases: regulation and unexpected phenotypes in an Arabidopsis mutant. Molecular Plant, 2, 1336-1350.

Cumplido-Najera C F, Gonzalez-Morales S, Ortega-Ortiz H, Cadenas-Pliego G, Benavides-Mendoza A, Juarez-Maldonado A. 2019. The application of copper nanoparticles and potassium silicate stimulate the tolerance to Clavibacter michiganensis in tomato plants. Scientia Horticulturae, 245, 82-89.

Devipriya D, Roopan S M. 2017. Cissus quadrangularis mediated ecofriendly synthesis of copper oxide nanoparticles and its antifungal studies against Aspergillus niger, Aspergillus flavusMaterials Science and Engineering C: Materials for Biological Applications, 80, 38-44.

Dong X L, Tang Y A, Wu M, Vlahovic B, Yang L J. 2013. Dual effects of single-walled carbon nanotubes coupled with near-infrared radiation on Bacillus anthracis spores: inactivates spores and stimulates the germination of surviving spores. Journal of Biological Engineering, 7, 1-12.

Elmer W, De La Torre-Roche R, Pagano L, Majumdar S, Zuverza-Mena N, Dimkpa C, Gardea-Torresdey J, White J C. 2018. Effect of metalloid and metal oxide nanoparticles on Fusarium wilt of watermelon. Plant Disease, 102, 1394-1401.

Elmer W H, White J C. 2016. The use of metallic oxide nanoparticles to enhance growth of tomatoes and eggplants in disease infested soil or soilless medium. Environmental Science-Nano, 3, 1072-1079.

Fang Y T, Zhang L M, Jiao Y G, Liao J J, Luo L F, Ji S G, Li J Z, Dai K, Zhu S S, Yang M. 2016. Tobacco rotated with rapeseed for soil-borne phytophthora pathogen biocontrol: mediated by rapeseed root exudates. Frontiers in Microbiology, 7, 894.

Fisher M C, Henk D A, Briggs C J, Brownstein J S, Madoff L C, McCraw S L, Gurr S J. 2012. Emerging fungal threats to animal, plant and ecosystem health. Nature, 484, 186-194.

Giannousi K, Avramidis I, Dendrinou-Samara C. 2013. Synthesis, characterization and evaluation of copper based nanoparticles as agrochemicals against Phytophthora infestans. RSC Advances, 3, 21743-21752.

Glawischnig E. 2006. The role of cytochrome P450 enzymes in the biosynthesis of camalexin. Biochemical Society Transactions, 34, 1206-1208.

Gogos A, Knauer K, Bucheli T D. 2012. Nanomaterials in plant protection and fertilization: current state, foreseen applications, and research priorities. Journal of Agricultural and Food Chemistry, 60, 9781-9792.

Hans M, Erbe A, Mathews S, Chen Y, Solioz M, Muecklich F. 2013. Role of copper oxides in contact killing of bacteria. Langmuir, 29, 16160-16166.

Hao Y, Cao X Q, Ma C X, Zhang Z T, Zhao N, Ali A, Hou T Q, Xiang Z Q, Zhuang J, Wu S J, Xing B S, Zhang Z, Rui Y K. 2017. Potential applications and antifungal activities of engineered nanomaterials against gray mold disease agent Botrytis cinerea on rose petals. Frontiers in Plant Science, 8, 1332.

Hao Y, Fang P H, Ma C X, White J C, Xiang Z Q, Wang H T, Zhang Z, Rui Y K, Xing B S. 2019. Engineered nanomaterials inhibit Podosphaera pannosa infection on rose leaves by regulating phytohormones. Environmental Research, 170, 1-6.

Heinlaan M, Ivask A, Blinova I, Dubourguier H C, Kahru A. 2008. Toxicity of nanosized and bulk ZnO, CuO and TiO2 to bacteria Vibrio fischeri and crustaceans Daphnia magna and Thamnocephalus platyurus. Chemosphere, 71, 1308-1316.

Herrnida-Montero L A, Pariona N, Mtz-Enriquez A I, Carrion G, Paraguay-Delgado F, Rosas-Saito G. 2019. Aqueous-phase synthesis of nanoparticles of copper/copper oxides and their antifungal effect against Fusariurn oxysporumJournal of Hazardous Materials, 380, 120850.

Imada K, Sakai S, Kajihara H, Tanaka S, Ito S. 2016. Magnesium oxide nanoparticles induce systemic resistance in tomato against bacterial wilt disease. Plant Pathology, 65, 551-560.

Ingle A P, Rai M, 2017. Copper nanoflowers as effective antifungal agents for plant pathogenic fungi. IET Nanobiotechnology, 11, 546-551.

Ji P S, Csinos A S, Hickman L L, Hargett U. 2014. Efficacy and application methods of oxathiapiprolin for management of black shank on tobacco. Plant Disease, 98, 1551-1554.

Judelson H S, Blanco F A, 2005. The spores of Phytophthora: weapons of the plant destroyer. Nature Reviews Microbiology, 3, 47-58.

Kanhed P, Birla S, Gaikwad S, Gade A, Seabra A B, Rubilar O, Duran N, Rai M. 2014. In vitro antifungal efficacy of copper nanoparticles against selected crop pathogenic fungi. Materials Letters, 115, 13-17.

Koo A J K, Cooke T F, Howe G A. 2011. Cytochrome P450 CYP94B3 mediates catabolism and inactivation of the plant hormone jasmonoyl-L-isoleucine. Proceedings of the National Academy of Sciences of the United States of America, 108, 9298-9303.

Kumari M, Giri V P, Pandey S, Kumar M, Katiyar R, Nautiyal C S, Mishra A. 2019. An insight into the mechanism of antifungal activity of biogenic nanoparticles than their chemical counterparts. Pesticide Biochemistry and Physiology, 157, 45-52.

Lemire J, Milandu Y, Auger C, Bignucolo A, Appanna V P, Appanna V D. 2010. Histidine is a source of the antioxidant, alpha-ketoglutarate, in Pseudomonas fluorescens challenged by oxidative stress. FEMS Microbiology Letters, 309, 170-177.

Leung Y H, Ng A M C, Xu X Y, Shen Z Y, Gethings L A, Wong M T, Chan C M N, Guo M Y, Ng Y H, Djurisic A B, Lee P K H, Chan W K, Yu L H, Phillips D L, Ma A P Y, Leung F C C. 2014. Mechanisms of antibacterial activity of MgO: non-ROS mediated toxicity of MgO nanoparticles towards Escherichia coli. Small, 10, 1171-1183.

Li J L, Sang H, Guo H Y, Popko J T, He L L, White J C, Dhankher O P, Jung G, Xing B S. 2017. Antifungal mechanisms of ZnO and Ag nanoparticles to Sclerotinia homoeocarpa. Nanotechnology, 28, 155101.

Liu B K, Xue Y F, Zhang J T, Han B, Zhang J, Suo X Y, Mu L L, Shi H Z. 2017. Visible-light-driven TiO2/Ag3PO4 heterostructures with enhanced antifungal activity against agricultural pathogenic fungi Fusarium graminearum and mechanism insight. Environmental Science-Nano, 4, 255-264.

Ma C X, Borgatta J, De La Torre-Roche R, Zuverza-Mena N, White J C, Hamers R J, Elmer W H. 2019. Time-dependent transcriptional response of tomato (Solanum lycopersicum L.) to Cu nanoparticle exposure upon infection with Fusarium oxysporum f. sp. lycopersici. ACS Sustainable Chemistry & Engineering, 7, 10064-10074.

Ma C X, Borgatta J, Hudson B G, Tamijani A A, de la Torre-Roche R, Zuverza-Mena N, Shen Y, Elmer W, Xing B S, Mason S E, Hamers R J, White J C. 2020. Advanced material modulation of nutritional and phytohormone status alleviates damage from soybean sudden death syndrome. Nature Nanotechnology, 15, 1033-1042.

Malandrakis A A, Kavroulakis N, Chrysikopoulos C V. 2019. Use of copper, silver and zinc nanoparticles against foliar and soil-borne plant pathogens. Science of the Total Environment, 670, 292-299.

Meghana S, Kabra P, Chakraborty S, Padmavathy N. 2015. Understanding the pathway of antibacterial activity of copper oxide nanoparticles. RSC Advances, 5, 12293-12299.

Mishra S, Singh B R, Singh A, Keswani C, Naqvi A H, Singh H B. 2014. Biofabricated silver nanoparticles act as a strong fungicide against Bipolaris sorokiniana causing spot blotch disease in wheat. Plos One, 9, e97881.

Money N P. 1990. Measurement of pore-size in the hyphal cell-wall of achlya-bisexualis. Experimental Mycology, 14, 234-242.

Pan XH, Wang YH, Chen Z, Pan DM, Cheng, YJ, Liu ZJ, Lin Z, Guan,X. 2013. Investigation of antibacterial activity and related mechanism of a series of nano-Mg(OH)2. ACS Applied Materials & Interfaces, 5, 1137-1142.

Peng C, Tong H, Yuan P, Sun LJ, Jiang L, Shi J Y. 2019. Aggregation, sedimentation, and dissolution of copper oxide nanoparticles: influence of low-molecular-weight organic acids from root exudates. Nanomaterials-Basel, 9, 13364-13365.

Perez CDP, Roche RD, Zuverza-Mena N, Ma CX, Shen Y, White JC, Pozza EA, Pozza AAA, Elrner WH. 2020. Metalloid and metal oxide nanoparticles suppress sudden death syndrome of soybean. Journal of Agricultural and Food Chemistry, 68, 77-87.

Rastogi A, Zivcak M, Sytar O, Kalaji HM, He XL, Mbarki S, Brestic M. 2017. Impact of metal and metal oxide nanoparticles on plant: a critical review. Frontiers in Chemistry, 5, 78.

Sarkar J, Chakraborty N, Chatterjee A, Bhattacharjee A, Dasgupta D, Acharya K. 2020. Green synthesized copper oxide nanoparticles ameliorate defence and antioxidant enzymes in Lens culinaris. Nanomaterials-Basel, 10, 312.

Sathiyabama M, Manikandan A. 2018. Application of copper-chitosan nanoparticles stimulate growth and induce resistance in finger Millet (Eleusine coracana Gaertn.) plants against blast disease. Journal of Agricultural and Food Chemistry, 66, 1784-1790.

Savi GD, Vitorino V, Bortoluzzi AJ, Scussel VM. 2013. Effect of zinc compounds on Fusarium verticillioides growth, hyphae alterations, conidia, and fumonisin production. Journal of Agricultural and Food Chemistry, 93, 3395-3402.

Shang HP, Ma CX, Li CY, White JC, Polubesova T, Chefetz B, Xing BS. 2020. Copper sulfide nanoparticles suppress Gibberella fujikuroi infection in rice (Oryza sativa L.) by multiple mechanisms: contact-mortality, nutritional modulation and phytohormone regulation. Environmental Science-Nano, 7, 2632-2643.

Shen Y, Borgatta J, Ma CX, Elmer W, Hamers RJ, White JC. 2020. Copper nanomaterial morphology and composition control foliar transfer through the cuticle and mediate resistance to root fungal disease in tomato (Solanum lycopersicum). Journal of Agricultural and Food Chemistry, 68, 11327-11338.

Shenashen M, Derbalah A, Hamza A, Mohamed A, El Safty S. 2017. Antifungal activity of fabricated mesoporous alumina nanoparticles against root rot disease of tomato caused by Fusarium oxysporium. Pest Management Science, 73, 1121-1126.

Silva Y, Portieles R, Pujol M, Terauchi R, Matsumura H, Serrano M, Borras-Hidalgo O. 2013. Expression of a microbial serine proteinase inhibitor gene enhances the tobacco defense against oomycete pathogens. Physiology Molecular Plant Pathology, 84, 99-106.

Sun Q, Li JM, Le T. 2018. Zinc oxide nanoparticle as a novel class of antifungal agents: current advances and future perspectives. Journal of Agricultural and Food Chemistry, 66, 11209-11220.

Terzi E, Kartal SN, Yilgor N, Rautkari L, Yoshimura T. 2016. Role of various nano-particles in prevention of fungal decay, mold growth and termite attack. in wood, and their effect on weathering properties and water repellency. International Biodeterioration & Biodegradation, 107, 77-87.

Toqeer I, Raza A, Naz MY, Ghaffar A, Hussain Z, Ghuffar A. 2020. Synthesis and application of controlled size copper oxide nanoparticles for improving biochemical and growth parameters of maize seedling. Journal of Plant Nutrition, 43, 2622-2632.

Wang HF, Gu LR, Lin Y, Lu FS, Meziani MJ, Luo PGJ, Wang W, Cao L, Sun YP. 2006. Unique aggregation of anthrax (Bacillus anthracis) spores by sugar-coated single-walled carbon nanotubes. Journal of the American Chemical Society, 128, 13364-13365.

Wang Y, Deng CY, Cota-Ruiz K, Peralta-Videa JR, Sun YP, Rawat S, Tan WJ, Reyes A, Hernandez-Viezcas JA, Niu GH, Li CQ, Gardea-Torresdey JL. 2020. Improvement of nutrient elements and allicin content in green onion (Allium fistulosum) plants exposed to CuO nanoparticles. Science of the Total Environment, 725, 138837.

Weitz IS, Maoz M, Panitz D, Eichler S, Segal E. 2015. Combination of CuO nanoparticles and fluconazole: preparation, characterization, and antifungal activity against Candida albicans. Journal of Nanoparticle Research, 17, 1-9.

Young M, Ozcan A, Myers ME, Johnson EG, Graham JH, Santra S. 2018. Multimodal generally recognized as safe ZnO/nanocopper composite: a novel antimicrobial material for the management of citrus phytopathogens. Journal of Agricultural and Food Chemistry, 66, 6604-6608.

Zhao LJ, Hu QR, Huang YX, Keller AA. 2017. Response at genetic, metabolic, and physiological levels of maize (Zea mays) exposed to a Cu(OH)2 nanopesticide. ACS Sustainable Chemistry & Engineering, 5, 8294-8301.

No related articles found!
No Suggested Reading articles found!