Please wait a minute...
Journal of Integrative Agriculture  2018, Vol. 17 Issue (10): 2215-2221    DOI: 10.1016/S2095-3119(17)61864-1
Crop Science Advanced Online Publication | Current Issue | Archive | Adv Search |
Advances in salinity tolerance of soybean: Genetic diversity, heredity, and gene identification contribute to improving salinity tolerance
CHEN Hua-tao, LIU Xiao-qing, ZHANG Hong-mei, YUAN Xing-xing, GU He-ping, CUI Xiao-yan, CHEN Xin
Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, P.R.China
Download:  PDF (725KB) ( )  
Export:  BibTeX | EndNote (RIS)      
Abstract  
Salt stress is one of the major abiotic stresses affecting soybean growth.  Genetic improvement for salt tolerance is an effective way to protect soybean yield under salt stress conditions.  Successful improvement of salt tolerance in soybean relies on identifying genetic variation that confers tolerance in soybean germplasm and subsequently incorporating these genetic resources into cultivars.  In this review, we summarize the progress in genetic diversity and genetics of salt tolerance in soybean, which includes identifying genetic diversity for salt tolerant germplasm; mapping QTLs conferring salt tolerance; map-based cloning; and conducting genome-wide association study (GWAS) analysis in soybean.  Future research avenues are also discussed, including high throughput phenotyping technology, the CRISPR/Cas9 Genome-Editing System, and genomic selection technology for molecular breeding of salt tolerance.
 
Keywords:  soybean        genetic variation        heredity        gene identification        salinity improvement  
Received: 27 September 2017   Accepted:
Fund: This work was supported by the National Natural Science Foundation of China (31401407).
Corresponding Authors:  Correspondence CHEN Hua-tao, Tel: +86-25-84390803, E-mail: cht@jaas.ac.cn; CHEN Xin, Tel: +86-25-84391362, E-mail: cx@jaas.ac.cn   

Cite this article: 

CHEN Hua-tao, LIU Xiao-qing, ZHANG Hong-mei, YUAN Xing-xing, GU He-ping, CUI Xiao-yan, CHEN Xin. 2018. Advances in salinity tolerance of soybean: Genetic diversity, heredity, and gene identification contribute to improving salinity tolerance. Journal of Integrative Agriculture, 17(10): 2215-2221.

Abel G H. 1969. Inheritance of the capacity for chloride inclusion and chloride exclusion by soybeans. Crop Science, 9, 697–698.
Abel G H, MacKenzie A J. 1964. Salt tolerance of soybean varieties (Glycine max L. Merill) during germination and later growth. Crop Science, 4, 157–161.
Ashraf M. 1994. Breeding for salinity tolerance in plants. Critical Reviews in Plant Sciences, 13, 17–42.
Chen H T, Chen X, Yu D Y. 2011. Inheritance analysis and mapping quantitative trait loci (QTLs) associated with salt tolerance during seedling growth in soybean. Chinese Journal of Oil Crop Sciences, 33, 231-234. (in Chinese)
Chen H T, Cui S Y, Fu S X, Gai J Y, Yu D Y. 2008. Identification of quantitative trait loci associated with salt tolerance during seedling growth in soybean (Glycine max L.). Australian Journal of Agricultural Research, 59, 1086–1091.
Chen P, Yan K, Shao H, Zhao S. 2013. Physiological mechanisms for high salt tolerance in wild soybean (Glycine soja) from Yellow River Delta, China: Photosynthesis, osmotic regulation, ion flux and antioxidant capacity. PLoS ONE, 8, e83227.
Do T D, Chen H , Hien V T, Hamwieh A, Yamada T, Sato T, Yan Y, Cong H, Shono M, Suenaga K, Xu D. 2016. Ncl synchronously regulates Na+, K+, and Cl− in soybean and greatly increases the grain yield in saline field conditions. Scientific Reports, 6, 19147.
Fredj M B, Zhani K, Hannachi C, Mehwachi T. 2013. Effect of NaCl priming on seed germination of four coriander cultivars (Coriandrum sativum). EurAsian Journal of BioSciences, 7, 11–29.
Guan R, Chen J, Jiang J, Liu G, Liu Y, Tian L, Yu L, Chang R, Qiu L. 2014a. Mapping and validation of a dominant salt tolerance gene in the cultivated soybean (Glycine max) variety Tiefeng 8. The Crop Journal, 2, 358–365.
Guan R, Qu Y, Guo Y, Yu L, Liu Y, Jiang J, Chen J, Ren Y, Liu G, Tian L, Jin L, Liu Z, Hong H, Chang R, Gilliham M, Qiu L. 2014b. Salinity tolerance in soybean is modulated by natural variation in GmSALT3. The Plant Journal, 80, 937–950.
Ha B K, Vuong T D, Velusamy V, Nguyen H T, Shannon G, Lee J D. 2013. Genetic mapping of quantitative trait loci conditioning salt tolerance in wild soybean (Glycine soja) PI 483463. Euphytica, 193, 79–88.
Hamwieh A, Do D D, Cong H, Benitez E R, Takahashi R, Xu D H. 2011. Identification and validation of a major QTL for salt tolerance in soybean. Euphytica, 79, 451–459.
Hamwieh A, Xu D H. 2008. Conserved salt tolerance quantitative trait locus (QTL) in wild and cultivated soybeans. Breeding Science, 58, 355–359.
Hao D, Chao M, Yin Z, Yu D. 2012. Genome-wide association analysis detecting significant single nucleotide polymorphisms for chlorophyll and chlorophyll fluorescence parameters in soybean (Glycine max) landraces. Euphytica, 186, 919–931.
Hwang E Y, Song Q, Jia G, Specht J E, Hyten D L, Costa J, Cregan P B. 2014. A genome-wide association study of seed protein and oil content in soybean. BMC Genomics, 15, 1.
Kan G, Ning L, Li Y, Hu Z, Zhang W, He X, Yu D. 2016. Identification of novel loci for salt stress at the seed germination stage in soybean. Breeding Science, 66, 530–541.
Kumawat G, Gupta S, Ratnaparkhe M B, Maranna S, Satpute G K. 2016. QTL omics in soybean: A way forward for translational genomics and breeding. Frontiers in Plant Science, 7, 1852.
Lee G J, Carter Jr T E, Villagarcia M R, Li Z, Zhou X, Gibbs M O, Boerma H R. 2004. A major QTL conditioning salt tolerance in S-100 soybean and descendent cultivars. Theoretical and Applied Genetics, 109, 1610–1619.
Lee J D, Shannon J G, Vuong T D, Nguyen H T. 2009. Inheritance of salt tolerance in wild soybean (Glycine soja Sieb. and Zucc.) accession PI483463. Journal of Heredity, 100, 798–801.
Liu X, Xie C, Si H, Yang J. 2017. CRISPR/Cas9-mediated genome editing in plants. Methods, 121–122, 94–102.
Luo Q, Yu B, Liu Y. 2005. Differential sensitivity to chloride and sodium ions in seedlings of Glycine max and G. soja under NaCl stress. Journal of Plant Physiology, 162, 1003–1012.
Ma Y, Reif J C, Jiang Y, Wen Z, Wang D, Liu Z, Guo Y, Wei S, Wang S, Yang C, Wang H, Yang C, Lu W, Xu R, Zhou R, Wang R, Sun Z, Chen H, Zhang W, Wu J, et al. 2016. Potential of marker selection to increase prediction accuracy of genomic selection in soybean (Glycine max L.). Molecular Breeding, 36, 113.
Mamidi S, Chikara S, Goos R J, Hyten D L, Moghaddam S M, Cregan P B, McClean P E. 2011. Genome-wide association analysis identifies candidate genes associated with iron deficiency chlorosis in soybean. Plant Genome, 4, 154–164.
Munns R, Tester M. 2008. Mechanisms of salinity tolerance. Annual Review of Plant Biology, 59, 651–681.
Papiernik S K, Grieve C M, Lesch S M, Yates S R. 2005. Effects of salinity, imazethapyr, and chlorimuron application on soybean growth and yield. Communications in Soil Science and Plant Analysis, 36, 951–967.
Parker M B, Gascho G J, Gains T P. 1983. Chloride toxicity of soybeans grown on Atlantic Coast flatwoods soils. Agronomy Journal, 75, 439–443.
Pathan M S, Lee J D, Shannon J G, Nguyen H T. 2007. Recent advances in breeding for drought and salt stress tolerance in soybean. In: Jenks M A, Hasegawa P M, Jain S M, eds., Advances in Molecular-Breeding Toward Drought and Salt Tolerant Crops. Springer, Dordrecht. pp. 739–773.
Patil G, Do T, Vuong T D, Valliyodan B, Lee J D, Chaudhary J, Shannon J G, Nguyen H T. 2016. Genomic-assisted haplotype analysis and the development of high-throughput SNP markers for salinity tolerance in soybean. Scientific Reports, 6, 19199.
Phang T H, Shao G H, Lam H M. 2008. Salt tolerance in soybean. Journal of Integrative Plant Biology, 50, 1196–1212.
Qi X, Li M W, Xie M, Liu X, Ni M, Shao G, Song C, Yim A K Y, Tao Y, Wong F L, Isobe S, Wong C F, Wong K S, Xu C, Li C, Wang Y, Guan R, Sun F, Fan G, Xiao Z, et al. 2014. Identification of a novel salt tolerance gene in wild soybean by whole-genome sequencing. Nature Communications, 5, 4340.
Shao G H, Chang R Z, Chen Y W, Yan S R. 1994. Study on inheritance of salt tolerance in soybean. Acta Agronomica Sinica, 20, 721–726. (in Chinese)
Wang Z F, Wang J F, Bao Y M, Wu Y Y, Zhang H S. 2011 Quantitative trait loci controlling rice seed germination under salt stress. Euphytica, 178, 297–307.
Wen Z X, Boyse J F, Song Q, Cregan P B, Wang D. 2015. Genomic consequences of selection and genome-wide association mapping in soybean. BMC Genomics, 16, 671.
Wen Z X, Tan R, Yuan J, Bales C, Du W, Zhang S, Chilvers M I, Schmidt C, Song Q, Cregan P B, Wang D. 2014. Genome-wide association mapping of quantitative resistance to sudden death syndrome in soybean. BMC Genomics, 15, 1.
Xu D H, Do T D, Chen H T, Hien V T T, Hamwieh A. 2016. Genetic analysis of salt tolerance in soybean. [2016-08-13]. https://pag.confex.com/pag/xxiv/webprogram/Paper20285.html
Yang J, Blanchar R W. 1993. Differentiating chloride susceptibility in soybean cultivars. Agronomy Journal, 85, 880–885.
Zeng A, Chen P, Korth K, Hancock F, Pereira A, Brye K, Wu C, Shi A. 2017. Genome-wide association study (GWAS) of salt tolerance in worldwide soybean germplasm lines. Molecular Breeding, 37, 30.
Zhang J, Song Q, Cregan P B, Nelson R L, Wang X, Wu J, Jiang G. 2015. Genome-wide association study for flowering time, maturity dates and plant height in early maturing soybean (Glycine max) germplasm. BMC Genomics, 16, 217.
Zhang W J, Niu Y, Bu S H, Li M, Feng J Y, Zhang J, Yang S X, Odinga M M, Wei S P, Liu X F, Zhang Y M. 2014. Epistatic association mapping for alkaline and salinity tolerance traits in the soybean germination stage. PLoS ONE, 9, e84750.
 
[1] Runnan Zhou, Sihui Wang, Peiyan Liu, Yifan Cui, Zhenbang Hu, Chunyan Liu, Zhanguo Zhang, Mingliang Yang, Xin Li, Xiaoxia Wu, Qingshan Chen, Ying Zhao. Genome-wide characterization of soybean malate dehydrogenase genes reveals a positive role for GmMDH2 in the salt stress response[J]. >Journal of Integrative Agriculture, 2025, 24(7): 2492-2510.
[2] Berhane S. Gebregziabher, Shengrui Zhang, Jing Li, Bin Li, Junming Sun. Identification of genomic regions and candidate genes underlying carotenoid accumulation in soybean using next-generation sequen-cing based bulk segregant analysis[J]. >Journal of Integrative Agriculture, 2025, 24(6): 2063-2079.
[3] Qianqian Shi, Xue Han, Xinhao Zhang, Jie Zhang, Qi Fu, Chen Liang, Fangmeng Duan, Honghai Zhao, Wenwen Song. Transcriptome-wide N6-methyladenosine (m6A) profiling of compatible and incompatible responses reveals a nonhost resistance-specific m6A modification involved in soybean–soybean cyst nematode interaction[J]. >Journal of Integrative Agriculture, 2025, 24(5): 1875-1891.
[4] Dong An, Xingfa Lai, Tianfu Han, Jean Marie Vianney Nsigayehe, Guixin Li, Yuying Shen. Crossing latitude introduction delayed flowering and facilitated dry matter accumulation of soybean as a forage crop[J]. >Journal of Integrative Agriculture, 2025, 24(4): 1436-1447.
[5] Tianqi Wang, Jihui Tian, Xing Lu, Chang Liu, Junhua Ao, Huafu Mai, Jinglin Tan, Bingbing Zhang, Cuiyue Liang, Jiang Tian. Soybean variety influences the advantages of nutrient uptake and yield in soybean/maize intercropping via regulating root-root interaction and rhizobacterial composition[J]. >Journal of Integrative Agriculture, 2025, 24(10): 4048-4062.
[6] Jia Jia, Huan Wang, Ximeng Yang, Bo Chen, Ruqian Wei, Qibin Ma, Yanbo Cheng, Hai Nian. Identification of long InDels through whole genome resequencing to fine map qIF05-1 for seed isoflavone content in soybean (Glycine max L. Merr.) [J]. >Journal of Integrative Agriculture, 2025, 24(1): 85-100.
[7] Jiang Liu, Wenyu Yang. Soybean maize strip intercropping: A solution for maintaining food security in China[J]. >Journal of Integrative Agriculture, 2024, 23(7): 2503-2506.
[8] Zhimin Wu, Xiaozeng Han, Xu Chen, Xinchun Lu, Jun Yan, Wei Wang, Wenxiu Zou, Lei Yan.

Application of organic manure as a potential strategy to alleviate the limitation of microbial resources in soybean rhizospheric and bulk soils [J]. >Journal of Integrative Agriculture, 2024, 23(6): 2065-2082.

[9] Ping Chen, Qing Du, Benchuan Zheng, Huan Yang, Zhidan Fu, Kai Luo, Ping Lin, Yilin Li, Tian Pu, Taiwen Yong, Wenyu Yang.

Coordinated responses of leaf and nodule traits contribute to the accumulation of N in relay intercropped soybean [J]. >Journal of Integrative Agriculture, 2024, 23(6): 1910-1928.

[10] Qianqian Chen, Qian Zhao, Baoxing Xie, Xing Lu, Qi Guo, Guoxuan Liu, Ming Zhou, Jihui Tian, Weiguo Lu, Kang Chen, Jiang Tian, Cuiyue Liang.

Soybean (Glycine max) rhizosphere organic phosphorus recycling relies on acid phosphatase activity and specific phosphorus-mineralizing-related bacteria in phosphate deficient acidic soils [J]. >Journal of Integrative Agriculture, 2024, 23(5): 1685-1702.

[11] Tantan Zhang, Yali Liu, Shiqiang Ge, Peng Peng, Hu Tang, Jianwu Wang. Sugarcane/soybean intercropping with reduced nitrogen addition enhances residue-derived labile soil organic carbon and microbial network complexity in the soil during straw decomposition[J]. >Journal of Integrative Agriculture, 2024, 23(12): 4216-4236.
[12] Yiwang Zhong, Xingang Li, Shasha Wang, Sansan Li, Yuhong Zeng, Yanbo Cheng, Qibin Ma, Yanyan Wang, Yuanting Pang, Hai Nian, Ke Wen. Mapping and identification of QTLs for seed fatty acids in soybean (Glycine max L.)[J]. >Journal of Integrative Agriculture, 2024, 23(12): 3966-3982.
[13] Berhane S. GEBREGZIABHER, ZHANG Sheng-rui, Muhammad AZAM, QI Jie, Kwadwo G. AGYENIM-BOATENG, FENG Yue, LIU Yi-tian, LI Jing, LI Bin, SUN Jun-ming. Natural variations and geographical distributions of seed carotenoids and chlorophylls in 1 167 Chinese soybean accessions[J]. >Journal of Integrative Agriculture, 2023, 22(9): 2632-2647.
[14] ZHAI Qian-hang, PAN Ze-qun, ZHANG Cheng, YU Hui-lin, ZHANG Meng, GU Xue-hu, ZHANG Xiang-hui, PAN Hong-yu, ZHANG Hao. Colonization by Klebsiella variicola FH-1 stimulates soybean growth and alleviates the stress of Sclerotinia sclerotiorum[J]. >Journal of Integrative Agriculture, 2023, 22(9): 2729-2745.
[15] YANG Hong-jun, YE Wen-wu, YU Ze, SHEN Wei-liang, LI Su-zhen, WANG Xing, CHEN Jia-jia, WANG Yuan-chao, ZHENG Xiao-bo. Host niche, genotype, and field location shape the diversity and composition of the soybean microbiome[J]. >Journal of Integrative Agriculture, 2023, 22(8): 2412-2425.
No Suggested Reading articles found!