Please wait a minute...
Journal of Integrative Agriculture  2023, Vol. 22 Issue (4): 1258-1265    DOI: 10.1016/j.jia.2022.08.014
Short Communication Advanced Online Publication | Current Issue | Archive | Adv Search |

Investigation of Aegilops umbellulata for stripe rust resistance, heading date, and the contents of iron, zinc, and gluten protein

SONG Zhong-ping1, 2, ZUO Yuan-yuan2, XIANG Qin2, LI Wen-jia2, LI Jian2, LIU Gang2, DAI Shou-fen2, YAN Ze-hong1, 2#

1 State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu 611130, P.R.China

2 Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, P.R.China

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

小伞山羊草二倍体 (Ae. umbellulata, 2n=2x=14, UU) 是对普通小麦遗传改良具有潜在利用价值的小麦近缘植物。本研究报道了46份小伞山羊草的条锈病抗性、抽穗期、微量元素铁锌含量以及面筋蛋白含量的调查结果。在四个环境下,42份小伞山羊草表现抗小麦条锈病,4份感条锈病。小伞山羊草的平均抽穗期 (180.9) 显著晚于3个普通小麦对照 (137.0),但1材料PI226500除外,为138.9天。小伞山羊草材料间的铁、锌含量有广泛的变异,变幅分别为69.74–348.09 mg/Kg49.83–101.65 mg/KgPI 542362, PI 542363PI 5543993份这3份材料的铁、锌含量高于其他小伞山羊草,分别为230.96–348.09 mg/Kg92.46–101.65 mg/Kg小伞山羊草的铁含量与顶芒山羊草 (Ae. comosa, 2n = 2x =14, MM) 和尾状山羊草 (Ae. markgrafii, 2n = 2x =14, CC) 相当,但高于节节麦 (Ae. tauschii, 2n = 2x =14, DD) 和普通小麦对照。小伞山羊草的含量高于节节麦、顶芒山羊草和普通小麦对照,但低于尾状山羊草。用高效液相色谱分析了小伞山羊草以及作为对照的其他山羊草二倍体的面筋蛋白含量。与其他物种相比较,小伞山羊草具有独特的洗脱峰,如41-42分钟的低分子量谷蛋白以及大约57分钟时的γ-醇溶蛋白。在所研究的物种中,小伞山羊草的γ-醇溶蛋白含量是最高的 (小伞山羊草vs. 其他物种,平均含量: 72.11%% vs. 49.37%,变异幅度 55.33–86.99% vs. 29.60–67.91%)这些研究结果表明,小山羊草在这些性状上有很大遗传变异,是可供用于普通小麦相关性状遗传改良利用的潜在基因库。



Abstract  

Aegilops umbellulata (UU) is a wheat wild relative that has potential use in the genetic improvement of wheat.  In this study, 46 Aeumbellulata accessions were investigated for stripe rust resistance, heading date (HD), and the contents of iron (Fe), zinc (Zn), and seed gluten proteins.  Forty-two of the accessions were classified as resistant to stripe rust, while the other four accessions were classified as susceptible to stripe rust in four environments.  The average HD of Aeumbellulata was significantly longer than that of three common wheat cultivars (180.9 d vs. 137.0 d), with the exception of PI226500 (138.9 d).  The Aeumbellulata accessions also showed high variability in Fe (69.74–348.09 mg kg–1) and Zn (49.83–101.65 mg kg–1) contents. Three accessions (viz., PI542362, PI542363, and PI554399) showed relatively higher Fe (230.96–348.09 mg kg–1) and Zn (92.46–101.65 mg kg–1) contents than the others.  The Fe content of Aeumbellulata was similar to those of Aecomosa and Aemarkgrafii but higher than those of Aetauschii and common wheat.  Aegilops umbellulata showed a higher Zn content than Aetauschii, Aecomosa, and common wheat, but a lower content than Aemarkgrafii.  Furthermore, Aeumbellulata had the highest proportion of γ-gliadin among all the species investigated (Aeumbellulata vs. other species=mean 72.11% vs. 49.37%; range: 55.33–86.99% vs. 29.60–67.91%).  These results demonstrated that Aeumbellulata exhibits great diversity in the investigated traits, so it can provide a potential gene pool for the genetic improvement of these traits in wheat.

Keywords:  Aegilops umbellulata        stripe rust resistance       heading date       Fe and Zn       gluten proteins       genetic variation  
Received: 07 January 2022   Accepted: 16 March 2022
Fund: 

This work was supported by the National Natural Science Foundation of China (31771783), the Key Research and Development Program of Sichuan Province, China (2021YFYZ0002), and the Sichuan Science and Technology Program, China (2018HH0130 and 2022YFH0105).

About author:  SONG Zhong-ping, E-mail: 412559033@qq.com; #Correspondence YAN Ze-hong, Tel: +86-28-82650350, E-mail: zhyan104@163.com

Cite this article: 

SONG Zhong-ping, ZUO Yuan-yuan, XIANG Qin, LI Wen-jia, LI Jian, LIU Gang, DAI Shou-fen, YAN Ze-hong. 2023.

Investigation of Aegilops umbellulata for stripe rust resistance, heading date, and the contents of iron, zinc, and gluten protein . Journal of Integrative Agriculture, 22(4): 1258-1265.

Anderson O D, Bekes F. 2011. Incorporation of high-molecular-weight glutenin subunits into doughs using 2 gram mixograph and extensigraphs. Journal of Cereal Science, 54, 288–295.
Andres F, Coupland G. 2012. The genetic basis of flowering responses to seasonal cues. Nature Reviews Genetics, 13, 627–639.
Bansal M, Adamski N M, Toor P I, Kaur S, Molnár I, Holušová K, Vrána J, Doležel J, Valárik M, Uauy C, Chhuneja P. 2020. Aegilops umbellulata introgression carrying leaf rust and stripe rust resistance genes Lr76 and Yr70 located to 9.47-Mb region on 5DS telomeric end through a combination of chromosome sorting and sequencing. Theoretical and Applied Genetics, 133, 903–915.
Bansal M, Kaur S, Dhaliwal H S, Bains N S, Bariana H S, Chhuneja P, Bansal U K. 2017. Mapping of Aegilops umbellulata-derived new leaf rust and stripe rust resistance loci in wheat. Plant Pathology, 66, 38–44.
Branlard G, Giraldo P, He Z H, Igrejas G, Ikeda T M, Janni M, Labuschagne M T, Wang D W, Wentzel B, Zhang K P. 2020. Contribution of genetic resources to grain storage protein composition and wheat quality. In: Igrejas G, Ikeda T M, Guzmán C, eds., Wheat Quality for Improving Processing and Human Health. Springer Publishing, Berlin. pp. 39–72.
Cane K, Eagles H A, Laurie D A, Trevaskis B, Vallance N, Eastwood R F, Gororo N N, Kuchel H, Martin P J. 2013. Ppd-B1 and Ppd-D1 and their effects in southern Australian wheat. Crop Pasture Science, 64, 100–114.
Chen F, Gao M X, Zhang J H, Zuo A H, Shang X L, Cui D Q. 2013. Molecular characterization of vernalization response genes in bread wheat from the Yellow and Huai valley of China. BMC Plant Biology, 13, 199.
Chhuneja P, Dhaliwal H S, Bains N S, Singh K. 2006. Aegilops kotschyi and Aegilops tauschii as sources for higher levels of grain iron and zinc. Plant Breeding, 125, 529–531.
Chhuneja P, Kaur S, Goel P K, Aghaee-Sarbarzeh M, Prashar M, Dhaliwal H S. 2008. Transfer of leaf rust and stripe rust resistance from Aegilops umbellulata Zhuk. to bread wheat (Triticum aestivum L.). Genetic Resources and Crop Evolution, 55, 849–859.
Dai S F, Chen H X, Li H Y, Yang W J, Zhai Z, Liu Q Y, Li J, Yan Z H. 2022. Variations in the quality parameters and gluten proteins in synthetic hexaploid wheats solely expressing the Glu-D1 locus. Journal of Integrative Agriculture, 21, 1877–1885.
Dai S F, Zhao L, Xue X F, Jia Y N, Liu D C, Pu Z J, Zheng Y L, Yan Z H. 2015. Analysis of high molecular weight glutenin subunits in five amphidiploids and their parental diploid species Aegilops umbellulata and Aegilops uniaristata. Plant Genetic Resources, 13, 186–189.
Dhaka V, Khatkar B S. 2015. Effects of gliadin/glutenin and HMW-GS/LMW-GS ratio on dough rheological properties and bread-making potential of wheat varieties. Journal of Food Quality, 38, 71–82.
Edae E A, Olivera P D, Jin Y, Poland J A, Rouse M N. 2016. Genotype-by-sequencing facilitates genetic mapping of a stem rust resistance locus in Aegilops umbellulata, a wild relative of cultivated wheat. BMC Genomics, 17, 1039.
Gupta P K, Balyan H S, Sharma S, Kumar R. 2021. Biofortification and bioavailability of Zn, Fe and Se in wheat: Present status and future prospects. Theoretical and Applied Genetics, 134, 1–35.
Hou W Q, Feng W, Yu G H, Du X Y, Ren M J. 2017. Cloning and functional analysis of a novel x-type high-molecular-weight glutenin subunit with altered cysteine residues from Aegilops umbellulata. Crop Pasture Science, 68, 409–414.
Kumar R, Kumar S, Sharma S, Kumar R. 2021. Genetics and breeding of Fe and Zn improvement in wheat. In: Wani S H, Mohan A, Singh G P, eds., Physiological, Molecular, and Genetic Perspectives of Wheat Improvement. Springer Publishing, Berlin. pp. 89–113.
Liu Z, Yan Z, Wan Y, Liu K, Zheng Y, Wang D. 2003. Analysis of HMW glutenin subunits and their coding sequences in two diploid Aegilops species. Theoretical and Applied Genetics, 106, 1368–1378.
Neelam K, Rawat N, Tiwari V K, Kumar S, Chhuneja P, Singh K, Randhawa G S, Dhaliwal H S. 2011. Introgression of group 4 and 7 chromosomes of Ae. peregrina in wheat enhances grain iron and zinc density. Molecular Breeding, 28, 623–634.
Okada M, Michikawa A, Yoshida K, Nagaki K, Ikeda T M, Takumi S. 2020. Phenotypic effects of the U-genome variation in nascent synthetic hexaploids derived from interspecific crosses between durum wheat and its diploid relative Aegilops umbellulata. PLoS ONE, 15, e0231129.
Rawat N, Tiwari V K, Neelam K, Randhawa G S, Chhuneja P, Singh K, Dhaliwal H S. 2009a. Development and characterization of Triticum aestivum–Aegilops kotschyi amphiploids with high grain iron and zinc contents. Plant Genetic Resources, 7, 271–280.
Rawat N, Tiwari V K, Singh N, Randhawa G S, Singh K, Chhuneja P, Dhaliwal H S. 2009b. Evaluation and utilization of Aegilops and wild Triticum species for enhancing iron and zinc content in wheat. Genetic Resources and Crop Evolution, 56, 53–64.
Schaart J G, Salentijn E M J, Goryunova S V, Chidzanga C, Esselink D G, Gosman N, Bentley A R, Gilissen L J W J, Smulders M J M. 2021. Exploring the alpha-gliadin locus: the 33-mer peptide with six overlapping coeliac disease epitopes in Triticum aestivum is derived from a subgroup of Aegilops tauschii. The Plant Journal, 106, 86–94.
Schneider A, Molnár I, Molnár-Láng M. 2008. Utilisation of Aegilops (goatgrass) species to widen the genetic diversity of cultivated wheat. Euphytica, 163, 1–19.
Sears E R. 1956. The transfer of leaf rust resistance from Aegilops umbellulata to wheat. Brookhaven Symposium in Biology, 9, 1–22.
Sharma P, Imran, Sharma P, Chugh V, Dhaliwal H S, Singh D. 2014. Morphological, cytological and biochemical characterization of wheat Aegilops longissima derivatives BC1F6 and BC2F4 with high grain micronutrient. International Journal of Agriculture Environment and Biotechnology, 7, 191–204. 
Sharma P, Sheikh I, Singh D, Kumar S, Verma S K, Kumar R, Vyas P, Dhaliwal H S. 2017. Uptake, distribution, and remobilization of iron and zinc among various tissues of wheat–Aegilops substitution lines at different growth stages. Acta Physiologiae Plantarum, 39, 185.
Song Z P, Dai S F, Jia Y N, Zhao L, Kang L Z, Liu D C, Wei Y M, Zheng Y L, Yan Z H. 2019. Development and characterization of Triticum turgidum–Aegilops umbellulata amphidiploids. Plant Genetic Resources, 17, 24–32.
Stakman E C, Stewart D M, Loegering W Q. 1962. Identification of Physiologic Races of Puccinia graminis var. tritici. United State Department of Agriculture, Agriculture Research Service Bulletin.
Tiwari V K, Rawat N, Neelam K, Kumar S, Randhawa G S, Dhaliwal H S. 2010. Substitutions of 2S and 7U chromosomes of Aegilops kotschyi in wheat enhance grain iron and zinc concentration. Theoretical and Applied Genetics, 121, 259–269.
Wang D W, Li D, Wang J J, Zhao Y, Wang Z J, Yue G D, Liu X, Qin H J, Zhang K P, Dong L L, Wang D W. 2017. Genome-wide analysis of complex wheat gliadins, the dominant carriers of celiac disease epitopes. Scientific Reports, 7, 44609.
Wang J, Wang C, Zhen S M, Li X H, Yan Y M. 2017. Low-molecular-weight glutenin subunits from the 1U genome of Aegilops umbellulata confer superior dough rheological properties and improve breadmaking quality of bread wheat. Journal of the Science of Food and Agriculture, 98, 2156–2167.
Wang S L, Shen X X, Ge P, Li J, Subburaj S, Li X H, Zeller F J, Hsam S L K, Yan Y M. 2012. Molecular characterization and dynamic expression patterns of two types of γ-gliadin genes from Aegilops and Triticum species. Theoretical and Applied Genetics, 7, 1371–1384.
Wang S W, Yin L N, Tanaka H, Tanaka K, Tsujimoto H. 2011. Wheat–Aegilops chromosome addition lines showing high iron and zinc contents in grains. Breeding Science, 61, 189–195.
Würschum T, Rapp M, Miedaner T, Longin C F H, Leiser W L. 2019. Copy number variation of Ppd-B1 is the major determinant of heading time in durum wheat. BMC Genetics, 20, 64.
Xiang Z G, Zhang L Q, Ning S Z, Zheng Y L, Liu D C. 2008. Evaluation of Aegilops tauschii for heading date and its gene location in a re-synthesized hexaploid wheat. Agricultural Sciences in China, 8, 1–7.
Ye X L, Li J, Cheng Y K, Yao F J, Long L, Yu C, Wang Y Q, Wu Y, Li J, Wang J R, Jiang Q T, Li W, Ma J, Wei Y M, Zheng Y L, Chen G Y. 2019. Genome-wide association study of resistance to stripe rust (Puccinia striiformis f. sp. tritici) in Sichuan wheat. BMC Plant Biology, 19, 147.
Zhang X F, Gao M X, Wang S S, Chen F, Cui D Q. 2015. Allelic variation at the vernalization and photoperiod sensitivity loci in Chinese winter wheat cultivars (Triticum aestivum L.). Frontiers in Plant Science, 6, 470.
Zhu Z D, Zhou R H, Kong X Y, Dong Y C, Jia J Z. 2006. Microsatellite marker identification of a Triticum aestivum–Aegilops umbellulata substitution line with powdery mildew resistance. Euphytica, 150, 149–153.
[1] AN Feng, ZHANG Kang, ZHANG Ling-kui, LI Xing, CHEN Shu-min, WANG Hua-sen, CHENG Feng. Genome-wide identification, evolutionary selection, and genetic variation of DNA methylation-related genes in Brassica rapa and Brassica oleracea[J]. >Journal of Integrative Agriculture, 2022, 21(6): 1620-1632.
[2] YANG Fang-yuan, GUO Jian-jun, LIU Ning, ZHANG Run-zhi.
Genetic structure of the invasive Colorado potato beetle Leptinotarsa decemlineata populations in China
[J]. >Journal of Integrative Agriculture, 2020, 19(2): 350-359.
[3] CHU Dong, QU Wan-mei, GUO Lei. Invasion genetics of alien insect pests in China: Research progress and future prospects[J]. >Journal of Integrative Agriculture, 2019, 18(4): 748-757.
[4] CHEN Hua-tao, LIU Xiao-qing, ZHANG Hong-mei, YUAN Xing-xing, GU He-ping, CUI Xiao-yan, CHEN Xin. Advances in salinity tolerance of soybean: Genetic diversity, heredity, and gene identification contribute to improving salinity tolerance[J]. >Journal of Integrative Agriculture, 2018, 17(10): 2215-2221.
[5] ZHU Kun-peng, BAO Jian-dong, ZHANG Lian-hu, YANG Xue, LI Yuan, Zhu Ming-hui, LIN Qing-yun, ZHAO Ao, ZHAO Zhen, ZHOU Bo, LU Guo-dong. Comparative analysis of the genome of the field isolate V86010 of the rice blast fungus Magnaporthe oryzae from Philippines[J]. >Journal of Integrative Agriculture, 2017, 16(10): 2222-2230.
[6] JIA Li-cong, ZHAI Hong, HE Shao-zhen, YANG Yu-feng, LIU Qing-chang. Analysis of drought tolerance and genetic and epigenetic variations in a somatic hybrid between Ipomoea batatas (L.) Lam. and I. triloba L.[J]. >Journal of Integrative Agriculture, 2017, 16(01): 36-46.
[7] LIU Guo-xiang, ZHANG Li-chao, XIA Chuan, JIA Ji-zeng, ZHANG Jun-cheng, ZHANG Qiang, DONG Chun-hao, KONG Xiu-ying, LIU Xu. Mapping of the heading date gene HdAey2280 in Aegilops tauschii[J]. >Journal of Integrative Agriculture, 2016, 15(12): 2719-2725.
[8] XU Fei-fei, JIN Liang, HUANG Yan, TONG Chuan, CHEN Ya-ling, BAO Jin-song. Association mapping of quantitative trait loci for yield-related agronomic traits in rice (Oryza sativa L.)[J]. >Journal of Integrative Agriculture, 2016, 15(10): 2192-2202.
[9] ZHAO Meng-ran, HUANG Chen-yang, WU Xiang-li, CHEN Qiang, QU Ji-bin, LI Yan-chun, GAO Wei, ZHANG Jin-xia. Genetic variation and population structure of the mushroom Pleurotus ferulae in China inferred from nuclear DNA analysis[J]. >Journal of Integrative Agriculture, 2016, 15(10): 2237-2246.
[10] LI Guang-xian, CHEN Ai-hua, LIU Xu, WANG Wen-ying, DING Han-feng, LI Jun, LIU Wei, LI Si-shen , YAO Fang-yin. QTL Detection and Epistasis Analysis for Heading Date Using Single Segment Substitution Lines in Rice (Oryza sativa L.)[J]. >Journal of Integrative Agriculture, 2014, 13(11): 2311-2321.
[11] LIU Yu-di, HOU Mao-lin, WU Yu-chun , LIU Gui-qin. Population Genetic Analysis of the Rice Stem Borer, Chilo suppressalis, in the South China[J]. >Journal of Integrative Agriculture, 2013, 12(6): 1033-1041.
[12] DENG Xiao-juan, DAI Liang-fang, HU Biao-lin, XIE Jian-kun. Genetic Diversity and Genetic Changes in the Introgression Lines Derived from Oryza sativa L. Mating with O. rufipogon Griff.[J]. >Journal of Integrative Agriculture, 2012, 12(7): 1059-1066.
[13] CAI Xue-hui, WUGuo-jun , LIU Yong-gang, LIU Guang-qing, SHI Wen-da, WANG Shu-jie, MA Ping, LI Cheng-jun , HAN Wen-yu. Attenuation of Virulent PorcineReproductive andRespiratorySyndrome Virus Strain CH-1a and Genetic Variation of ORF5 Gene[J]. >Journal of Integrative Agriculture, 2012, 12(12): 2035-2042.
[14] WANG Li-xia, CHENG Xu-zhen, WANG Su-hua, TIAN Jing. Analysis of anApplied Core Collection ofAdzuki Bean Germplasm by Using SSR Markers[J]. >Journal of Integrative Agriculture, 2012, 12(10): 1601-1609.
No Suggested Reading articles found!