Please wait a minute...
Journal of Integrative Agriculture  2019, Vol. 18 Issue (4): 873-883    DOI: 10.1016/S2095-3119(18)61927-6
Research Article Advanced Online Publication | Current Issue | Archive | Adv Search |
Volatiles from Sophora japonica flowers attract Harmonia axyridis adults (Coleoptera: Coccinellidae)
XIU Chun-li1*, XU Bin1, 2, 3*, PAN Hong-sheng4, ZHANG Wei1, 2, YANG Yi-zhong2, LU Yan-hui1 
1 State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, P.R.China
2 College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225007, P.R.China
3 Lixiahe Regional Institute of Agricultural Sciences of Jiangsu, Yangzhou 225007, P.R.China
4 Institute of Plant Protection, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, P.R.China
Download:  PDF (1027KB) ( )  
Export:  BibTeX | EndNote (RIS)      
Abstract  
The multicolored Asian lady beetle, Harmonia axyridis (Coleoptera: Coccinellidae), is a common generalist predator in China and is occasionally found gathering on the Chinese pagoda tree, Sophora japonica, in summer.  In a field investigation, we found that H. axyridis adults preferred S. japonica during its flowering period even though their optimal prey (aphid) is absent at this time.  In addition, male and female adults were attracted to S. japonica flowers to a similar extent in a Y-tube olfactometer assay.  Using coupled gas chromatography-electroantennogram detection (GC-EAD), we identified a flower odor component (nonanal) that elicited a significant electrophysiological response in H. axyridis.  Electroantennogram (EAG) dose-dependent responses revealed that the amplitude of the adult beetle’s EAG response increased with increasing concentration of nonanal, peaking at 10 mg mL–1.  In Y-tube olfactometer behavioral tests, H. axyridis adults preferred a 10 mg mL–1 nonanal source over a 100 mg mL–1 diluent.  Under field conditions, the adults were significantly attracted to both concentrations (10 and 100 mg mL–1), and high concentrations generally had greater attraction.  All these results suggest that nonanal, a volatile compound of S. japonica flowers, greatly attracts H. axyridis adults.  This study provides a basis for the development of synthetic attractants of H. axyridis, with the potential to promote biocontrol services of this generalist predator in the native area (e.g., China) and to suppress its population by mass trapping in its invasive areas. 
Keywords:  flower preference        plant volatile        electrophysiological response        behavioral response        attractants  
Received: 13 October 2017   Accepted:
Fund: This study was financially supported by the National Key Research and Development Program of China (2017YFD0201900), the National Natural Science Foundation of China (31621064), and the earmarked fund for China Agriculture Research System (CARS-15-19).
Corresponding Authors:  Correspondence YANG Yi-zhong, E-mail: yzyang@yzu.edu.cn; LU Yan-hui, E-mail: yhlu@ippcaas.cn   
About author:  * These authors contributed equally to this study.

Cite this article: 

XIU Chun-li, XU Bin, PAN Hong-sheng, ZHANG Wei, YANG Yi-zhong, LU Yan-hui. 2019. Volatiles from Sophora japonica flowers attract Harmonia axyridis adults (Coleoptera: Coccinellidae). Journal of Integrative Agriculture, 18(4): 873-883.

Adedipe F, Park Y L. 2010. Visual and olfactory preference of Harmonia axyridis (Coleoptera: Coccinellidae) adults to various companion plants. Journal of Asia-Pacific Entomology, 13, 319–323.
Andersson S, Nilsson L A, Groth I, Bergstr?m G. 2002. Floral scents in butterfly-pollinated plants: Possible convergence in chemical composition. Botanical Journal of the Linnean Society, 140, 129–153.
Brown P M J, Adriaens T, Bathon H, Cuppen J, Goldarazena A, Hägg T, Kenis M, Klausnitzer B E M, Ková? I, Loomans A J M, Majerus M E N, Nedved O, Pedersen J, Rabitech W, Roy H E, Ternois V, Zakharov I A, Roy D B. 2008. Harmonia axyridis in Europe: Spread and distribution of a non-native coccinellid. Biological Control, 53, 5–21.
Ceballos R, Fernández N, Zúñiga S, Zapata N. 2015. Electrophysiological and behavioral responses of pea weevil Bruchus pisorum L. (Coleóptera: Bruchidae) to volatiles collected from its host Pisum sativum L. Chilean Journal of Agricultural Research, 75, 202–209.
Coderre D, Lucas É, Gagné I. 1995. The occurrence of Harmonia axyridis (Pallas) (Coleoptera: Coccinellidae) in Canada. Canadian Entomology, 127, 609–611.
DeLury N C, Gries R, Gries G, Judd G J, Khaskin G. 1999. Moth scale-derived kairomones used by egg-larval parasitoid Ascogaster quadridentata to locate eggs of its host, Cydia pomonella. Journal of Chemical Ecology, 25, 2419–2431.
Dufour R. 2000. Farmscaping to Enhance Biological Control. NCAT-ATTRA, Fayetteville, AR. p. 40.
Fraser A M, Mechaber W L, Hildebrand J G. 2003. Electroantennographic and behavioral responses of the sphinx moth Manduca sexta to host plant headspace volatiles. Journal of Chemical Ecology, 29, 1813–1833.
Han B Y, Chen Z M. 2000a. Behavior response of four Leis axyridis varieties to volatiles from tea and Toxoptera aurantii. Chinese Journal of Applied Ecology, 11, 413–416. (in Chinese)
Han B Y, Chen Z M. 2000b. Searching behaviour of Coccinella septempunctata and four varieties of Leis axyridis adults on tea aphid honeydew and analysis of honeydew component. Acta Ecologia Sinica, 20, 495–501. (in Chinese)
James D G. 2003a. Field evaluation of herbivore-induced plant volatiles as attractants for beneficial insects: methyl salicylate and the green lacewing, Chrysopa nigricornis. Journal of Chemical Ecology, 29, 1601–1609.
James D G. 2003b. Synthetic herbivore-induced plant volatiles as field attractants for beneficial insects. Environmental Entomology, 32, 977–982.
James D G, Orre-Gordon S, Reynolds O L, Simpson M. 2012. Employing chemical ecology to understand and exploit biodiversity for pest management. In: Gurr G M, Wratten S D, Snyder W E, eds., Biodiversity and Insect Pests: Key Issues for Sustainable Management. John Wiley & Sons, New York. pp. 185–195.
Jones G A, Gillett J L. 2005. Intercropping with sunflowers to attract beneficial insects in organic agriculture. Florida Entomology, 88, 91–96.
Jürgens A. 2004. Flower scent composition in diurnal Silene species (Caryophyllaceae): Phylogenetic constraints or adaption to flower visitors? Biochemical Systematics and Ecology, 32, 841–859.
Kenis M, Roy H E, Zindel R, Majerus M E N. 2008. Current and potential management strategies against Harmonia axyridis. BioControl, 53, 235–252.
Koch R L. 2003. The multicolored Asian lady beetle, Harmonia axyridis: A review of its biology, uses in biological control, and non-target impacts. Journal of Insect Science, 3, 32.
Koch R L, Galvan T L. 2008. Bad side of a good beetle: The North American experience with Harmonia axyridis. BioControl, 53, 23–35.
Koch R L, Venette R C, Hutchison W D. 2006. Predicted impact of an exotic generalist predator on monarch butterfly (Lepidoptera: Nymphalidae) populations: A quantitative risk assessment. Biological Invasions, 8, 1179–1193.
Kopta T, Pokluda R, Psota V. 2012. Attractiveness of flowering plants for natural enemies. Horticultural Science, 39, 89–96.
Kovach J. 2004. Impact of the multicolored Asian lady beetle as a pest of fruit and people. American Entomology, 50, 165–167.
Lamana M L, Miller J C. 1998. Temperature-dependent development in an oregon population of Harmonia axyridis (Coleoptera: Coccinellidae). Environmental Entomology, 27, 1001–1005.
Lavandero B, Wratten S, Shishehbor P, Worner S. 2005. Enhancing the effectiveness of the parasitoid Diadegma semiclausum (Helen): Movement after use of nectar in the field. Biological Control, 34, 152–158.
Leroy P D, Schillings T, Farmakidis J, Heuskin S, Lognay G, Verheggen F J, Brostaux Y, Haubruge E, Francis F. 2012. Testing semiochemicals from aphid, plant and conspecific: Attraction of Harmonia axyridis. Insect Science, 19, 372–382.
Li S, Wang S, Zhao J, Yang L, Gao X, Zhang F. 2014. Efficacy of multicolored Asian lady beetle Harmonia axyridis (Coleoptera: Coccinellidae) against green peach aphid Myzus persicae (Hemiptera: Aphididae) on vegetables under greenhouse conditions. Acta Phytophylacica Sinica, 41, 699–704. (in Chinese)
Li X, Zhao X, Gong S, Chen F, Tan T, Cheng A. 2008. The population dynamics and its role in controlling Eriosoma lanigerum by Harmonia axyridis (Pallas). Southwest China Journal of Agricultural Sciences, 21, 1165–1168. (in Chinese)
Li Y, Zhou X, Pang B, Han H, Yan F. 2013. Behavioral responses of Hippodamia variegata (Coleoptera: Coccinellidae) to volatiles from plants infested by Aphis gossypii (Hemiptera: Aphidae) and analysis of volatile components. Acta Entomologica Sinica, 56, 153–160. (in Chinese)
Liu L D, Chen L Zhang L, Li C L, Gao Y B. 2004. Flowering characteristics and pollination ecology of Scabiosa tschiliensis. Acta Ecologica Sinica, 24, 718–723. (in Chinese)
Liu L D, Li W, Zhu N, Shen J H, Zhao H X. 2002. The Relations among the nectar secretive rhythms, nectar compositions and diversities of floral visitors for both Eleutherococcus senticosus and E. sessiliflorus. Acta Ecologica Sinica, 22, 847–853. (in Chinese)
Lv X H, Du L, Qu A J. 2006. Orientation of Harmonia axyridis ab. spectabilis to plant and prey combinations. Chinese Journal of Biological Control, 22, 279–282. (in Chinese)
Majerus M E N, Strawson V, Roy H E. 2006. The potential impacts of the arrival of the harlequin ladybird, Harmonia axyridis (Pallas) (Coleoptera: Coccinellidae), in Britain. Ecological Entomology, 31, 207–215.
Mathews C R, Brown M W, Wäckers F L. 2016. Comparison of peach cultivars for provision of extrafloral nectar resources to Harmonia axyridis (Coleoptera: Coccinellidae). Environmental Entomology, 45, 649–657.
Mondor E B, Roitberg B D. 2000. Has the attraction of predatory coccinellids to cornicle droplets constrained aphid alarm signaling behavior? Journal of Insect Behavior, 13, 321–329.
Pan H S. 2015. Habitat selection behavior of predatory ladybeetles in agroecosystem of northern China. Ph D thesis. Chinese Academy of Agriculture Sciences, Beijing. (in Chinese)
Pan H S, Lu Y H, Xiu C L, Geng H H, Cai X M, Sun X L, Zhang Y J, Williams L, Wyckhuys K A G, Wu K M. 2015. Volatile fragrances associated with flowers mediate host plant alternation of a polyphagous mirid bug. Scientific Reports, 5, 14805.
Pickering G J, Lin Y, Reynolds A, Soleas G, Riesen R, Brindle I. 2005 The influence of Harmonia axyridis on wine composition and aging. Journal of Food Science, 70, 128–135.
Poutsma J, Loomans A J M, Aukema B, Heijermam T. 2008. Predicting the potential geographical distribution of the harlequin ladybird, Harmonia axyridis, using the CLIMEX model. BioControl, 53, 103–125.
Ramsden M W, Menéndez R, Leather S R, Wäckers F. 2015. Optimizing field margins for biocontrol services: The relative role of aphid abundance, annual floral resources, and overwinter habitat in enhancing aphid natural enemies. Agriculture, Ecosystems & Environment, 199, 94–104.
Riddick E W, Aldrich J R, De Milo A, Davis J C. 2000. Potential for modifying the behavior of the multicolored Asian lady beetle (Coleoptera: Coccinellidae) with plant-derived natural products. Annals of the Entomological Society of America, 93, 1314–1321.
Roy H E, Brown P M J, Adriaens T, Berkvens N, Borges I, Clusella-Trullas S, De Clercq P, Comont R F, Eschen R, Estoup A, Evans E W, Facon B, Gardiner M M, Gil A, Grez A A, Guillemaud T, Haelewaters D, Herz A, Honek A, Howe A G, et al. 2016. The harlequin ladybird, Harmonia axyridis: Global perspectives on invasion history and ecology. Biological Invasions, 18, 997–1044.
?lipiński A. 2007. Australian ladybird beetles (Coleoptera: Coccinellidae): their biology and classification.  Department of the Environment and Water Resources, Australia.
Sloggett J J, Magro A, Verheggen F J, Hemptinne J L, Hutchison W D, Riddick E W. 2011. The chemical ecology of Harmonia axyridis. BioControl, 56, 643–661.
Sun M M, Cai W G, Zan J H, Wang L L. 2015. The efficacy of Harmonia axyridis against Brevicoryne brassicae by artificial release. Zhejiang Agricultural Science, 56, 1452–1453, 1456. (in Chinese)
Syed Z, Guerin P M, Baltensweiler W. 2003. Antennal responses of the two host races of the larch bud moth, Zeiraphera diniana, to larch and cembran pine volatiles. Journal of Chemical Ecology, 29, 1691–1708.
Takács S, Gries G, Gries R. 1997. Semiochemical-mediated location of host habitat by Apanteles carpatus (Say) (Hymenoptera: Braconidae), a parasitoid of clothes moth larvae. Journal of Chemical Ecology, 23, 459–472.
Venzon M, Rosado M C, Euzébio D E, Souza B, Schoereder J H. 2006. Suitability of leguminous cover crop pollens as food source for the green lacewing Chrysoperla externa (Hagen) (Neuroptera: Chrysopidae). Neotropical Entomology, 35, 371–376.
Verheggen F J, Fagel Q, Heuskin S, Lognay, G, Francis F, Haubruge E. 2007. Electrophysiological and behavioral responses of the multicolored Asian lady beetle, Harmonia axyridis Pallas, to sesquiterpene semiochemicals. Journal of Chemical Ecology, 33, 2148–2155.
Vuts J, Woodcock C M, Sumner M E, Caulfield J C, Reed K, Inward D J G, Leather S R, Pickett J A, Birkett M A, Denman S. 2016. Responses of the two-spotted oak buprestid, Agrilus biguttatus (Coleoptera: Buprestidae), to host tree volatiles. Pest Management Science, 72, 845–851.
Wäckers F L, Van Rijn P C J. 2012. Pick and mix: Selecting flowering plants to meet the requirements of target biological control insects. In: Gurr G M, Wratten S D, Snyder W E, eds.,  Biodiversity and Insect Pests: Key Issues for Sustainable Management. John Wiley & Sons, New York. pp. 139–165.
Walton N J, Isaacs R. 2011. Influence of native flowering plant strips on natural enemies and herbivores in adjacent blueberry fields. Environmental Entomology, 40, 697–705.
Wang S, Zhang R Z, Zhang F. 2007. Research progress on biology and ecology of Harmonia axyridis Pallas (Coleoptera: Coccinallidae). Chinese Journal of Applied Ecology, 18, 2117–2126. (in Chinese)
Wang X Y, Shen Z R. 2002. Progress of applied research on multicolored Asian ladybird beetle. Entomological Knowledge, 39, 255–261. (in Chinese)
Wang Z R, Duan H F, Yue J Q, Guo J, Yang J D, Mao J M, Gao J Y. 2015. Flower visiting insects and their flower visiting behavior on lemon in Lijiang, Yunnan. South China Fruits, 44, 38–40. (in Chinese)
Wei J, Kang L. 2006. Electrophysiological and behavioral responses of a parasitic wasp to plant volatiles induced by two leaf miner species. Chemical Senses, 31, 467–477.
Wu W Q, Shen J S, Ma W H, Shao Y Q. 2016. Jujube flower-visiting insects diversity and pesticides influence. Journal of Environmental Entomology, 38, 354–360. (in Chinese)
Xiu C L, Pan H S, Ali A, Lu Y H. 2017. Extrafloral nectar of Hibiscus cannabinus promotes adult populations of Harmonia axyridis. Biocontrol Science and Technology, 27, 1009–1013.
Xu B, Xiu C L, Zhang W, Yang Y Z, Lu Y H. 2017. Effects of Sophora japonica flowers on the longevity of Harmonia axyridis adults. Chinese Journal of Biological Control, 33, 442–445. (in Chinese)
Yu H L, Khashaveh A, Li Y H, Li X J, Zhang Y J. 2018. Field trapping of predaceous insects with synthetic herbivore-induced plant volatiles in cotton fields. Environmental Entomology, 47,114–120.
Yu H L, Zhang Y J, Wu K M, Gao X W, Guo Y Y. 2008. Field-testing of synthetic herbivore-induced plant volatiles as attractants for beneficial insects. Environmental Entomology, 37, 1410–1415.
Yu H L, Zhang Y J, Wyckhuys K A G, Wu K M, Gao X W, Guo Y Y. 2010. Electrophysiological and behavioral responses of Microplitis mediator (Hymenoptera: Braconidae) to caterpillar-induced volatiles from cotton. Environmental Entomology, 39, 600–609.
Zhu J, Obrycki J J, Ochieng S A, Baker T C, Pickett J A, Smiley D. 2005. Attraction of two lacewing species to volatiles produced by host plants and aphid prey. Naturwissenschaften, 92, 277–281.
 
[1] WANG Hong-min, BAI Peng-hua, ZHANG Jing, ZHANG Xue-min, HUI Qin, ZHENG Hai-xia, ZHANG Xian-hong. Attraction of bruchid beetles Callosobruchus chinensis (L.) (Coleoptera: Bruchidae) to host plant volatiles[J]. >Journal of Integrative Agriculture, 2020, 19(12): 3035-3044.
[2] HAN Shan-jie, WANG Meng-xin, WANG Yan-su, WANG Yun-gang, CUI Lin, HAN Bao-yu. Exploiting push-pull strategy to combat the tea green leafhopper based on volatiles of Lavandula angustifolia and Flemingia macrophylla[J]. >Journal of Integrative Agriculture, 2020, 19(1): 193-203.
[3] WANG Zhi-zhi, LIU Yin-quan, SHI Min, HUANG Jian-hua, CHEN Xue-xin. Parasitoid wasps as effective biological control agents[J]. >Journal of Integrative Agriculture, 2019, 18(4): 705-715.
[4] LI Jun-xing, RAO Lin-li, XIE Hui, Monika Schreiner, CHEN Li-ping, LIU Yin-quan. Morphology and glucosinolate profiles of chimeric Brassica and the responses of Bemisia tabaci in host selection, oviposition and development[J]. >Journal of Integrative Agriculture, 2017, 16(09): 2009-2018.
No Suggested Reading articles found!