Please wait a minute...
Journal of Integrative Agriculture  2020, Vol. 19 Issue (7): 1704-1720    DOI: 10.1016/S2095-3119(19)62761-9
Special Issue: 麦类遗传育种合辑Triticeae Crops Genetics · Breeding · Germplasm Resources
Crop Science Advanced Online Publication | Current Issue | Archive | Adv Search |
Genome-wide identification and transcriptome profiling reveal great expansion of SWEET gene family and their wide-spread responses to abiotic stress in wheat (Triticum aestivum L.)
QIN Jin-xia1, JIANG Yu-jie1, LU Yun-ze1, 3, ZHAO Peng1, WU Bing-jin1, LI Hong-xia1, WANG Yu1, XU Sheng-bao1, SUN Qi-xin2, LIU Zhen-shan1
1 State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling 712100, P.R.China
2 Department of Plant Genetics & Breeding, China Agricultural University, Beijing 100193, P.R.China
3 College of Landscape and Ecological Engineering, Hebei University of Engineering, Handan 056021, P.R.China
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
Abstract  
The Sugars Will Eventually be Exported Transporter (SWEET) gene family, identified as sugar transporters, has been demonstrated to play key roles in phloem loading, grain filling, pollen nutrition, and plant-pathogen interactions.  To date, the study of SWEET genes in response to abiotic stress is very limited.  In this study, we performed a genome-wide identification of the SWEET gene family in wheat and examined their expression profiles under mutiple abiotic stresses.  We identified a total of 105 wheat SWEET genes, and phylogenic analysis revealed that they fall into five clades, with clade V specific to wheat and its closely related species.  Of the 105 wheat SWEET genes, 59% exhibited significant expression changes after stress treatments, including drought, heat, heat combined with drought, and salt stresses, and more up-regulated genes were found in response to drought and salt stresses.  Further hierarchical clustering analysis revealed that SWEET genes exhibited differential expression patterns in response to different stress treatments or in different wheat cultivars.  Moreover, different phylogenetic clades also showed distinct response to abiotic stress treatments.  Finally, we found that homoeologous SWEET genes from different wheat subgenomes exhibited differential expression patterns in response to different abiotic stress treatments.  The genome-wide analysis revealed the great expansion of SWEET gene family in wheat and their wide participation in abiotic stress response.  The expression partitioning of SWEET homoeologs under abiotic stress conditions may confer greater flexibility for hexaploid wheat to adapt to ever changing environments.
Keywords:  wheat        sugar transporter        abiotic stress        homoeologous gene        expression partitioning  
Received: 13 March 2019   Accepted:
Fund: This work was supported by the National Natural Science Foundation of China (31601304 and 31601305), the Shaanxi Natural Science Foundation, China (2017JQ3023) and the Doctoral Scientific Research Foundation of Northwest A&F University, China (Z109021611 and Z109021612).
Corresponding Authors:  Correspondence LIU Zhen-shan, E-mail: zhenshanliu@nwafu.edu.cn   
About author:  QIN Jin-xia, E-mail: jinxiaqin2015@nwafu.edu.cn;

Cite this article: 

QIN Jin-xia, JIANG Yu-jie, LU Yun-ze, ZHAO Peng, WU Bing-jin, LI Hong-xia, WANG Yu, XU Sheng-bao, SUN Qi-xin, LIU Zhen-shan. 2020. Genome-wide identification and transcriptome profiling reveal great expansion of SWEET gene family and their wide-spread responses to abiotic stress in wheat (Triticum aestivum L.). Journal of Integrative Agriculture, 19(7): 1704-1720.

Adams K L, Wendel J F. 2005. Polyploidy and genome evolution in plants. Current Opinion in Plant Biology, 8, 135–141.
Almodares A, Hadi M R, Ahmadpour H. 2008. Sorghum stem yield and soluble carbohydrates under different salinity levels. African Journal Biotechnology, 7, 4051–4055.
Anders S, Pyl P T, Huber W. 2015. HTSeq - A Python framework to work with high-throughput sequencing data. Bioinformatics, 31, 166–169.
Chandran D. 2015. Co-option of developmentally regulated plant SWEET transporters for pathogen nutrition and abiotic stress tolerance. IUBMB Life, 67, 461–471.
Chardon F, Bedu M, Calenge F, Klemens P A W, Spinner L, Clement G, Chietera G, Leran S, Ferrand M, Lacombe B, Loudet O, Dinant S, Bellini C, Neuhaus H E, Daniel-Vedele F, Krapp A. 2013. Leaf fructose content is controlled by the vacuolar transporter SWEET17 in Arabidopsis. Current Biology, 23, 697–702.
Chen L Q, Hou B H, Lalonde S, Takanaga H, Hartung M L, Qu X Q, Guo W J, Kim J G, Underwood W, Chaudhuri B, Chermak D, Antony G, White F F, Somerville S C, Mudgett M B, Frommer W B. 2010. Sugar transporters for intercellular exchange and nutrition of pathogens. Nature, 468, 527–534.
Chen L Q, Lin I W N, Qu X Q, Sosso D, McFarlane H E, Londono A, Samuels A L, Frommer W B. 2015. A cascade of sequentially expressed sucrose transporters in the seed coat and endosperm provides nutrition for the Arabidopsis embryo. The Plant Cell, 27, 607–619.
Chen L Q, Qu X Q, Hou B H, Sosso D, Osorio S, Fernie A R, Frommer W B. 2012. Sucrose efflux mediated by SWEET proteins as a key step for phloem transport. Science, 335, 207–211.
Cheng W H, Endo A, Zhou L, Penney J, Chen H C, Arroyo A, Leon P, Nambara E, Asami T, Seo M, Koshiba T, Sheen J. 2002. A unique short-chain dehydrogenase/reductase in Arabidopsis glucose signaling and abscisic acid biosynthesis and functions. The Plant Cell, 14, 2723–2743.
Clavijo B J, Venturini L, Schudoma C, Accinelli G G, Kaithakottil G, Wright J, Borrill P, Kettleborough G, Heavens D, Chapman H, Lipscombe J, Barker T, Lu F H, McKenzie N, Raats D, Ramirez-Gonzalez R H, Coince A, Peel N, Percival-Alwyn L, Duncan O, et?al. 2017. An improved assembly and annotation of the allohexaploid wheat genome identifies complete families of agronomic genes and provides genomic evidence for chromosomal translocations. Genome Research, 27, 885–896.
Dubcovsky J, Dvorak J. 2007. Genome plasticity a key factor in the success of polyploid wheat under domestication. Science, 316, 1862–1866.
Durand M, Porcheron B, Hennion N, Maurousset L, Lemoine R, Pourtau N. 2016. Water deficit enhances C export to the roots in Arabidopsis thaliana plants with contribution of sucrose transporters in both shoot and roots. Plant Physiology, 170, 1460–1479.
Eom J S, Chen L Q, Sosso D, Julius B T, Lin I W, Qu X Q, Braun D M, Frommer W B. 2015. SWEETs, transporters for intracellular and intercellular sugar translocation. Current Opinion in Plant Biology, 25, 53–62.
Feldman M, Levy A A, Fahima T, Korol A. 2012. Genomic asymmetry in allopolyploid plants: Wheat as a model. Journal of Experimental Botany, 63, 5045–5059.
Feng C Y, Han J X, Han X X, Jiang J. 2015. Genome-wide identification, phylogeny, and expression analysis of the SWEET gene family in tomato. Gene, 573, 261–272.
Gao Y, Wang Z Y, Kumar V, Xu X F, Yuan D P, Zhu X F, Li T Y, Jia B L, Xuan Y H. 2018a. Genome-wide identification of the SWEET gene family in wheat. Gene, 642, 284–292.
Gao Y, Zhang C, Han X, Wang Z Y, Ma L, Yuan D P, Wu J N, Zhu X F, Liu J M, Li D P, Hu Y B, Xuan Y H. 2018b. Inhibition of OsSWEET11 function in mesophyll cells improves resistance of rice to sheath blight disease. Molecular Plant Pathology, 19, 2149–2161.
Gaut B S. 2002. Evolutionary dynamics of grass genomes. New Phytologist, 154, 15–28.
Griffiths C A, Paul M J, Foyer C H. 2016. Metabolite transport and associated sugar signalling systems underpinning source/sink interactions. Biochimica et Biophysica Acta-Bioenergetics, 1857, 1715–1725.
Guo W J, Nagy R, Chen H Y, Pfrunder S, Yu Y C, Santelia D, Frommer W B, Martinoia E. 2014. SWEET17, a facilitative transporter, mediates fructose transport across the tonoplast of Arabidopsis roots and leaves. Plant Physiology, 164, 777–789.
Hutin M, Sabot F, Ghesquiere A, Koebnik R, Szurek B. 2015. A knowledge-based molecular screen uncovers a broad-spectrum OsSWEET14 resistance allele to bacterial blight from wild rice. The Plant Journal, 84, 694–703.
Jian H J, Lu K, Yang B, Wang T Y, Zhang L, Zhang A X, Wang J, Liu L Z, Qu C M, Li J N. 2016. Genome-wide analysis and expression profiling of the SUC and SWEET gene families of sucrose transporters in oilseed rape (Brassica napus L.). Frontiers in Plant Science, 7, 1464.
Julius B T, Leach K A, Tran T M, Mertz R A, Braun D M. 2017. Sugar transporters in plants: New insights and discoveries. Plant and Cell Physiology, 58, 1442–1460.
Keunen E, Peshev D, Vangronsveld J, Van den Ende W, Cuypers A. 2013. Plant sugars are crucial players in the oxidative challenge during abiotic stress: Extending the traditional concept. Plant Cell and Environment, 36, 1242–1255.
Kim D, Landmead B, Salzberg S L. 2015. HISAT: A fast spliced aligner with low memory requirements. Nature Methods, 12, 357–360.
Klemens P A W, Patzke K, Deitmer J, Spinner L, Le Hir R, Bellini C, Bedu M, Chardon F, Krapp A, Neuhaus H E. 2013. Overexpression of the vacuolar sugar carrier AtSWEET16 modifies germination, growth, and stress tolerance in Arabidopsis. Plant Physiology, 163, 1338–1352.
Klemens P A W, Patzke K, Krapp A, Chardon F, Neuhaus H E. 2014. SWEET16 and SWEET17, two novel vacuolar sugar carriers with impact on cellular sugar homeostasis and plant traits. Biochemistry and Cell Biology, 92, 589–589.
Krasensky J, Jonak C. 2012. Drought, salt, and temperature stress-induced metabolic rearrangements and regulatory networks. Journal of Experimental Botany, 63, 1593–1608.
Kryvoruchko I S, Sinharoy S, Torres-Jerez I, Sosso D, Pislariu C I, Guan D, Murray J, Benedito V A, Frommer W B, Udvardi M K. 2016. MtSWEET11, a nodule-specific sucrose transporter of Medicago truncatula. Plant Physiology, 171, 554–565.
Kumar S, Stecher G, Tamura K. 2016. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular Biology and Evolution, 33, 1870–1874.
Lackey J A. 1980. Chromosome numbers in the phaseoleae (Fabaceae:Faboideae) and their relation to taxonomy. American Journal of Botany, 67, 595–602.
Langmead B, Salzberg S L. 2012. Fast gapped-read alignment with Bowtie 2. Nature Methods, 9, 357–359.
Leon P, Sheen J. 2003. Sugar and hormone connections. Trends in Plant Science, 8, 110–116.
Li L, Sheen J. 2016. Dynamic and diverse sugar signaling. Current Opinion in Plant Biology, 33, 116–125.
Li P, Zhou H, Shi X, Yu B, Zhou Y, Chen S, Wang Y, Peng Y, Meyer R C, Smeekens S C, Teng S. 2014. The ABI4-induced Arabidopsis ANAC060 transcription factor attenuates ABA signaling and renders seedlings sugar insensitive when present in the nucleus. PLoS Genetics, 10, e1004213.
Lin I W, Sosso D, Chen L Q, Gase K, Kim S G, Kessler D, Klinkenberg P M, Gorder M K, Hou B H, Qu X Q, Carter C J, Baldwin I T, Frommer W B. 2014. Nectar secretion requires sucrose phosphate synthases and the sugar transporter SWEET9. Nature, 508, 546–549.
Liu Q S, Yuan M, Zhou Y, Li X H, Xiao J H, Wang S P. 2011. A paralog of the MtN3/saliva family recessively confers race-specific resistance to Xanthomonas oryzae in rice. Plant Cell and Environment, 34, 1958–1969.
Liu Z L, Adams K L. 2007. Expression partitioning between genes duplicated by polyploidy under abiotic stress and during organ development. Current Biology, 17, 1669–1674.
Liu Z S, Xin M M, Qin J X, Peng H R, Ni Z F, Yao Y Y, Sun Q X. 2015. Temporal transcriptome profiling reveals expression partitioning of homeologous genes contributing to heat and drought acclimation in wheat (Triticum aestivum L.). BMC Plant Biology, 15, 152.
Ljung K, Nemhauser J L, Perata P. 2015. New mechanistic links between sugar and hormone signalling networks. Current Opinion in Plant Biology, 25, 130–137.
Ma Y Y, Zhang Y L, Lu J, Shao H B. 2009. Roles of plant soluble sugars and their responses to plant cold stress. African Journal of Biotechnology, 8, 2004–2010.
Manck-Gotzenberger J, Requena N. 2016. Arbuscular mycorrhiza symbiosis induces a major transcriptional reprogramming of the potato SWEET sugar transporter family. Frontiers in Plant Science, 7, 127.
Matsuoka Y. 2011. Evolution of polyploid Triticum wheats under cultivation: The role of domestication, natural hybridization and allopolyploid speciation in their diversification. Plant and Cell Physiology, 52, 750–764.
Mizuno H, Kasuga S, Kawahigashi H. 2016. The sorghum SWEET gene family: Stem sucrose accumulation as revealed through transcriptome profiling. Biotechnology for Biofuels, 9, 127.
Mizuno H, Kasuga S, Kawahigashi H. 2018. Root lodging is a physical stress that changes gene expression from sucrose accumulation to degradation in sorghum. BMC Plant Biology, 18, 2.
Patil G, Valliyodan B, Deshmukh R, Prince S, Nicander B, Zhao M Z, Sonah H, Song L, Lin L, Chaudhary J, Liu Y, Joshi T, Xu D, Nguyen H T. 2015. Soybean (Glycine max) SWEET gene family: insights through comparative genomics, transcriptome profiling and whole genome re-sequence analysis. BMC Genomics, 16, 520.
Van De Peer Y, Mizrachi E, Marchal K. 2017. The evolutionary significance of polyploidy. Nature Reviews Genetics, 18, 411–424.
Porter K, Worrall W, Gardenhire J, Gilmore E, McDaniel M, Tuleen N. 1987. Registration of ‘TAM 107’ wheat. Crop Science, 27, 818–819.
Ramirez-Gonzalez R H, Borrill P, Lang D, Harrington S A, Brinton J, Venturini L, Davey M, Jacobs J, van Ex F, Pasha A, Khedikar Y, Robinson S J, Cory A T, Florio T, Concia L, Juery C, Schoonbeek H, Steuernagel B, Xiang D, Ridout C J, et?al. 2018. The transcriptional landscape of polyploid wheat. Science, 361, doi: 10.1126/science.aar6089
Robinson M D, McCarthy D J, Smyth G K. 2010. EdgeR: A Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics, 26, 139–140.
Rolland F, Baena-Gonzalez E, Sheen J. 2006. Sugar sensing and signaling in plants: Conserved and novel mechanisms. Annual Review of Plant Biology, 57, 675–709.
Saitou N, Nei M. 1987. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Molecular Biology and Evolution, 4, 406–425.
Seo P J, Park J M, Kang S K, Kim S G, Park C M. 2011. An Arabidopsis senescence-associated protein SAG29 regulates cell viability under high salinity. Planta, 233, 189–200.
Slama I, Abdelly C, Bouchereau A, Flowers T, Savoure A. 2015. Diversity, distribution and roles of osmoprotective compounds accumulated in halophytes under abiotic stress. Annals of Botany, 115, 433–447.
Sosso D, Luo D P, Li Q B, Sasse J, Yang J L, Gendrot G, Suzuki M, Koch K E, McCarty D R, Chourey P S, Rogowsky P M, Ross-Ibarra J, Yang B, Frommer W B. 2015. Seed filling in domesticated maize and rice depends on SWEET-mediated hexose transport. Nature Genetics, 47, 1489–1493.
Sun S J, Guo S Q, Yang X, Bao Y M, Tang H J, Sun H, Huang J, Zhang H S. 2010. Functional analysis of a novel Cys2/His2-type zinc finger protein involved in salt tolerance in rice. Journal of Experimental Botany, 61, 2807–2818.
Vogel J P, Garvin D F, Mockler T C, Schmutz J, Rokhsar D, Bevan M W, Barry K, Lucas S, Harmon-Smoth M, Lail K, Tice H, Grimwood J, McKenzie N, Huo N, Gu Y Q, Lazo G R, Anderson O D, You F M, Luo M C, Dvorak J, et?al. 2010. Genome sequencing and analysis of the model grass brachypodium distachyon. Nature, 463, 763–768.
Wang Y J, Deng D X, Shi Y T, Miao N, Bian Y L, Yin Z T. 2012. Diversification, phylogeny and evolution of auxin response factor (ARF) family: Insights gained from analyzing maize ARF genes. Molecular Biology Reports, 39, 2401–2415.
Wani S H. 2018. Biochemical, Physiological and Molecular Avenues for Combating Abiotic Stress in Plants. 1st ed. Academic Press, Elsevier Inc.
Xu S M, Liu L X, Woo K C, Wang D L. 2007. Changes in photosynthesis, xanthophyll cycle, and sugar accumulation in two North Australia tropical species differing in leaf angles. Photosynthetica, 45, 348–354.
Yang C W, Zhao L, Zhang H K, Yang Z Z, Wang H, Wen S S, Zhang C Y, Rustgi S, von Wettstein D, Liu B. 2014. Evolution of physiological responses to salt stress in hexaploid wheat. Proceedings of the National Academy of Sciences of the United States of America, 111, 11882–11887.
Yuan M, Zhao J W, Huang R Y, Li X H, Xiao J H, Wang S P. 2014. Rice MtN3/saliva/SWEET gene family: Evolution, expression profiling, and sugar transport. Journal of Integrative Plant Biology, 56, 559–570.
Zhang Y M, Liu Z S, Khan A, Lin Q, Han Y, Mu P, Liu Y G, Zhang H S, Li LY, Meng X H, Ni Z F, Xin M M. 2016. Expression partitioning of homeologs and tandem duplications contribute to salt tolerance in wheat (Triticum aestivum L.). Scientific Reports, 6, 21476.
Zhang Z C, Belcram H, Gornicki P, Charles M, Just J, Huneau C, Magdelenat G, Couloux A, Samain S, Gill B S, Rasmussen J B, Barbe V, Faris J D, Chalhoub B. 2011. Duplication and partitioning in evolution and function of homoeologous Q loci governing domestication characters in polyploid wheat. Proceedings of the National Academy of Sciences of the United States of America, 108, 18737–18742.
 
[1] Zihui Liu, Xiangjun Lai, Yijin Chen, Peng Zhao, Xiaoming Wang, Wanquan Ji, Shengbao Xu. Selection and application of four QTLs for grain protein content in modern wheat cultivars[J]. >Journal of Integrative Agriculture, 2024, 23(8): 2557-2570.
[2] Gensheng Zhang, Mudi Sun, Xinyao Ma, Wei Liu, Zhimin Du, Zhensheng Kang, Jie Zhao. Yr5-virulent races of Puccinia striiformis f. sp. tritici possess relative parasitic fitness higher than current main predominant races and potential risk[J]. >Journal of Integrative Agriculture, 2024, 23(8): 2674-2685.
[3] Wenjie Yang, Jie Yu, Yanhang Li, Bingli Jia, Longgang Jiang, Aijing Yuan, Yue Ma, Ming Huang, Hanbing Cao, Jinshan Liu, Weihong Qiu, Zhaohui Wang. Optimized NPK fertilizer recommendations based on topsoil available nutrient criteria for wheat in drylands of China[J]. >Journal of Integrative Agriculture, 2024, 23(7): 2421-2433.
[4] Yibo Hu, Feng Qin, Zhen Wu, Xiaoqin Wang, Xiaolong Ren, Zhikuan Jia, Zhenlin Wang, Xiaoguang Chen, Tie Cai. Heterogeneous population distribution enhances resistance to wheat lodging by optimizing the light environment[J]. >Journal of Integrative Agriculture, 2024, 23(7): 2211-2226.
[5] Bingli Jiang, Wei Gao, Yating Jiang, Shengnan Yan, Jiajia Cao, Litian Zhang, Yue Zhang, Jie Lu, Chuanxi Ma, Cheng Chang, Haiping Zhang. Identification of P-type plasma membrane H+-ATPases in common wheat and characterization of TaHA7 associated with seed dormancy and germination[J]. >Journal of Integrative Agriculture, 2024, 23(7): 2164-2177.
[6] Yongchao Hao, Fanmei Kong, Lili Wang, Yu Zhao, Mengyao Li, Naixiu Che, Shuang Li, Min Wang, Ming Hao, Xiaocun Zhang, Yan Zhao.

Genome-wide association study of grain micronutrient concentrations in bread wheat [J]. >Journal of Integrative Agriculture, 2024, 23(5): 1468-1480.

[7] Zhikai Cheng, Xiaobo Gu, Yadan Du, Zhihui Zhou, Wenlong Li, Xiaobo Zheng, Wenjing Cai, Tian Chang.

Spectral purification improves monitoring accuracy of the comprehensive growth evaluation index for film-mulched winter wheat [J]. >Journal of Integrative Agriculture, 2024, 23(5): 1523-1540.

[8] Xuan Li, Shaowen Wang, Yifan Chen, Danwen Zhang, Shanshan Yang, Jingwen Wang, Jiahua Zhang, Yun Bai, Sha Zhang.

Improved simulation of winter wheat yield in North China Plain by using PRYM-Wheat integrated dry matter distribution coefficient [J]. >Journal of Integrative Agriculture, 2024, 23(4): 1381-1392.

[9] YANG Wei-bing, ZHANG Sheng-quan, HOU Qi-ling, GAO Jian-gang, WANG Han-Xia, CHEN Xian-Chao, LIAO Xiang-zheng, ZHANG Feng-ting, ZHAO Chang-ping, QIN Zhi-lie.

Transcriptomic and metabolomic analysis provides insights into lignin biosynthesis and accumulation and differences in lodging resistance in hybrid wheat [J]. >Journal of Integrative Agriculture, 2024, 23(4): 1105-1117.

[10] Yingxia Dou, Hubing Zhao, Huimin Yang, Tao Wang, Guanfei Liu, Zhaohui Wang, Sukhdev Malhi.

The first factor affecting dryland winter wheat grain yield under various mulching measures: Spike number [J]. >Journal of Integrative Agriculture, 2024, 23(3): 836-848.

[11] Yonghui Fan, Boya Qin, Jinhao Yang, Liangliang Ma, Guoji Cui, Wei He, Yu Tang, Wenjing Zhang, Shangyu Ma, Chuanxi Ma, Zhenglai Huang.

Night warming increases wheat yield by improving pre-anthesis plant growth and post-anthesis grain starch biosynthesis [J]. >Journal of Integrative Agriculture, 2024, 23(2): 536-550.

[12] Wei Chen, Jingjuan Zhang, Xiping Deng.

Winter wheat yield improvement by genetic gain across different provinces in China [J]. >Journal of Integrative Agriculture, 2024, 23(2): 468-483.

[13] Wenqiang Wang, Xizhen Guan, Yong Gan, Guojun Liu, Chunhao Zou, Weikang Wang, Jifa Zhang, Huifei Zhang, Qunqun Hao, Fei Ni, Jiajie Wu, Lynn Epstein, Daolin Fu.

Creating large EMS populations for functional genomics and breeding in wheat [J]. >Journal of Integrative Agriculture, 2024, 23(2): 484-493.

[14] Changqin Yang, Xiaojing Wang, Jianan Li, Guowei Zhang, Hongmei Shu, Wei Hu, Huanyong Han, Ruixian Liu, Zichun Guo.

Straw return increases crop production by improving soil organic carbon sequestration and soil aggregation in a long-term wheat–cotton cropping system [J]. >Journal of Integrative Agriculture, 2024, 23(2): 669-679.

[15] Qiuyan Yan, Linjia Wu, Fei Dong, Shuangdui Yan, Feng Li, Yaqin Jia, Jiancheng Zhang, Ruifu Zhang, Xiao Huang.

Subsoil tillage enhances wheat productivity, soil organic carbon and available nutrient status in dryland fields [J]. >Journal of Integrative Agriculture, 2024, 23(1): 251-266.

No Suggested Reading articles found!