Please wait a minute...
Journal of Integrative Agriculture  2017, Vol. 16 Issue (02): 464-470    DOI: 10.1016/S2095-3119(16)61405-3
Crop Genetics · Breeding · Germplasm Resources Advanced Online Publication | Current Issue | Archive | Adv Search |
Development of SNP markers using RNA-seq technology and tetra-primer ARMS-PCR in sweetpotato
KOU Meng1, 2*, XU Jia-lei1*, LI Qiang1, 2, LIU Ya-ju1, WANG Xin1, 2, TANG Wei1, YAN Hui1, ZHANG Yun-gang1, MA Dai-fu1, 2

1 Xuzhou Institute of Agricultural Sciences/Sweetpotato Research Institute, Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Breeding of Sweetpotato, Ministry of Agriculture, Xuzhou 221131, P.R.China 2 School of Life Science, Jiangsu Normal University, Xuzhou 221116, P.R.China

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
Abstract  The information of single nucleotide polymorphisms (SNPs) is quite unknown in sweetpotato.  In this study, two sweetpotato varieties (Xushu 18 and Xu 781) were sequenced by Illumina technology, as well as de novo transcriptome assembly, functional annotation, and in silico discovery of potential SNP molecular markers.  Tetra-primer Amplification Refractory Mutation System PCR (ARMS-PCR) is a simple and sufficient method for detecting different alleles in SNP locus.  Total 153 sets of ARMS-PCR primers were designed to validate the putative SNPs from sequences.  PCR products from 103 sets of primers were different between Xu 781 and Xushu 18 via agarose gel electrophoresis, and the detection rate was 67.32%.  We obtained the expected results from 32 sets of primers between the two genotypes.  Furthermore, we ascertained the optimal annealing temperature of 32 sets of primers.  These SNPs might be used in genotyping, QTL mapping, or marker-assisted trait selection further in sweetpotato.  To our knowledge, this work was the first study to develop SNP markers in sweetpotato by using tetra-primer ARMS-PCR technique.  This method was a simple, rapid, and useful technique to develop SNP markers, and will provide a potential and preliminary application in discriminating cultivars in sweetpotato.
Keywords:   sweetpotato      SNPs      RNA-seq      tetra-primer ARMS-PCR  
Received: 22 February 2016   Accepted:
Fund: 

The work was supported by the China Agriculture Research System (CARS-11), the National High-Tech R&D Program of China (2012AA101204), and the Jiangsu Independent Inno­vation Funds of Agriculture, China (CX (13) 2032)

Corresponding Authors:  LI Qiang, Tel: +86-516-82189203, Fax: +86-516-82189209, E-mail: instrong@163.com    
About author:  KOU Meng, E-mail: koumeng2113@163.com

Cite this article: 

KOU Meng, XU Jia-lei, LI Qiang, LIU Ya-ju, WANG Xin, TANG Wei, YAN Hui, ZHANG Yun-gang, MA Dai-fu. 2017. Development of SNP markers using RNA-seq technology and tetra-primer ARMS-PCR in sweetpotato. Journal of Integrative Agriculture, 16(02): 464-470.

Austin D F. 1987. The taxonomy, evolution and genetic diversity of sweetpotato and related absence of viruses in most symptomless fieldgrown sweetpotato in Uganda. Annals of Applied Biology, 130, 481–490.
Barbazuk W B, Emrich S J, Chen H D, Li L, Schnable P S. 2007. SNP discovery via 454 transcriptome sequencing. The Plant Journal, 51, 910–918.
Bovell-Benjamin A C. 2007. Sweet potato: A review of its past, present, and future role in human nutrition. Advances in Food and Nutrition Research, 52, 1–59.
Cervantes-Flores J C, Yencho G C, Kriegner A, Pecota K V, Faulk M A, Mwanga R O M, Sosinski B R. 2008. Development of a genetic linkage map and identification of homologous linkage groups in sweetpotato using multiple-dose AFLP markers. Molecular Breeding, 21, 511–532.
Cevallos-Casals B A, Cisneros-Zevallos L A. 2002. Bioactive and functional properties of purple sweetpotato (Ipomoea batatas L. Lam). Acta Horticultutae (ISHS), 583, 195–203.
Chopra R, Burow G, Farmer A, Mudge J, Simpson C E, Wilkins T A, Baring M R, Puppala N, Chamberlin K D, Burow M D. 2015. Next-generation transcriptome sequencing, SNP discovery and validation in four market classes of peanut, Arachis hypogaea L. Molecular Genetics and Genomics, 290, 1169–1180.
Close T J, Bhat P R, Lonardi S, Wu Y, Rostoks N, Ramsay L, Druka A, Stein N, Svensson J T, Wanamaker S, Bozdag S, Roose M L, Moscou M J, Chao S, Varshney R K, Szucs P, Sato K, Hayes P M, Matthews D E, Kleinhofs A, et al. 2009. Development and implementation of high-throughput SNP genotyping in barley. BMC Genomics, 10, 582.
Collins A, Ke X. 2012. Primer1: primer design web service for tetra-primer ARMS-PCR. Open Bioinformatics Journal, 6, 55–58.
Hayashi K, Hashimoto N, Daigen M, Ashikawa I. 2004. Development of PCR-based SNP markers for rice blast resistance genes at the Piz locus. Theoretical and Applied Genetics, 108, 1212–1220.
Huang J C, Sun M. 2000. Genetic diversity and relationships of sweetpotato and its wild relatives in Ipomoea series Batatas (Convolvulaceae) as revealed by inter-simple sequence repeat (ISSR) and restriction analysis of chloroplast DNA. Theoretical and Applied Genetics, 100, 1050–1060.
Jones A. 1986. Sweet-potato heritability estimates and their use in breeding. HortScience, 21, 14–17.
Kanehisa M, Araki M, Goto S, Hattori M, Hirakawa M, Itoh M, Katayama T, Kawashima S, Okuda S, Tokimatsu T, Yamanishi Y. 2008. KEGG for linking genomes to life and the environment. Nucleic Acids Research, 36, 480–484.
Kwok P Y. 2001. Methods for genotyping single nucleotide polymorphisms. Annual Review of Genomics and Human Genetics, 2, 235–258.
Li Q, Li P, Liu Q C, Ma D F, Li X Y, Wang X, Cao Q H, Zhai H. 2008a. Genetic difference of sweetpotato cultivars in East Asia as revealed by AFLP marker. Molecular Plant Breeding, 6, 905–911. (in Chinese)
Li Q, Liu Q C, Zhai H, Ma D F, Wang X, Li X Q, Wang Y P. 2008b. Genetic diversity in main parents of sweetpotato in China as revealed by ISSR marker. Acta Agronomica Sinica, 34, 972–977. (in Chinese)
Mortazavi A, Williams B A, McCue K, Schaeffer L, Wold B. 2008. Mapping and quantifying mammalian transcriptomes by RNASeq. Nature Methods, 5, 621–628.
Morozova O, Hirst M, Marra M A. 2009. Applications of new sequencing technologies for transcriptome analysis. Annual Review of Genomics and Human Genetics, 10, 135–151.
Moulin M M, Rodrigues R, Gonçalves L S A, Sudre C P, Pereira M G. 2012. A comparison of RAPD and ISSR markers reveals genetic diversity among sweet potato landraces (Ipomoea batatas (L.) Lam.). Acta Scientiarum-Agronomy, 34, 139–147.
Ozias-Akins P, Jarret R L. 1994. Nuclear DNA content and ploidy levels in the genus Ipomoea. Journal of American Society for Horticultural Science, 119, 110–115.
Schafleitner R, Tincopa L R, Palomino O, Rossel G, Robles R F, Alagon R, Rivera C, Quispe C, Rojas L, Pacheco J A. 2010. A sweetpotato gene index established by de novo assembly of pyrosequencing and Sanger sequences and mining for gene-based microsatellite markers. BMC Genomics, 11, 604–613.
Tao X, Gu Y H, Wang H Y, Zheng W, Li X, Zhao C W, Zhang Y Z. 2012. Digital gene expression analysis based on integrated de novo transcriptome assembly of sweet potato (Ipomoea batatas (L.) Lam.). PLOS ONE, 7, e36234.
Ukoskit K, Thompson P G. 1997. Autopolyploidy verus allopolyploidy and low-density randomly amplified polymorphic DNA linkage maps of sweetpotato. Journal of American Society for Horticultural Science, 122, 822–828.
Wang Z Y, Fang B P, Chen J Y, Zhang X J, Luo Z X, Huang L F, Chen X L, Li Y J. 2010. De novo assembly and characterization of root transcriptome using Illumina paired-end sequencing and development of cSSR markers in sweetpotato (Ipomoea batatas). BMC Genomics, 11, 726–739.
Wang Z Y, Li J, Luo Z X, Huang L F, Chen X L, Fang B P, Li Y J, Chen J Y, Zhang X J. 2011. Characterization and development of EST-derived SSR markers in cultivated sweetpotato (Ipomoea batatas). BMC Plant Biology, 11, 1-9.
Wei L B, Miao H M, Li C, Duan Y H, Niu J J, Zhang T D, Zhao Q Y, Zhang H Y. 2014. Development of SNP and InDel markers via de novo transcriptome assembly in Sesamum indicum L. Molecular Breeding, 34, 2205–2217.
Wu X L, Ren C W, Joshi T, Vuong T, Xu D, Nguyen H T. 2010. SNP discovery by high-throughput sequencing in soybean. BMC Genomics, 11, 1-10.
Xie F L, Burklew C E, Yang Y F, Liu M, Xiao P, Zhang B H, Qiu D Y. 2012. De novo sequencing and a comprehensive analysis of purple sweet potato (Impomoea batatas L.) transcriptome. Planta, 236, 101–113.
Xu J L, Li Q, Hou M, Liu Y J, Wang X, Tang W, Yan H, Zhang Y G, Ma D F. 2015a. A rapid and efficient method for detecting sweetpotato (Ipomoea batatas L.) SNP markers. Molecular Plant Breeding, 13, 891–897. (in Chinese)
Xu J L, Wang Y, Hou M, Li Q. 2015b. Progress on detection methods of SNP. Molecular Plant Breeding, 13, 475–482. (in Chinese)
Xu X, Liu X, Ge S, Jensen J D, Hu F Y, Li X, Dong Y, Gutenkunst R N, Fang L, Huang L, Li J X, He W M, Zhang G J, Zheng X M, Zhang F M, Li Y R, Yu C, Kristiansen K, Zhang X Q, Wang J, et al. 2012. Resequencing 50 accessions of cultivated and wild rice yields markers for identifying agronomically important genes. Nature Biotechnology, 30, 105–111.
Yamasaki M, Tenaillon M I, Bi I V, Schroeder S G, Sanchez-Villeda H, Doebley J F, Gaut B S, McMullen M D. 2005. A large-scale screen for artificial selection in maize identifies candidate agronomic loci for domestication and crop improvement. The Plant Cell, 17, 2859–2872.
Ye S, Dhillon S, Ke X, Collins A R, Day I N. 2001. An eficient procedure for genotyping single nueleotide polymorphisms. Nucleic Acids Research, 29, 88.
Zhao N. 2012. Construction of high-density molecular linkage maps of sweetpotato, Ipomoea batatas (L.) Lam. Ph D thesis, China Agricultural University, China. (in Chinese)
Zhao N, Zhai H, Yu X X, Liu Z S, He S Z, Li Q, Ma D F, Liu Q C. 2013. Development of SRAP markers linked to a gene for stem nematode resistance in sweetpotato, Ipomoea batatas (L.) Lam. Journal of Integrative Agriculture, 12, 414–419.
Zhou X, Xia Y, Ren X, Chen Y, Huang L, Huang S, Liao B, Lei Y, Yan L, Jiang H. 2014. Construction of a SNP-based genetic linkage map in cultivated peanut based on large scale marker development using next-generation double-digest restriction-site-associated DNA sequencing (ddRADseq). BMC Genomics, 15, 1–14.
[1] Qing Li, Zhuangzhuang Sun, Zihan Jing, Xiao Wang, Chuan Zhong, Wenliang Wan, Maguje Masa Malko, Linfeng Xu, Zhaofeng Li, Qin Zhou, Jian Cai, Yingxin Zhong, Mei Huang, Dong Jiang. Time-course transcriptomic information reveals the mechanisms of improved drought tolerance by drought priming in wheat[J]. >Journal of Integrative Agriculture, 2025, 24(8): 2902-2919.
[2] Changning Wei, Hui Cao, Chenxu Li, Hongyu Song, Qing Liu, Xingquan Zhu, Wenbin Zheng. Differences in N6-methyladenosine (m6A) methylation among the three major clonal lineages of Toxoplasma gondii tachyzoites[J]. >Journal of Integrative Agriculture, 2025, 24(7): 2810-2825.
[3] Qianqian Shi, Xue Han, Xinhao Zhang, Jie Zhang, Qi Fu, Chen Liang, Fangmeng Duan, Honghai Zhao, Wenwen Song. Transcriptome-wide N6-methyladenosine (m6A) profiling of compatible and incompatible responses reveals a nonhost resistance-specific m6A modification involved in soybean–soybean cyst nematode interaction[J]. >Journal of Integrative Agriculture, 2025, 24(5): 1875-1891.
[4] Jiamao Gu, Pengkun Liu, Wenting Nie, Zhijun Wang, Xiaoyu Cui, Hongdan Fu, Feng Wang, Mingfang Qi, Zhouping Sun, Tianlai Li, Yufeng Liu. Abscisic acid alleviates photosynthetic damage in the tomato ABA-deficient mutant sitiens and protects photosystem II from damage via the WRKY22–PsbA complex under low-temperature stress[J]. >Journal of Integrative Agriculture, 2025, 24(2): 546-563.
[5] Yong Yang, Rong Fan, Xuejun Zhang, Meihua Li, Yongbing Zhang, Hongping Yi, Manrui Ma, Yun Yang, Bin Liu, Xingwang Liu, Huazhong Ren. Mutation in CmGhc1 confers the white hypocotyl phenotype in melon (Cucumis melo L.)[J]. >Journal of Integrative Agriculture, 2025, 24(11): 4242-4254.
[6] Qi Zeng, Qingguo Sun, Xinru Hou, Lin Chen, Ruixing Zhang, Xue Bai, Xifan Liu, Xiaowu Wang, Lugang Zhang, Baohua Li. Comparative transcriptomic analysis of Chinese cabbage’s defense responses to Alternaria brassicae[J]. >Journal of Integrative Agriculture, 2025, 24(10): 3895-3908.
[7] Yuan Gao, Fuxia Bai, Qi Zhang, Xiaoya An, Zhaofei Wang, Chuzhao Lei, Ruihua Dang. Dynamic transcriptome profiles and novel markers in bovine spermatogenesis revealed by single-cell sequencing[J]. >Journal of Integrative Agriculture, 2024, 23(7): 2362-2378.
[8] Ying Ding, Qiong Zhi, Qisheng Zuo, Kai Jin, Wei Han, Bichun Li.

Transcriptome-based analysis of key signaling pathways affecting the formation of primordial germ cell in chickens [J]. >Journal of Integrative Agriculture, 2024, 23(5): 1644-1657.

[9] Jing Zhang, Zhaochen Wu, Shuo Li, He Huang, Suning Liu, Weimin Liu, Xiaoming Zhao, Jianzhen Zhang.

Development and formation of wing cuticle based on transcriptomic analysis in Locusta migratoria during metamorphosis [J]. >Journal of Integrative Agriculture, 2024, 23(4): 1285-1299.

[10] Wenting Li, Chaoqun Gao, Zhao Cai, Sensen Yan, Yanru Lei, Mengya Wei, Guirong Sun, Yadong Tian, Kejun Wang, Xiangtao Kang.

Assessing the conservation impact of Chinese indigenous chicken populations between ex-situ and in-situ using genome-wide SNPs [J]. >Journal of Integrative Agriculture, 2024, 23(3): 975-987.

[11] Dongfang Zhao, Haobo Zhang, Xinyang Zhang, Fengwei Jiang, Yijing Li, Wentong Cai, Ganwu Li.

The virulence regulator AbsR in avian pathogenic Escherichia coli has pleiotropic effects on bacterial physiology [J]. >Journal of Integrative Agriculture, 2024, 23(2): 649-668.

[12] Lan Huang, Qixin Guo, Yong Jiang, Zhixiu Wang, Guohong Chen, Guobin Chang, Hao Bai. Transcriptome analysis reveals the genetic basis of crest cushion formation in duck[J]. >Journal of Integrative Agriculture, 2024, 23(12): 4172-4185.
[13] Nurimanguli Aini, Yuanlong Wu, Zhenyuan Pan, Yizan Ma, Qiushuang An, Guangling Shui, Panxia Shao, Dingyi Yang, Hairong Lin, Binghui Tang, Xin Wei, Chunyuan You, Longfu Zhu, Dawei Zhang, Zhongxu Lin, Xinhui Nie. Cotton ethylene response factor GhERF91 is involved in the defense against Verticillium dahliae[J]. >Journal of Integrative Agriculture, 2024, 23(10): 3328-3342.
[14] Qing Liu, Bingjin M, Yijing Meng, Linmei Yu, Zirui Wang, Tao Jia, Wenbin Zheng, Wenwei Gao, Shichen Xie, Xingquan Zhu.

New insights into developmental biology of Eimeria tenella revealed by comparative analysis of mRNA N6-methyladenosine modification between unsporulated oocysts and sporulated oocysts [J]. >Journal of Integrative Agriculture, 2024, 23(1): 239-250.

[15] XU Yi, HUANG Dong-mei, MA Fu-ning, YANG Liu, WU Bin, XING Wen-ting, SUN Pei-guang, CHEN Di, XU Bing-qiang, SONG Shun. Identification of key genes involved in flavonoid and terpenoid biosynthesis and the pathway of triterpenoid biosynthesis in Passiflora edulis[J]. >Journal of Integrative Agriculture, 2023, 22(5): 1412-1423.
No Suggested Reading articles found!