Please wait a minute...
Journal of Integrative Agriculture  2022, Vol. 21 Issue (6): 1539-1550    DOI: 10.1016/S2095-3119(21)63701-2
Special Issue: 水稻遗传育种合辑Rice Genetics · Breeding · Germplasm Resources
Crop Science Advanced Online Publication | Current Issue | Archive | Adv Search |
Genetic diversity analysis and GWAS reveal the adaptive loci of milling and appearance quality of japonica (oryza sativa L.) in Northeast China
XU Xin, YE Jun-hua, YANG Ying-ying, LI Ruo-si, LI Zhen, WANG Shan, SUN Yan-fei, ZHANG Meng-chen, XU Qun, FENG Yue, WEI Xing-hua, YANG Yao-long
State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, P.R.China
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

本研究以来源于辽宁、吉林和黑龙江三个省份的200个粳稻品种为实验材料,对碾磨和外观品质相关的性状进行考察。材料的系谱分析和遗传多样性分析结果表明,来自吉林省的品种遗传多样性最高。稻米品质的评价结果表明,来自辽宁省的品种具较好的碾磨品质,而来自黑龙江的品种具较好的外观品质。本研究同时用单位点和多位点的全基因组关联分析(GWAS)对碾磨和外观品质相关的基因位点进行计算,结果共检测到99个显著的SNP位点。其中,共3个SNP位点同时在混合线性模型(MLM)、mrMLM和FASTmrMLM这3种计算模型中检测到,进一步利用连锁不平衡分析获得对应的3个候选区域(qBRR-1、qBRR-9和qDEC-3),以便于后续的候选基因分析。由于候选区域内的候选基因超过300个,研究还结合基因GO分析以鉴定潜在的候选基因。此外,候选区域的遗传多样性分析结果表明,qBRR-9很可能在东北粳稻的育种过程中受到了较强的选择。这些结果为水稻育种和品质改良提供了具有参考意义的信息。




Abstract  Milling and appearance quality are important contributors to rice grain quality.  Abundant genetic diversity and a suitable environment are crucial for rice improvement.  In this study, we investigated the milling and appearance quality-related traits in a panel of 200 japonica rice cultivars selected from Liaoning, Jilin and Heilongjiang provinces in Northeast China.  Pedigree assessment and genetic diversity analysis indicated that cultivars from Jilin harbored the highest genetic diversity among the three geographic regions.  An evaluation of grain quality indicated that cultivars from Liaoning showed superior milling quality, whereas cultivars from Heilongjiang tended to exhibit superior appearance quality.  Single- and multi-locus genome-wide association studies (GWAS) were conducted to identify loci associated with milling and appearance quality-related traits.  Ninety-nine significant single-nucleotide polymorphisms (SNPs) were detected.  Three common SNPs were detected using the mixed linear model (MLM), mrMLM, and FASTmrMLM methods.  Linkage disequilibrium decay was estimated and indicated three candidate regions (qBRR-1, qBRR-9 and qDEC-3) for further candidate gene analysis.  More than 300 genes were located in these candidate regions.  Gene Ontology (GO) analysis was performed to discover the potential candidate genes.  Genetic diversity analysis of the candidate regions revealed that qBRR-9 may have been subject to strong selection during breeding.  These results provide information that will be valuable for the improvement of grain quality in rice breeding.
Keywords:  rice        grain quality        GWAS        genetic diversity  
Received: 02 December 2020   Accepted: 02 April 2021
Fund: This research was funded by the National Key Research and Development Program of China (2016YFD0100902–07), the Central Public-interest Scientific Institution Basal Research Fund, China (CPSIBRF-CNRRI-202101), and the Chinese Academy of Agricultural Sciences (CAAS-ASTIP-201X-CNRRI).
About author:  Correspondence YANG Yao-long, Tel: +86-571-63370539, E-mail: yangxiao182@126.com; WEI Xing-hua, Tel: +86-571-63370366, E-mail: weixinghua@caas.cn

Cite this article: 

XU Xin, YE Jun-hua, YANG Ying-ying, LI Ruo-si, LI Zhen, WANG Shan, SUN Yan-fei, ZHANG Meng-chen, XU Qun, FENG Yue, WEI Xing-hua, YANG Yao-long. 2022. Genetic diversity analysis and GWAS reveal the adaptive loci of milling and appearance quality of japonica (oryza sativa L.) in Northeast China. Journal of Integrative Agriculture, 21(6): 1539-1550.

Barrett J C, Fry B, Maller J, Daly M J. 2005. Haploview: Analysis and visualization of LD and haplotype maps. Bioinformatics, 21, 263–265.
Bradbury P J, Zhang Z, Kroon D E, Casstevens T M, Ramdoss Y, Buckler E S. 2007. TASSEL: Software for association mapping of complex traits in diverse samples. Bioinformatics, 23, 2633–2635.
Cui Y, Zhu M M, Xu Z J, Chen W F. 2020. The breeding of japonica rice in northern China: An 11-year study (2006–2016). Journal of Integrative Agriculture, 19, 1941–1946.
Duan P, Xu J, Zeng D, Zhang B, Geng M, Zhang G, Huang K, Huang L, Xu R, Ge S, Qian Q, Li Y. 2017. Natural variation in the promoter of GSE5 contributes to grain size diversity in rice. Molecular Plant, 10, 685–694.
Fukuda M, Kawagoe Y, Murakami T, Washida H, Sugino A, Nagamine A, Okita T W, Ogawa M, Kumamaru T. 2016. The dual roles of the Golgi transport 1 (GOT1B): RNA localization to the cortical endoplasmic reticulum and the export of proglutelin and α-globulin from the cortical ER to the Golgi. Plant and Cell Physiology, 57, 2380–2391.
Kang H G, Park S, Matsuoka M, An G. 2005. White-core endosperm floury endosperm-4 in rice is generated by knockout mutations in the C4-type pyruvate orthophosphate dikinase gene (OsPPDKB). Plant Journal, 42, 901–911.
Lanning S B, Siebenmorgen T J, Counce P A, Ambardekar A A, Mauromoustakos A. 2011. Extreme nighttime air temperatures in 2010 impact rice chalkiness and milling quality. Field Crops Research, 124, 132–136.
Li H, Zhang R Y, Dai C J, Lan J. 2013. Comparison of rice quality differences in three provinces in Northeast China. China Rice, 19, 18–22. (in Chinese)
Li X J, Zhang Y F, Hou M, Sun F, Shen Y, Xiu Z H, Wang X, Chen Z L, Sun S S M, Small I, Tan B C. 2014. Small kernel 1 encodes a pentatricopeptide repeat protein required for mitochondrial nad7 transcript editing and seed development in maize (Zea mays) and rice (Oryza sativa). Plant Journal, 79, 797–809.
Li Y B, Fan C C, Xing Y Z, Yun P, Luo L J, Yan B, Peng B, Xie W B, Wang G W, Li X H, Xiao J H, Xu C G, He Y Q. 2014. Chalk5 encodes a vacuolar H+-translocating pyrophosphatase influencing grain chalkiness in rice. Nature Genetics, 46, 398–404.
Liu D, Wang J Y, Wang X X, Yang X L, Sun J, Chen W F. 2015. Genetic diversity and elite gene introgression reveal the japonica rice breeding in northern China. Journal of Integrative Agriculture, 14, 811–822.
Matsushima R, Maekawa M, Kusano M, Kondo H, Fujita N, Kawagoe Y, Sakamoto W. 2014. Amyloplast-localized SUBSTANDARD STARCH GRAIN4 protein influences the size of starch grains in rice endosperm. Plant Physiology, 164, 623–636.
Misra G, Anacleto R, Badoni S, Butardo V, Molina L, Graner A, Demont M, Morell M K, Sreenivasulu N. 2019. Dissecting the genome-wide genetic variants of milling and appearance quality traits in rice. Journal of Experimental Botany, 19, 5115–5130.
NY/T 593-2013. 2013. Agricultural Industry Standard of the People’s Republic of China: Cooking Rice Variety Quality.  Ministry of Agriculture of the People’s Republic of China. (in Chinese)
Qiu X, Pang Y, Yuan Z, Xing D, Xu J, Dingkuhn M, Li Z, Ye G. 2015. Genome-wide association study of grain appearance and milling quality in a worldwide collection of indica rice germplasm. PLoS ONE, 10, 1–25.
Shar T, Sheng Z H, Ali U, Fiaz S, Wei X J, Xie L H, Jiao G A, Ali F, Shao G N, Hu S K, Hu P S, Tang S Q. 2020. Mapping quantitative trait loci associated with starch paste viscosity attributes by using double haploid populations of rice (Oryza sativa L.). Journal of Integrative Agriculture, 19, 1691–1703.
Shi Y Y, Guo E J, Zhang Z T, Zhu X, Yang X G. 2020. Spatial-temporal characteristics of agricultural climate resources and sterile-type chilling injury in rice growing season in three provinces of Northeast China. Chinese Journal of Applied Ecology, 31, 1625–1635. (in Chinese)
Si L, Chen J, Huang X, Gong H, Luo J, Hou Q, Zhou T, Lu T, Zhu J, Shangguan Y, Chen E, Gong C, Zhao Q, Jing Y, Zhao Y, Li Y, Cui L, Fan D, Lu Y, et al. 2016. OsSPL13 controls grain size in cultivated rice. Nature Genetics, 48, 447–456.
Siebenmorgen T J, Grigg B C, Lanning S B. 2013. Impacts of preharvest factors during kernel development on rice quality and functionality. Annual Review of Food Science and Technology, 4, 101–115.
Tamba C L, Zhang Y M. 2018. A fast mrMLM algorithm for multi-locus genome-wide association studies. bioRxiv. [2020-10-18]. https://doi.org/10.1101/341784.
Tan Y F, Sun M, Xing Y Z, Hua J P, Sun X L. 2001. Mapping quantitative trait loci for milling quality, protein content and color characteristics of rice using a recombinant inbred line population derived from an elite rice hybrid. Theoretical and Applied Genetics, 103, 1037–1045.
Wang M, Li W, Fang C, Xu F, Liu Y, Wang Z, Yang R, Zhang M, Liu S, Lu S, Lin T, Tang J, Wang Y, Wang H, Lin H, Zhu B, Chen M, Kong F, Liu B, et al. 2018. Parallel selection on a dormancy gene during domestication of crops from multiple families. Nature Genetics, 50, 1435–1441.
Wang S B, Feng J Y, Ren W L, Huang B, Zhou L, Wen Y J, Zhang J, Dunwell J M, Xu S, Zhang Y M. 2016. Improving power and accuracy of genome-wide association studies via a multi-locus mixed linear model methodology. Scientific Reports, 6, 19444.
Wang X, Pang Y, Wang C, Chen K, Zhu Y, Shen C, Ali J, Xu J, Li Z. 2017. New candidate genes affecting rice grain appearance and milling quality detected by genome-wide and gene-based association analyses. Frontiers in Plant Science, 7, 1998.
Wang Y, Liu F, Ren Y, Wang Y, Liu X, Long W, Wang D, Zhu J, Zhu X, Jing R, Wu M, Hao Y, Jiang L, Wang C, Wang H, Bao Y, Wan J. 2016. GOLGI TRANSPORT 1B regulates protein export from the endoplasmic reticulum in rice endosperm cells. Plant Cell, 28, 2850–2865.
Wei X, Jiang L, Xu J, Zhang W, Lu G. 2008. Genetic analyses of heading date of japonica rice cultivars from Northeast China. Field Crops Research, 107, 147–154.
Wen Y J, Zhang H, Ni Y L, Huang B, Zhang J, Feng J Y, Wang S B, Dunwell J M, Zhang Y M, Wu R. 2018. Methodological implementation of mixed linear models in multi-locus genome-wide association studies. Briefings in Bioinformatics, 19, 700–712.
Xiao N, Gao Y, Qian H, Gao Q, Wu Y, Zhang D, Zhang X, Yu L, Li Y, Pan C, Liu G, Zhou C, Jiang M, Huang N, Dai Z, Liang C, Chen Z, Chen J, Li A. 2018. Identification of genes related to cold tolerance and a functional allele that confers cold tolerance. Plant Physiology, 177, 1108–1123.
Xin F, Xiao X, Dong J, Zhang G, Zhang Y, Wu X, Li X, Zou Z, Ma J, Du G, Doughty R B, Zhao B, Li B. 2020. Science of the total environment large increases of paddy rice area, gross primary production, and grain production in Northeast China during 2000–2017. Science of the Total Environment, 711, 135183.
Xu Q, Yuan X, Wang S, Feng Y, Yu H, Wang Y, Yang Y, Wei X. 2016. The genetic diversity and structure of indica rice in China as detected by single nucleotide polymorphism analysis. BMC Genetics, 17, 53.
Xu Z J, Shao G J, Han Y, Zhang X J, Quan C Z, Pan G J, Chen W F. 2006. A Preliminary study on yield and quality of rice and their relationship with panicle characters in Northeast Region of China. Acta Agronomica Sinica, 32, 1878–1883. (in Chinese)
Yang Y, Xu X, Zhang M, Xu Q, Feng Y, Yuan X, Yu H, Wang Y, Wei X. 2020. Genetic basis dissection for eating and cooking qualities of japonica rice in Northeast China. Agronomy, 10, 423.
Ye J, Niu X, Yang Y, Wang S, Xu Q, Yuan X. 2018. Alleles control heading date and yield potential of japonica rice in Northeast China plant materials and growing conditions. Frontiers in Plant Science, 9, 35.


[1] Gaozhao Wu, Xingyu Chen, Yuguang Zang, Ying Ye, Xiaoqing Qian, Weiyang Zhang, Hao Zhang, Lijun Liu, Zujian Zhang, Zhiqin Wang, Junfei Gu, Jianchang Yang. An optimized strategy of nitrogen-split application based on the leaf positional differences in chlorophyll meter readings[J]. >Journal of Integrative Agriculture, 2024, 23(8): 2605-2617.
[2] Xiaogang He, Zirong Li, Sicheng Guo, Xingfei Zheng, Chunhai Liu, Zijie Liu, Yongxin Li, Zheming Yuan, Lanzhi Li. Epistasis-aware genome-wide association studies provide insights into the efficient breeding of high-yield and high-quality rice[J]. >Journal of Integrative Agriculture, 2024, 23(8): 2541-2556.
[3] Myeong-Hyeon Min, Aye Aye Khaing, Sang-Ho Chu, Bhagwat Nawade, Yong-Jin Park. Exploring the genetic basis of pre-harvest sprouting in rice through a genome-wide association study-based haplotype analysis[J]. >Journal of Integrative Agriculture, 2024, 23(8): 2525-2540.
[4] Peng Xu, Mengdie Jiang, Imran Khan, Muhammad Shaaban, Hongtao Wu, Barthelemy Harerimana, Ronggui Hu. Regulatory potential of soil available carbon, nitrogen, and functional genes on N2O emissions in two upland plantation systems[J]. >Journal of Integrative Agriculture, 2024, 23(8): 2792-2806.
[5] Bin Lei, Jiale Shao, Feng Zhang, Jian Wang, Yunhua Xiao, Zhijun Cheng, Wenbang Tang, Jianmin Wan. Genetic analysis and fine mapping of a grain size QTL in the small-grain sterile rice line Zhuo201S[J]. >Journal of Integrative Agriculture, 2024, 23(7): 2155-2163.
[6] Hanzhu Gu, Xian Wang, Minhao Zhang, Wenjiang Jing, Hao Wu, Zhilin Xiao, Weiyang Zhang, Junfei Gu, Lijun Liu, Zhiqin Wang, Jianhua Zhang, Jianchang Yang, Hao Zhang.

The response of roots and the rhizosphere environment to integrative cultivation practices in paddy rice [J]. >Journal of Integrative Agriculture, 2024, 23(6): 1879-1896.

[7] Yongchao Hao, Fanmei Kong, Lili Wang, Yu Zhao, Mengyao Li, Naixiu Che, Shuang Li, Min Wang, Ming Hao, Xiaocun Zhang, Yan Zhao.

Genome-wide association study of grain micronutrient concentrations in bread wheat [J]. >Journal of Integrative Agriculture, 2024, 23(5): 1468-1480.

[8] Chaoyue Pang, Ling Jin, Haoyu Zang, Damalk Saint-Claire S. Koklannou, Jiazhi Sun, Jiawei Yang, Yongxing Wang, Liang Xu, Chunyan Gu, Yang Sun, Xing Chen, Yu Chen. Establishment of a system for screening and identification of novel bactericide targets in the plant pathogenic bacterium Xanthomonas oryzae pv. oryzae using Tn-seq and SPR[J]. >Journal of Integrative Agriculture, 2024, 23(5): 1580-1592.
[9] Yuguang Zang, Gaozhao Wu, Qiangqiang Li, Yiwen Xu, Mingming Xue, Xingyu Chen, Haiyan Wei, Weiyang Zhang, Hao Zhang, Lijun Liu, Zhiqin Wang, Junfei Gu, Jianchang Yang.

Irrigation regimes modulate non-structural carbohydrate remobilization and improve grain filling in rice (Oryza sativa L.) by regulating starch metabolism [J]. >Journal of Integrative Agriculture, 2024, 23(5): 1507-1522.

[10] Luqi Jia, Yongdong Dai, Ziwei Peng, Zhibo Cui, Xuefei Zhang, Yangyang Li, Weijiang Tian, Guanghua He, Yun Li, Xianchun Sang.

The auxin transporter OsAUX1 regulates tillering in rice (Oryza sativa) [J]. >Journal of Integrative Agriculture, 2024, 23(5): 1454-1467.

[11] Shuang Cheng, Zhipeng Xing, Chao Tian, Mengzhu Liu, Yuan Feng, Hongcheng Zhang.

Optimized tillage methods increase mechanically transplanted rice yield and reduce the greenhouse gas emissions [J]. >Journal of Integrative Agriculture, 2024, 23(4): 1150-1163.

[12] Yunping Chen, Jie Hu, Zhiwen Cai, Jingya Yang, Wei Zhou, Qiong Hu, Cong Wang, Liangzhi You, Baodong Xu.

A phenology-based vegetation index for improving ratoon rice mapping using harmonized Landsat and Sentinel-2 data [J]. >Journal of Integrative Agriculture, 2024, 23(4): 1164-1178.

[13] Junnan Hang, Bowen Wu, Diyang Qiu, Guo Yang, Zhongming Fang, Mingyong Zhang.

OsNPF3.1, a nitrate, abscisic acid and gibberellin transporter gene, is essential for rice tillering and nitrogen utilization efficiency [J]. >Journal of Integrative Agriculture, 2024, 23(4): 1087-1104.

[14] Min Jiang, Zhang Chen, Yuan Li , Xiaomin Huang, Lifen Huang, Zhongyang Huo.

Rice canopy temperature is affected by nitrogen fertilizer [J]. >Journal of Integrative Agriculture, 2024, 23(3): 824-835.

[15] Jingnan Zou, Ziqin Pang, Zhou Li, Chunlin Guo, Hongmei Lin, Zheng Li, Hongfei Chen, Jinwen Huang, Ting Chen, Hailong Xu, Bin Qin, Puleng Letuma, Weiwei Lin, Wenxiong Lin.

The underlying mechanism of variety–water–nitrogen–stubble damage interactions on yield formation in ratoon rice with low stubble height under mechanized harvesting [J]. >Journal of Integrative Agriculture, 2024, 23(3): 806-823.

No Suggested Reading articles found!