Please wait a minute...
Journal of Integrative Agriculture  2019, Vol. 18 Issue (3): 532-538    DOI: 10.1016/S2095-3119(18)61935-5
Crop Science Advanced Online Publication | Current Issue | Archive | Adv Search |
Genetic mapping and expressivity of a wheat multi-pistil gene in mutant 12TP
ZHU Xin-xin1, NI Yong-jing1, 2, HE Rui-shi1, JIANG Yu-mei1, LI Qiao-yun1, NIU Ji-shan
1 National Centre of Engineering and Technological Research for Wheat/Key Laboratory of Physiological Ecology and Genetic Improvement of Food Crops in Henan Province/College of Agronomy, Henan Agricultural University, Zhengzhou 450046, P.R.China
2 Shangqiu Academy of Agricultural and Forestry Sciences, Shangqiu 476000, P.R.China
Download:  PDF (333KB) ( )  
Export:  BibTeX | EndNote (RIS)      
Abstract  
We identified a wheat (Triticum aestivum L.) multi-pistil mutant from an F2 breeding population in 2012, named 12TP (three pistils in one floret).  Genetic analysis showed that one dominant gene locus controlled the multi-pistil trait.  Using homozygous normal and multi-pistil lines (near-isogenic lines; NILs) derived from the original mutant 12TP, a simple sequence repeat (SSR) marker assay located the 12TP locus on chromosome arm 2DL.  Four SSR markers were linked to 12TP and their order was Xcfd233→Xcfd62-12TP→Xwmc41→Xcfd168 at 15.85, 10.47, 2.89, and 10.37 cM, respectively.  The average genetic expressivity of the trait ‘three pistils in one floret’ was more than 98% in seven homozygous 12TP lines; however, the average genetic expressivity in heterozygous F1 plants was about 49%.  Thus, the 12TP is a semi-dominant gene locus, which differ from all previously reported multi-pistil mutants.  Mutant 12TP is a new useful germplasm for study of wheat floral development and for breeding of high yield wheat. 
 
Keywords:  wheat        multi-pistil        mutant        expressivity        mapping  
Received: 05 November 2017   Accepted:
Fund: This project was supported by the National Science Fund of China (31571646) and the Special Fund for Key Agricultural Project in Henan Province, China in 2016 (161100110400).
Corresponding Authors:  Correspondence NIU Ji-shan, E-mail: jsniu@263.net   
About author:  ZHU Xin-xin, E-mail: xzx1202@126.com;

Cite this article: 

ZHU Xin-xin, NI Yong-jing, HE Rui-shi, JIANG Yu-mei, LI Qiao-yun, NIU Ji-shan. 2019. Genetic mapping and expressivity of a wheat multi-pistil gene in mutant 12TP. Journal of Integrative Agriculture, 18(3): 532-538.

Chen J S, Zhang L H, Wu B L. 1983. A preliminary report on the discovery and breeding of the ‘tri-grain wheat’. Acta Agronomica Sinica, 9, 67–71. (in Chinese)
Cota-Sánchez J H, Remarchuk K, Ubayasena K. 2006. Ready-to-use DNA extracted with a CTAB method adapted for herbarium specimens and mucilaginous plant tissue. Plant Molecular Biology Reports, 24, 161–167.
Cui J M, Guo T C, Zhu Y J, Wang C Y, Ma X M, Wang Y H, Wang H C, Yu H, Zhao R X, Ma D Y, Ji T H, Duan Z Q, Ji L F, Li L, Qi G C, He D X, Yuan T, Li C M, Zhao H J, Kang G Z. 2008. The Spike of Wheat. China Agriculture Press, China. (in Chinese)
Duan Z B, Shen C C, Li Q Y, Lv G Z, Ni Y J, Yu D Y, Niu J S. 2015. Identification of a novel male sterile wheat mutant dms conferring dwarf status and multi-pistils. Journal of Integrative Agriculture, 14, 1706–1714.
Endo T R, Gill B S. 1996. The deletion stocks of common wheat. Journal of Heredity, 87, 295–307.
Gardner J S, Hess W M, Trione E J. 1985. Development of the young wheat spike: A SEM study of Chinese Spring wheat. American Journal of Botany, 72, 548–559.
Gupta P, Balyan H, Edwards K, Isaac P, Korzun V, Röder M, Gautier M, Joudrier P, Schlatter A, Dubcovsky J, De la Pena R, Khairallah M, Penner G, Hayden M, Sharp P, Keller B, Wang R, Hardouin J, Jack P, Leroy P. 2002. Genetic mapping of 66 new microsatellite (SSR) loci in bread wheat. Theoretical and Applied Genetics, 105, 413–422.
Guyomarc’h H, Sourdille P, Edwards K, Rernard M. 2002. Studies of the transferability of microsatellites derived from Triticum tauschii to hexaploid wheat and to diploid related species using amplification, hybridization and sequence comparisons. Theoretical and Applied Genetics, 105, 736–744.
He R L, Chang Z J, Yang Z J, Yuan Z Y, Zhan H X, Zhang X J, Liu J X. 2009. Inheritance and mapping of powdery mildew resistance gene Pm43 introgressed from Thinopyrum intermedium into wheat. Theoretical and Applied Genetics, 118, 1173–1180.
Kosambi D D. 1944. The estimation of map distances from recombination values. The Annals of Eugenics, 12, 172–175.
Ma S C, Zhang G S, Li H R, Zhao C S. 2006. Genetic analysis of multi-ovary character of wheat line Duo II. Journal of Triticeae Crops, 26, 35–37. (in Chinese)
Ma S C, Zhang G S, Liu H W, Wang J W, Wang X L. 2000. Studies on the application of multi-ovary character to hybrid wheat. I. Multi-ovary gene loci and cytoplasm effect. Acta Botanica Boreali-Occidentalia Sinica, 20, 949–953. (in Chinese)
Niu J S, Wang B Q, Wang Y H, Cao A Z, Qi Z J, Shen T M. 2008. Chromosome location and microsatellite markers linked to a powdery mildew resistance gene in wheat line ‘Lankao 90(6)’. Plant Breeding, 127, 346–349.
Peng Z S. 2003. A new mutation in wheat producing three pistils in a floret. Journal of Agronomy Crop Science, 189, 270–272.
Peng Z S, Martinek P, Kosuge K, Kuboyama T, Watanabe N. 2008. Genetic mapping of a mutant gene producing three pistils per floret in common wheat. Journal of Applied Genetics, 49, 135–139.
Peng Z S, Yang Z Y, Ouyang Z M, Yang H. 2013. Characterization of a novel pistillody mutant in common wheat. Australian Journal of Crop Science, 7, 159–164.
Pestsova E, Ganal M W, Röder M S. 2000. Isolation and mapping of microsatellite markers specific for the D genome of bread wheat. Genome, 43, 689–697.
Röder M S, Korzun V, Wendehake K, Plaschke J, Tixier M H, Leroy P, Ganal M W. 1998. A microsatellite map of wheat. Genetics, 149, 2007–2023.
Shen G H, Tong Y Z, Shen G Z. 1992. Localization of the gene multi-ovary on chromosome and chromosome-arm of common wheat using monosomic and ditelosomic analysis. Acta Genetica Sinica, 19, 513–516.
Sears E R. 1954. The aneuploids of common wheat. University of Missouri College of Agriculture Agricultural Experiment Station Research Bull, 572, 1–59.
Sibony M, Pinthus M J. 1988. Floret initiation and development in spring wheat (Triticum aestivum L.). Annals of Botany, 61, 473–479.
Somers D J, Isaac P, Edwards K. 2004. A high-density microsatellite consensus map for bread wheat (Triticum aestivum L.). Theoretical and Applied Genetics, 109, 1105–1114.
Song Q, Shi J, Singh S, Fickus E W, Costa J M, Lewis J, Gill B S, Ward R, Cregan P B. 2005. Development and mapping of microsatellite (SSR) markers in wheat. Theoretical and Applied Genetics, 110, 550–560.
Sourdille P, Cadalen T, Guyomarc’h H, Snape J, Perretant M R, Charmet G, Boeuf C, Bernard S, Bernard M. 2003. An update of the Courtot×Chinese Spring intervarietal molecular marker linkage map for the QTL detection of agronomic traits in wheat. Theoretical and Applied Genetics, 106, 530–538.
Srinivasan S, Gaur P M, Chaturvedi S K, Rao B V. 2006. Allelic relationships of genes controlling number of flowers per axis in chickpea. Euphytica, 152, 331–337.
Tong Y Z, Tong P D. 1984. Studies on multi-ovary in common wheat. I. The morphologenesis of multi-ovary in common wheat and the chromosomal location of its genes. Journal of Shanghai Normal University (Natural Sciences), 2, 48–53. (in Chinese)
Wang Z, Xu D, Ji J, Wang J, Wang M, Ling H, Sun G, Li J. 2009. Genetic analysis and molecular markers associated with multi-gynoecia (Mg) gene in Trigrain wheat. Canadian Journal of Plant Science, 89, 845–850.
Wu J, Li B Q, Zhao J X. 2000. Genetic analysis of multi-ovary character of trigrain wheat. The Journal of Northwest Agricultural University, 28, 58–60. (in Chinese)
Yang Z J, Chen Z Y, Peng Z S, Yu Y, Liao M L, Wei S H. 2017. Development of a high-density linkage map and mapping of the three-pistil gene (Pis1) in wheat using GBS markers. BMC Genomics, 18, 567.
Zhu X X, Li Q Y, Shen C C, Duan Z B, Yu D Y, Niu J S, Ni Y Z, Jiang Y M. 2016. Transcriptome analysis for abnormal spike development of the wheat mutant dms. PLoS ONE, 11, e0149287.
[1] Tiantian Chen, Lei Li, Dan Liu, Yubing Tian, Lingli Li, Jianqi Zeng, Awais Rasheed, Shuanghe Cao, Xianchun Xia, Zhonghu He, Jindong Liu, Yong Zhang. Genome wide linkage mapping for black point resistance in a recombinant inbred line population of Zhongmai 578 and Jimai 22[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3311-3321.
[2] Dili Lai, Md. Nurul Huda, Yawen Xiao, Tanzim Jahan, Wei Li, Yuqi He, Kaixuan Zhang, Jianping Cheng, Jingjun Ruan, Meiliang Zhou. Evolutionary and expression analysis of sugar transporters from Tartary buckwheat revealed the potential function of FtERD23 in drought stress[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3334-3350.
[3] Zimeng Liang, Juan Li, Jingyi Feng, Zhiyuan Li, Vinay Nangia, Fei Mo, Yang Liu. Brassinosteroids improve the redox state of wheat florets under low-nitrogen stress and alleviate degeneration[J]. >Journal of Integrative Agriculture, 2025, 24(8): 2920-2939.
[4] Qing Li, Zhuangzhuang Sun, Zihan Jing, Xiao Wang, Chuan Zhong, Wenliang Wan, Maguje Masa Malko, Linfeng Xu, Zhaofeng Li, Qin Zhou, Jian Cai, Yingxin Zhong, Mei Huang, Dong Jiang. Time-course transcriptomic information reveals the mechanisms of improved drought tolerance by drought priming in wheat[J]. >Journal of Integrative Agriculture, 2025, 24(8): 2902-2919.
[5] Liulong Li, Zhiqiang Mao, Pei Wang, Jian Cai, Qin Zhou, Yingxin Zhong, Dong Jiang, Xiao Wang. Drought priming enhances wheat grain starch and protein quality under drought stress during grain filling[J]. >Journal of Integrative Agriculture, 2025, 24(8): 2888-2901.
[6] Xinhu Guo, Jinpeng Chu, Yifan Hua, Yuanjie Dong, Feina Zheng, Mingrong He, Xinglong Dai. Long-term integrated agronomic optimization maximizes soil quality and synergistically improves wheat yield and nitrogen use efficiency[J]. >Journal of Integrative Agriculture, 2025, 24(8): 2940-2953.
[7] Jinpeng Li, Siqi Wang, Zhongwei Li, Kaiyi Xing, Xuefeng Tao, Zhimin Wang, Yinghua Zhang, Chunsheng Yao, Jincai Li. Effects of micro-sprinkler irrigation and topsoil compaction on winter wheat grain yield and water use efficiency in the Huaibei Plain, China[J]. >Journal of Integrative Agriculture, 2025, 24(8): 2974-2988.
[8] Baohua Liu, Ganqiong Li, Yongen Zhang, Ling Zhang, Dianjun Lu, Peng Yan, Shanchao Yue, Gerrit Hoogenboom, Qingfeng Meng, Xinping Chen. Optimizing management strategies to enhance wheat productivity in the North China Plain under climate change[J]. >Journal of Integrative Agriculture, 2025, 24(8): 2989-3003.
[9] Ziqiang Che, Shuting Bie, Rongrong Wang, Yilin Ma, Yaoyuan Zhang, Fangfang He, Guiying Jiang. Mild deficit irrigation delays flag leaf senescence and increases yield in drip-irrigated spring wheat by regulating endogenous hormones[J]. >Journal of Integrative Agriculture, 2025, 24(8): 2954-2973.
[10] Xianhong Zhang, Zhiling Wang, Danmei Gao, Yaping Duan, Xin Li, Xingang Zhou. Wheat cover crop accelerates the decomposition of cucumber root litter by altering the soil microbial community[J]. >Journal of Integrative Agriculture, 2025, 24(7): 2857-2868.
[11] Zhongwei Tian, Yanyu Yin, Bowen Li, Kaitai Zhong, Xiaoxue Liu, Dong Jiang, Weixing Cao, Tingbo Dai. Optimizing planting density and nitrogen application to mitigate yield loss and improve grain quality of late-sown wheat under rice–wheat rotation[J]. >Journal of Integrative Agriculture, 2025, 24(7): 2558-2574.
[12] Abdoul Kader Mounkaila Hamani, Sunusi Amin Abubakar, Yuanyuan Fu, Djifa Fidele Kpalari, Guangshuai Wang, Aiwang Duan, Yang Gao, Xiaotang Ju. The coupled effects of various irrigation schedules and split nitrogen fertilization modes on post-anthesis grain weight variation, yield, and grain quality of drip-irrigated winter wheat (Triticum aestivum L.) in the North China Plain[J]. >Journal of Integrative Agriculture, 2025, 24(6): 2123-2137.
[13] Wei Liu, Xueling Huang, Meng Ju, Mudi Sun, Zhimin Du, Zhensheng Kang, Jie Zhao. Molecular evidence of the west-to-east dispersal of Puccinia striiformis f. sp. tritici in central Shaanxi and the migration of the inoculum from Gansu[J]. >Journal of Integrative Agriculture, 2025, 24(6): 2251-2265.
[14] Tao Liu, Jianliang Wang, Jiayi Wang, Yuanyuan Zhao, Hui Wang, Weijun Zhang, Zhaosheng Yao, Shengping Liu, Xiaochun Zhong, Chengming Sun. Research on the estimation of wheat AGB at the entire growth stage based on improved convolutional features[J]. >Journal of Integrative Agriculture, 2025, 24(4): 1403-1423.
[15] Yonghui Fan, Yue Zhang, Yu Tang, Biao Xie, Wei He, Guoji Cui, Jinhao Yang, Wenjing Zhang, Shangyu Ma, Chuanxi Ma, Haipeng Zhang, Zhenglai Huang.
Response of wheat to winter night warming based on physiological and transcriptome analyses
[J]. >Journal of Integrative Agriculture, 2025, 24(3): 1044-1064.
No Suggested Reading articles found!