Please wait a minute...
Journal of Integrative Agriculture  2021, Vol. 20 Issue (5): 1359-1371    DOI: 10.1016/S2095-3119(20)63260-9
Special Issue: 动物科学合辑Animal Science
Animal Science · Veterinary Medicine Advanced Online Publication | Current Issue | Archive | Adv Search |
Exploring the genetic features and signatures of selection in South China indigenous pigs
DIAO Shu-qi, XU Zhi-ting, YE Shao-pan, HUANG Shu-wen, TENG Jin-yan, YUAN Xiao-long, CHEN Zan-mou, ZHANG Hao, LI Jia-qi, ZHANG Zhe
Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding/National Engineering Research Center for Breeding Swine Industry/College of Animal Science, South China Agricultural University, Guangzhou 510642, P.R.China
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

遗传特性的探索,可以了解群体内遗传结构,对探索群体形成提供有效信息。而选择信号检测不仅能反映选择对品种的培育作用,还有助于更好地理解选择机制。海南猪、五指山猪、两广小花猪是我国华南地区优秀的地方品种,具有耐粗饲、性成熟早、肉质鲜美等优点。杜洛克猪经历了长时间的正向选择,具有生长速度快、饲料转换率高、瘦肉率高等特点。本研究基于SNP(single-nucleotide polymorphism)芯片数据,对华南地区地方猪种及杜洛克猪6个群体,共计259个个体进行了主成分分析、系统发生树构建、群体结构分析、连锁不平衡分析、有效群体大小估计以及全基因组选择信号检测,旨在探究华南地区地方猪种的遗传特性与选择信号,为后续保种及利用提供一定参考信息。结果显示,6个猪群体被分为华南地区地方猪种和杜洛克猪两簇,而华南地区地方猪种簇中,海南地区地方猪种与两广小花猪分为两簇,此结果与主成分分析结果相似;5个华南地区地方猪种的有效群体大小在近年呈现迅速衰减趋势;当标记间距为100kb时,5个地方猪群体的连锁不平衡程度变化范围为:0.16-0.20,而杜洛克猪群体的连锁不平衡程度为0.32;此外,在华南地区地方猪种群体基因组中共检测到15个潜在受选择区域,在杜洛克猪基因组中检测到8个潜在受选择区域。综上所述,华南地区地方猪保种工作刻不容缓。群体结果分析和选择信号检测揭示了华南地区地方猪种不同群体间受选择方向的差异。本研究不仅为研究华南地区地方猪种的起源、有效群体大小和选择提供了新见解,并且还为日后该猪种的利用提供了参考信息。




Abstract  
To explore the genetic features and signatures of selection in indigenous pigs from South China and Duroc pigs, 259 pigs from six populations were genotyped using single-nucleotide polymorphism (SNP) BeadChips.  Principal component analysis (PCA), effective population size (Ne), linkage disequilibrium (LD), and signatures of selection were explored and investigated among the six pig populations.  The results showed the Ne of five South China indigenous pig populations has been decreasing rapidly since 100 generations ago.  The LD between pairwise SNP distance at 100 kb ranged from 0.16 to 0.20 for the five indigenous pig populations, while it was 0.32 for the Duroc population.  However, the LD of all six pig populations showed the opposite order at long distances (>5 Mb).  Furthermore, 15 potential signatures of selection associated with meat quality and age at puberty were exclusively detected in South China indigenous pigs, while eight potential signatures of selection associated with growth traits were detected in Duroc pigs.  Our work provides valuable insights for the utilization and conservation of South China indigenous pigs.
Keywords:  pigs        population structure        effective population size        SNP  
Received: 03 January 2020   Accepted:
Fund: This research was supported by the National Key R&D Program of China (2018YFD0501200), the earmarked fund for China Agriculture Research System (CARS-35) and the Key R&D Program of Guangdong Province, China (2018B020203003).
Corresponding Authors:  Correspondence ZHANG Zhe, Tel/Fax: +86-20-85282019; E-mail: zhezhang@scau.edu.cn   
About author:  DIAO Shu-qi, E-mail: saradiao@126.com;

Cite this article: 

DIAO Shu-qi, XU Zhi-ting, YE Shao-pan, HUANG Shu-wen, TENG Jin-yan, YUAN Xiao-long, CHEN Zan-mou, ZHANG Hao, LI Jia-qi, ZHANG Zhe. 2021. Exploring the genetic features and signatures of selection in South China indigenous pigs. Journal of Integrative Agriculture, 20(5): 1359-1371.

Ashburner M, Ball C A, Blake J A, Botstein D, Butler H, Cherry J M, Davis A P, Dolinski K, Dwight S S, Eppig J T, Harris M A, Hill D P, Issel-Tarver L, Kasarskis A, Lewis S, Matese J C, Richardson J E, Ringwald M, Rubin G M, Sherlock G. 2000. Gene ontology: Tool for the unification of biology. Nature Genetics, 25, 25–29.
Barbato M, Orozco-Terwengel P, Tapio M, Bruford M W. 2015. SNeP: A tool to estimate trends in recent effective population size trajectories using genome-wide SNP data. Frontiers in Genetics, 6, 109.
Briggs H M, Briggs D M. 1969. Modern Breeds of Llivestock, Macmillan, London.
Chang C C, Chow C C, Tellier L C, Vattikuti S, Purcell S M, Lee J J. 2015. Second-generation PLINK: Rising to the challenge of larger and richer datasets. GigaScience, 4, 7.
Cucchi T, Hulme-Beaman A, Yuan J, Dobney K. 2011. Early Neolithic pig domestication at Jiahu, Henan Province, China: clues from molar shape analyses using geometric morphometric approaches. Journal of Archaeological Science, 38, 11–22.
Diao S Q, Huang S W, Chen Z T, Teng J Y, Ma Y L, Yuan X L, Chen Z M, Zhang H, Li J Q, Zhang Z. 2019a. Genome-wide signatures of selection detection in three South China indigenous pigs. Genes, 10, 346.
Diao S Q, Huang S W, Xu Z T, Ye S P, Yuan X L, Chen Z M, Zhang H, Zhang Z, Li J Q. 2019b. Genetic diversity of indigenous pigs from South China area revealed by SNP array. Animals, 9, 361.
Falush D, Stephens M, Pritchard J K. 2003. Inference of population structure using multilocus genotype data: Linked loci and correlated allele frequencies. Genetics, 164, 1567–1587.
Giuffra E, Kijas J M, Amarger V, Carlborg O, Jeon J T, Andersson L. 2000. The origin of the domestic pig: Independent domestication and subsequent introgression. Genetics, 154, 1785–1791.
Groenen M A M, Archibald A L, Hirohide U, Tuggle C K, Yasuhiro T, Rothschild M F, Claire R G, Chankyu P, Denis M, Hendrik-Jan M. 2012. Analyses of pig genomes provide insight into porcine demography and evolution. Nature, 491, 393–398.
Hu Z L, Park C A, Reecy J M. 2018. Building a livestock genetic and genomic information knowledgebase through integrative developments of Animal QTLdb and CorrDB. Nucleic Acids Research, 47, D701–D710.
Huang D W, Sherman B T, Lempicki R A. 2009. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nature Protocols, 4, 44–57.
Kanehisa M, Goto S. 1999. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Research, 27, 29–34.
Kim E S, Ros-Freixedes R, Pena R N, Baas T J, Estany J, Rothschild M F. 2015. Identification of signatures of selection for intramuscular fat and backfat thickness in two Duroc populations. Journal of Animal Science, 93, 3292–3302.
Kumar S, Stecher G, Tamura K. 2016. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular Biology & Evolution, 33, 1870–1874.
Larson G, Dobney K, Albarella U, Fang M, Matisoo-Smith E, Robins J, Lowden S, Finlayson H, Brand T, Willerslev E, Rowley-Conwy P, Andersson L, Cooper A. 2005. Worldwide phylogeography of wild boar reveals multiple centers of pig domestication. Science, 307, 1618–1621.
Liu L L, Fang C, Liu W J. 2018. Identification on novel locus of dairy traits of Kazakh horse in Xinjiang. Gene, 677, 105–110.
Ma Y, Ding X, Qanbari S, Weigend S, Zhang Q, Simianer H. 2015. Properties of different selection signature statistics and a new strategy for combining them. Heredity, 115, 426–436.
NCAGRC (National Commission of Animal Genetic Resources of China). 2011. Animal Genetic Resources in China: Pigs. China Agriculture Press, Beijing. (in Chinese)
Pickrell J K, Coop G, Novembre J, Kudaravalli S, Li J Z, Absher D, Srinivasan B S, Barsh G S, Myers R M, Feldman M W. 2009. Signals of recent positive selection in a worldwide sample of human populations. Genome Research, 19, 826–837.
Price E O. 1999. Behavioral development in animals undergoing domestication. Applied Animal Behaviour Science, 65, 245–271.
R Core Team. 2017. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria.
Riihimaa P H, Knip M, Ruokonen A, Tapanainen P. 2002. Lack of physiological suppression of circulating IGFBP-1 in puberty in patients with insulin-dependent diabetes mellitus. European Journal of Endocrinology, 147, 235–241.
Rousset F. 2008. GENEPOP’007: A complete re-implementation of the GENEPOP software for Windows and Linux. Molecular Ecology Resources, 8, 103–106.
Rubin C J, Zody M C, Eriksson J, Meadows J R S, Sherwood E, Webster M T, Jiang L, Ingman M, Sharpe T, Ka S, Hallbook F, Besnier F, Carlborg O, Bed’hom B, Tixier-Boichard M, Jensen P, Siegel P, Lindblad-Toh K, Andersson L. 2010. Whole-genome resequencing reveals loci under selection during chicken domestication. Nature, 464, 587–591.
Sabeti P C, Varilly P, Fry B, Lohmueller J, Hostetter E, Cotsapas C, Xie X, Byrne E H, McCarroll S A, Gaudet R, Schaffner S F, Lander E S, International HapMap C, Frazer K A, Ballinger D G, Cox D R, Hinds D A, Stuve L L, Gibbs R A, Belmont J W, et al. 2007. Genome-wide detection and characterization of positive selection in human populations. Nature, 449, 913–918.
Scheet P, Stephens M. 2006. A fast and flexible statistical model for large-scale population genotype data: Applications to inferring missing genotypes and haplotypic phase. American Journal of Human Genetics, 78, 629–644.
Sved J A. 1971. Linkage disequilibrium and homozygosity of chromosome segments in finite populations. Theoretical Population Biology, 2, 125–141.
Sved J A, Feldman M W. 1973. Correlation and probability methods for one and two loci. Theoretical Population Biology, 4, 129–132.
Troy C S, MacHugh D E, Bailey J F, Magee D A, Loftus R T, Cunningham P, Chamberlain A T, Sykes B C, Bradley D G. 2001. Genetic evidence for Near-Eastern origins of European cattle. Nature, 410, 1088–1091.
Vigne J D. 2011. The origins of animal domestication and husbandry: A major change in the history of humanity and the biosphere. Comptes Rendus Biologies, 334, 171–181.
Wang C, Chen Y S, Han J L, Mo D L, Li X J, Liu X H. 2019. Mitochondrial DNA diversity and origin of indigenous pigs in South China and their contribution to western modern pig breeds. Journal of Integrative Agriculture, 18, 2338–2350.
Wang J, Zou H, Chen L, Long X, Lan J, Liu W, Ma L, Wang C, Xu X, Ren L. 2017. Convergent and divergent genetic changes in the genome of Chinese and European pigs. Scientific Reports, 7, 8662.
Wang X, Wang C, Huang M, Tang J, Fan Y, Li Y, Li X, Ji H, Ren J, Ding N. 2018. Genetic diversity, population structure and phylogenetic relationships of three indigenous pig breeds from Jiangxi Province, China, in a worldwide panel of pigs. Animal Genetics, 49, 275–283.
Wei H D, Sherman B T, Lempicki R A. 2009. Bioinformatics enrichment tools: Paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Research, 37, 1–13.
Weir B S, Cockerham C C. 1984. Estimating F-statistics for the analysis of population structure. Evolution, 38, 1358–1370.
Xu P, Wang X P, Ni L G, Zhang W, Lu C L, Zhao X, Zhao X T, Ren J. 2019. Genome-wide genotyping uncovers genetic diversity, phylogeny, signatures of selection, and population structure of Chinese Jiangquhai pigs in a global perspective. Journal of Animal Science, 97, 1491–1500.
Yang J, Lee S H, Goddard M E, Visscher P M. 2011. GCTA: A tool for genome-wide complex trait analysis. American Journal of Human Genetics, 88, 76–82.
Zhang W C, Yang B, Zhang J J, Cui L L, Ma J W, Chen C Y, Ai H S, Xiao S J, Ren J, Huang L S. 2016. Genome-wide association studies for fatty acid metabolic traits in five divergent pig populations. Scientific Reports, 6, 24718.
Zhang W L, Huang D S, Shi L. 2012. A review of Luchuan pork cut quality. Swine Production, (06), 62–63. (in Chinese)
Zhao Q B, Sun H, Zhang Z, Xu Z, Olasege B S, Ma P P, Zhang X Z, Wang Q S, Pan Y C. 2019. Exploring the structure of haplotype blocks and genetic diversity in Chinese indigenous pig populations for conservation purpose. Evolutionary Bioinformatics, 15, 1176934318825082.
[1] XU Kui, ZHOU Yan-rong, SHANG Hai-tao, XU Chang-jiang, TAO Ran, HAO Wan-jun, LIU Sha-sha, MU Yu-lian, XIAO Shao-bo, LI Kui. Pig macrophages with site-specific edited CD163 decrease the susceptibility to infection with porcine reproductive and respiratory syndrome virus[J]. >Journal of Integrative Agriculture, 2023, 22(7): 2188-2199.
[2] GUO Yi, GONG Ying, HE Yong-meng, YANG Bai-gao, ZHANG Wei-yi, CHEN Bo-er, HUANG Yong-fu, ZHAO Yong-ju, ZHANG Dan-ping, MA Yue-hui, CHU Ming-xing, E Guang-xin. Investigation of Mitochondrial DNA genetic diversity and phylogeny of goats worldwide[J]. >Journal of Integrative Agriculture, 2022, 21(6): 1830-1837.
[3] QIAN Li-li, XIE Jing-yi, GAO Ting, CAI Chun-bo, JIANG Sheng-wang, BI Han-fang, XIE Shan-shan, CUI Wen-tao. Targeted myostatin loss-of-function mutation increases type II muscle fibers in Meishan pigs[J]. >Journal of Integrative Agriculture, 2022, 21(1): 188-198.
[4] WU Ping-xian, ZHOU Jie, WANG Kai, CHEN De-juan, YANG Xi-di, LIU Yi-hui, JIANG An-an, SHEN Lin-yuan, JIN Long, XIAO Wei-hang, JIANG Yan-zhi, LI Ming-zhou, ZHU Li, ZENG Yang-shuang, XU Xu, QIU Xiao-tian, LI Xue-wei, TANG Guo-qing. Identifying SNPs associated with birth weight and days to 100 kg traits in Yorkshire pigs based on genotyping-by-sequencing[J]. >Journal of Integrative Agriculture, 2021, 20(9): 2483-2490.
[5] YANG Meng-jiao, WANG Cai-rong, Muhammad Adeel HASSAN, WU Yu-ying, XIA Xian-chun, SHI Shu-bing, XIAO Yong-gui, HE Zhong-hu. QTL mapping of seedling biomass and root traits under different nitrogen conditions in bread wheat (Triticum aestivum L.)[J]. >Journal of Integrative Agriculture, 2021, 20(5): 1180-1192.
[6] HU Fu-chu, CHEN Zhe, WANG Xiang-he, WANG Jia-bao, FAN Hong-yan, QIN Yong-hua, ZHAO Jietang, HU Gui-bing. Construction of high-density SNP genetic maps and QTL mapping for dwarf-related traits in Litchi chinensis Sonn[J]. >Journal of Integrative Agriculture, 2021, 20(11): 2900-2913.
[7] REN Yun, CHEN Dan, LI Wen-jie, TAO Luo, YUAN Guo-qiang, CAO Ye, LI Xue-mei, DENG Qi-ming, WANG Shi-quan, ZHENG Ai-ping, ZHU Jun, LIU Huai-nian, WANG Ling-xia, LI Ping, LI Shuang-cheng . Genome-wide pedigree analysis of elite rice Shuhui 527 reveals key regions for breeding[J]. >Journal of Integrative Agriculture, 2021, 20(1): 35-45.
[8] CUI Hong-ying, ZHAO Zhang-wu. Structure and function of neuropeptide F in insects[J]. >Journal of Integrative Agriculture, 2020, 19(6): 1429-1438.
[9] NAN Jiu-hong, YIN Li-lin, TANG Zhen-shuang, CHEN Jian-hai, ZHANG Jie, WANG Hai-yan, DU Xiao-yong, LIU Xiang-dong . Genetic parameter estimation and genome-wide association study (GWAS) of red blood cell count at three stages in a Duroc×Erhualian pig population[J]. >Journal of Integrative Agriculture, 2020, 19(3): 793-799.
[10] ZOU Yun-long, LI Zhi-yuan, ZOU Yun-jing, HAO Hai-yang, HU Jia-xiang, LI Ning, LI Qiu-yan. Generation of pigs with a Belgian Blue mutation in MSTN using CRISPR/ Cpf1-assisted ssODN-mediated homologous recombination[J]. >Journal of Integrative Agriculture, 2019, 18(6): 1329-1336.
[11] ZENG Zhu, JIANG Jun-jie, YU Jie, MAO Xiang-bing, YU Bing, CHEN Dai-wen. Effect of dietary supplementation with mulberry (Morus alba L.) leaves on the growth performance, meat quality and antioxidative capacity of finishing pigs[J]. >Journal of Integrative Agriculture, 2019, 18(1): 143-151.
[12] YANG Hai-long, DONG Le, WANG Hui, LIU Chang-lin, LIU Fang, XIE Chuan-xiao. A simple way to visualize detailed phylogenetic tree of huge genomewide SNP data constructed by SNPhylo[J]. >Journal of Integrative Agriculture, 2018, 17(09): 1972-1978.
[13] WANG Zhen-zhong, XIE Jing-zhong, GUO Li, ZHANG De-yun, LI Gen-qiao, FANG Ti-lin, CHEN Yongxing, LI Jun, WU Qiu-hong, LU Ping, LI Miao-miao, WU Hai-bin, ZHANG Huai-zhi, ZHANG Yan, YANG Wu-yun, LUO Ming. Molecular mapping of YrTZ2, a stripe rust resistance gene in wild emmer accession TZ-2 and its comparative analyses with Aegilops tauschii[J]. >Journal of Integrative Agriculture, 2018, 17(06): 1267-1275.
[14] CHANG Li-fang, LI Hui-hui, WU Xiao-yang, LU Yu-qing, ZHANG Jin-peng, YANG Xin-ming, LI Xiu-quan, LIU Wei-hua, LI Li-hui. Genetic characteristics of a wheat founder parent and a widely planted cultivar derived from the same cross[J]. >Journal of Integrative Agriculture, 2018, 17(04): 775-785.
[15] DUAN Hai-tao, LI Jun-guo, XUE Min, YANG Jie, DONG Ying-chao, LIANG Ke-hong, QIN Yu-chang . Effects of conditioners (single-layer, double-layer and retention-conditioner) on the growth performance, meat quality and intestinal morphology of growing and finishing pigs[J]. >Journal of Integrative Agriculture, 2018, 17(04): 919-927.
No Suggested Reading articles found!