Please wait a minute...
Journal of Integrative Agriculture  2017, Vol. 16 Issue (02): 424-434    DOI: 10.1016/S2095-3119(16)61411-9
Crop Genetics · Breeding · Germplasm Resources Advanced Online Publication | Current Issue | Archive | Adv Search |
Creation of gene-specific rice mutants by AvrXa23-based TALENs
WANG Fu-jun1, 2*, WANG Chun-lian1*, ZHENG Chong-ke1, QIN Teng-fei1, GAO Ying1, LIU Pi-qing2, ZHAO Kai-jun1

1 National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Institute of Crop Sciences, Chinese Academy of Agriculture Sciences (CAAS), Beijing 100081, P.R.China

2 College of Agriculture, Guangxi University, Nanning 530004, P.R.China

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
Abstract  Transcription activator-like effector (TALE) nucleases (TALENs) are increasingly used as a powerful tool for genome editing in a variety of organisms.  We have previously cloned the TALE-coding gene avrXa23 from Xanthomonas oryzae pv. oryzae and developed an AvrXa23-based assembly system for designer TALEs or TALENs.  Here, we exploit TALENs to induce mutagenesis of the rice ethylene response factor (ERF) transcription factor OsERF922 for testing the gene-editing efficiency of AvrXa23-based TALENs system.  A pair of TALENs (T-KJ9/KJ10) was assembled and their nuclease activities were first confirmed in rice protoplast transient assay.  The TALENs-expressing construct pT-KJ9/KJ10 was then used for rice transformation.  We observed targeting somatic mutagenesis frequency of 15.0% in positive transgenic rice calli and obtained two mutant plants with nucleotide deletion or insertion at the designer target region.  Our work demonstrates that the AvrXa23-based TALENs system can be used for site-specific genome editing in rice.
Keywords:  TAL effector nucleases      AvrXa23      targeting      OsERF922      genome editing      rice  
Received: 23 January 2016   Accepted:
Fund: 

This work was supported by the grant from the Major Science and Technology Project to Create New Crop Cultivars Using Gene Transfer Technology of China (2014ZX0801001B) and the National Natural Science Foundation of China (31171812).

Corresponding Authors:  ZHAO Kai-jun Tel: +86-10-82105852, Fax: 86-10-82108751, E-mail: zhaokaijun@caas.cn; LIU Pi-qing, Mobile: +86-13397700471, E-mail: liupq@gxu.edu.cn    
About author:  WANG Fu-jun, Tel: +86-10-82105852, E-mail: wej129@163.com; WANG Chun-lian, Tel: +86-10-82105852, E-mail: wangchunlian @caas.cn

Cite this article: 

WANG Fu-jun, WANG Chun-lian, ZHENG Chong-ke, QIN Teng-fei, GAO Ying, LIU Pi-qing, ZHAO Kai-jun . 2017. Creation of gene-specific rice mutants by AvrXa23-based TALENs. Journal of Integrative Agriculture, 16(02): 424-434.

Baker M. 2012. Gene-editing nucleases. Nature Methods, 9, 23–26.
Baltes N J, Voytas D F. 2015. Enabling plant synthetic biology through genome engineering. Trends in Biotechnology, 33, 120–131.
Beurdeley M, Bietz F, Li J, Thomas S, Stoddard T, Juillerat A, Zhang F, Voytas D F, Duchateau P, Silva G H. 2013. Compact designer TALENs for efficient genome engineering. Nature communications, 4, 1762.
Bloom K, Ely A, Mussolino C, Cathomen T, Arbuthnot P. 2013. Inactivation of hepatitis B virus replication in cultured cells and in vivo with engineered transcription activator-like effector nucleases. Molecular Therapy: the Journal of the American Society of Gene Therapy, 21, 1889–1897.
Boch J, Bonas U. 2010. Xanthomonas AvrBs3 family-type III effectors: Discovery and function. Annual Review of Phytopathology, 48, 419–436.
Boch J, Scholze H, Schornack S, Landgraf A, Hahn S K S, Lahaye T, Nickstadt A U B. 2009. Breaking the code of DNA binding specificity of TAL-type III effectors. Science, 326, 1509–1512.
Carlson D F, Tan W F, Lillico S G, Stverakova D, Proudfoot C, Christian M, Voytas D F, Long C R, Whitelaw C B, Fahrenkrug S C. 2012. Efficient TALEN-mediated gene knockout in livestock. Proceedings of the National Academy of Sciences of the United States of America, 109, 17382–17387.
Carroll D. 2014. Genome engineering with targetable nucleases. Annual Review of Biochemistry, 83, 409–439.
Cermak T, Doyle E L, Christian M, Wang L, Zhang Y, Schmidt C, Baller J A, Somia N V, Bogdanove A J, Voytas D F. 2011. Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting. Nucleic Acids Research, 39, e82.
Char S N, Unger-Wallace E, Frame B, Briggs S A, Main M, Spalding M H, Vollbrecht E, Wang K, Yang B. 2015. Heritable site-specific mutagenesis using TALENs in maize. Plant Biotechnology Journal, 13, 1002–1010.
Chen K L, Shan Q W and Gao C X. 2014. An efficient TALEN mutagenesis system in rice. Methods, 69, 2–8.
Christian M, Cermak T, Doyle E L, Schmidt C, Zhang F, Hummel A, Bogdanove A J, Voytas D F. 2010. Targeting DNA double-strand breaks with TAL effector nucleases. Genetics, 186, 757–761.
Christian M, Qi Y P, Zhang Y, Voytas D F. 2013. Targeted mutagenesis of Arabidopsis thaliana using engineered TAL effector nucleases. G3-Genes Genomes Genetics, 3, 1697–1705.
Clasen B M, Stoddard T J, Luo S, Demorest Z L, Li J, Cedrone F, Tibebu R, Davison S, Ray E E, Daulhac A, Coffman A, Yabandith A, Retterath A, Haun W, Baltes N J, Mathis L, Voytas D F, Zhang F. 2016. Improving cold storage and processing traits in potato through targeted gene knockout. Plant Biotechnology Journal, 14, 169–176.
Dellaporta S L, Wood J, Hicks J B. 1983. A plant DNA minipreparation: version II. Plant Molecular Biology Reporter, 1, 19-21.
Deng D, Yin P, Yan C Y, Pan X J, Gong X Q, Qi S Q, Xie T, Mahfouz M, Zhu J K, Y N, Shi Y G. 2012. Recognition of methylated DNA by TAL effectors. Cell Research, 22, 1502–1504.
Ding Q R, Lee Y K, Schaefer E A, Peters D T, Veres A, Kim K, Kuperwasser N, Motola D L, Meissner T B, Hendriks W T, Trevisan M, Gupta R M, Moisan A, Banks E, Friesen M, Schinzel R T, Xia F, Tang A, Xia Y L, Figueroa E, et al. 2013. A TALEN genome-editing system for generating human stem cell-based disease models. Cell Stem Cell, 12, 238–251.
Endo M, Mikami M, Toki S. 2015. Multigene knockout utilizing off-target mutations of the CRISPR/Cas9 system in rice. Plant Cell Physiology, 56, 41–47.
Forner J, Pfeiffer A, Langenecker T, Manavella P, Lohmann J U. 2015. Germline-transmitted genome editing in Arabidopsis thaliana Using TAL-effector-nucleases. PLOS ONE, 10, e0121056.
Fu Y F, Foden J A, Khayter C, Maeder M L, Reyon D, Joung J K, Sander J D. 2013. High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nature Biotechnology, 31, 822–826.
Gurushidze M, Hensel G, Hiekel S, Schedel S, Valkov V, Kumlehn J. 2014. True-breeding targeted gene knock-out in barley using designer TALE-nuclease in haploid cells. PLOS ONE, 9, e92046.
Haun W, Coffman A, Clasen B M, Demorest Z L, Lowy A, Ray E, Retterath A, Stoddard T, Juillerat A, Cedrone F, Mathis L, Voytas D F, Zhang F. 2014. Improved soybean oil quality by targeted mutagenesis of the fatty acid desaturase 2 gene family. Plant Biotechnology Journal, 12, 934–940.
Hiei Y, Ohta S, Komari T, Kumashiro T. 1994. Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. The Plant Journal, 6, 271–282.
Hruscha A, Krawitz P, Rechenberg A, Heinrich V, Hecht J, Haass C, Schmid B. 2013. Efficient CRISPR/Cas9 genome editing with low off-target effects in zebrafish. Development, 140, 4982–4987.
Huang P, Xiao A, Zhou M G, Zhu Z Y, Lin S, Zhang B. 2011. Heritable gene targeting in zebrafish using customized TALENs. Nature Biotechnology, 29, 699–700.
Ishii T. 2015. Germline genome-editing research and its socioethical implications. Trends in Molecular Medicine, 21, 473–481.
Jacobs T B, LaFayette P R, Schmitz R J, Parrott W A. 2015. Targeted genome modifications in soybean with CRISPR/Cas9. BMC Biotechnology, 15, 16.
Lei Y, Guo X G, Liu Y, Cao Y, Deng Y, Chen X F, Cheng C H K, Dawid I B, Chen Y L, Zhao H. 2012. Efficient targeted gene disruption in Xenopus embryos using engineered transcription activator-like effector nucleases (TALENs). Proceedings of the National Academy of Sciences of the United States of America, 109, 17484–17489.
Li T, Huang S, Jiang W Z, Wright D, Spalding M H, Weeks D P, Yang B. 2010. TAL nucleases (TALNs): Hybrid proteins composed of TAL effectors and FokI DNA-cleavage domain. Nucleic Acids Research, 39, 359–372.
Li T, Huang S, Zhao X, Wright D A, Carpenter S, Spalding M H, Weeks D P, Yang B. 2011. Modularly assembled designer TAL effector nucleases for targeted gene knockout and gene replacement in eukaryotes. Nucleic Acids Research, 39, 6315–6325.
Li T, Liu B, Spalding M H, Weeks D P, Yang B. 2012. High-efficiency TALEN-based gene editing produces disease-resistant rice. Nature Biotechnology, 30, 390–392.
Liang Z, Zhang K, Chen K L, Gao C X. 2014. Targeted mutagenesis in Zea mays using TALENs and the CRISPR/Cas system. Journal of Genetics and Genomics, 41, 63–68.
Lin Y N, Cradick T J, Brown M T, Deshmukh H, Ranjan P, Sarode N, Wile B M, Vertino P M, Stewart F J, Bao G. 2014. CRISPR/Cas9 systems have off-target activity with insertions or deletions between target DNA and guide RNA sequences. Nucleic Acids Research, 42, 7473–7485.
Liu D F, Chen X J, Liu J Q, Ye J C, Guo Z J. 2012. The rice ERF transcription factor OsERF922 negatively regulates resistance to Magnaporthe oryzae and salt tolerance. Journal of Experimental Botany, 63, 3899–3912.
Liu J Y, Li C Q, Yu Z S, Huang P, Wu H G, Wei C X, Zhu N N, Shen Y, Chen Y X, Zhang B, Deng W M, Jiao R J. 2012. Efficient and specific modifications of the Drosophila genome by means of an easy TALEN strategy. Journal of Genetics and Genomics, 39, 209–215.
Liu W S, Rudis M R, Peng Y, Mazarei M, Millwood R J, Yang J P, Xu W Z, Chesnut J D, Stewart C N. 2014. Synthetic TAL effectors for targeted enhancement of transgene expression in plants. Plant Biotechnology Journal, 12, 436–446.
Liu Z, Zhou X, Zhu Y, Chen Z F, Yu B, Wang Y, Zhang C C, Nie Y H, Sang X, Cai Y J, Zhang Y F, Zhang C, Zhou W H, Sun Q, Qiu Z. 2014. Generation of a monkey with MECP2 mutations by TALEN-based gene targeting. Neuroscience Bulletin, 30, 381–386.
Lor V S, Starker C G, Voytas D F, Weiss D, Olszewski N E. 2014. Targeted mutagenesis of the tomato PROCERA gene using transcription activator-like effector nucleases. Plant Physiology, 166, 1288–1291.
Lowder L G, Zhang D, Baltes N J, Paul J W, Tang X, Zheng X L, Voytas D F, Hsieh T F, Zhang Y, Qi Y P. 2015. A CRISPR/Cas9 toolbox for multiplexed plant genome editing and transcriptional regulation. Plant Physiology, 169, 971–985.
Ma L, Zhu F, Li Z, Zhang J, Li X, Dong J, Wang T. 2015. TALEN-based mutagenesis of lipoxygenase LOX3 enhances the storage tolerance of rice (Oryza sativa) seeds. PLOS ONE, 10, e0143877.
Ma X L, Zhang Q Y, Zhu Q L, Liu W, Chen Y, Qiu R, Wang B, Yang Z F, Li H Y, Lin Y R, Xie Y Y, Shen R X, Chen S F, Wang Z, Chen Y L, Guo J X, Chen L T, Zhao X C, Dong Z C, Liu Y G. 2015. A robust CRISPR/Cas9 system for convenient, high-efficiency multiplex genome editing in monocot and dicot plants. Molecular Plant, 8, 1274–1284.
McGinnis K M. 2010. RNAi for functional genomics in plants. Briefings in Functional Genomics, 9, 111–117.
Miller J C, Tan S, Qiao G, Barlow K A, Wang J, Xia D F, Meng X, Paschon D E, Leung E, Hinkley S J, Dulay G P, Hua K L, Ankoudinova I, Cost G J, Urnov F D, Zhang H S, Holmes M C, Zhang L, Gregory P D, Rebar E J. 2011. A TALE nuclease architecture for efficient genome editing. Nature Biotechnology, 29, 143–148.
Moscou M J, Bogdanove A J. 2009. A simple cipher governs DNA recognition by TAL effectors. Science, 326, 1501.
Moynahan M E, Jasin M. 2010. Mitotic homologous recombination maintains genomic stability and suppresses tumorigenesis. Nature Reviews Molecular Cell Biology, 11, 196–207.
Mussolino C, Morbitzer R, Lutge F, Dannemann N, Lahaye T, Cathomen T. 2011. A novel TALE nuclease scaffold enables high genome editing activity in combination with low toxicity. Nucleic Acids Research, 39, 9283–9293.
Nicolia A, Proux-Wera E, Ahman I, Onkokesung N, Andersson M, Andreasson E, Zhu L H. 2015. Targeted gene mutation in tetraploid potato through transient TALEN expression in protoplasts. Journal of Biotechnology, 204, 17–24.
Reyon D, Tsai S Q, Khayter C, Foden J A, Sander J D, Joung J K. 2012. FLASH assembly of TALENs for high-throughput genome editing. Nature Biotechnology, 30, 460–465.
Sander J D, Cade L, Khayter C, Reyon D, Peterson R T, Joung J K, Yeh J R. 2011. Targeted gene disruption in somatic zebrafish cells using engineered TALENs. Nature Biotechnology, 29, 697–698.
Shan Q W, Wang Y P, Chen K L, Liang Z, Li J, Zhang Y, Zhang K, Liu J, Voytas D F, Zheng X L, Zhang Y, Gao C X. 2013. Rapid and efficient gene modification in rice and Brachypodium using TALENs. Molecular Plant, 6, 1365–1368.
Shan Q W, Zhang Y, Chen K L, Zhang K, Gao C X. 2015. Creation of fragrant rice by targeted knockout of the OsBADH2 gene using TALEN technology. Plant Biotechnology Journal, 13, 791–800.
Song J, Zhong J, Guo X G, Chen Y Q, Zou Q J, Huang J, Li X P, Zhang Q J, Jiang Z W, Tang C C, Yang H Q, Liu T, Li P, Pei D Q, Lai L X. 2013. Generation of RAG 1- and 2-deficient rabbits by embryo microinjection of TALENs. Cell Research, 23, 1059–1062.
Sun Z J, Li N Z, Huang G D, Xu J Q, Pan Y, Wang Z M, Tang Q L, Song M, Wang X J. 2013. Site-specific gene targeting using transcription activator-like effector (TALE)-based nuclease in Brassica oleracea. Journal of Integrative Plant Biology, 55, 1092–1103.
Symington L S, Gautier J. 2011. Double-strand break end resection and repair pathway choice. Annual Review of Genetics, 45, 247–271.
Tan W F, Carlson D F, Lancto C A, Garbe J R, Webster D A, Hackett P B, Fahrenkrug S C. 2013. Efficient nonmeiotic allele introgression in livestock using custom endonucleases. Proceedings of the National Academy of Sciences of the United States of America, 110, 16526–16531.
Tesson L, Usal C, Menoret S, Leung E, Niles B J, Remy S, Santiago Y, Vincent A I, Meng X, Zhang L, Gregory P D, Anegon I, Cost G J. 2011. Knockout rats generated by embryo microinjection of TALENs. Nature Biotechnology, 29, 695–696.
Tong C, Huang G Y, Ashton C, Wu H P, Yan H, Ying Q L. 2012. Rapid and cost-effective gene targeting in rat embryonic stem cells by TALENs. Journal of Genetics and Genomics, 39, 275–280.
Valton J, Dupuy A, Daboussi F, Thomas S, Marechal A, Macmaster R, Melliand K, Juillerat A, Duchateau P. 2012. Overcoming transcription activator-like effector (TALE) DNA binding domain sensitivity to cytosine methylation. The Journal of Biological Chemistry, 287, 38427–38432.
Voytas D F. 2013. Plant genome engineering with sequence-specific nucleases. Annual Review of Plant Biology, 64, 327–350.
Wang C L, Qin T F, Yu H M, Zhang X P, Che J Y, Gao Y, Zheng C K, Yang B, Zhao K J. 2014. The broad bacterial blight resistance of rice line CBB23 is triggered by a novel transcription activator-like (TAL) effector of Xanthomonas oryzae pv. oryzae. Molecular Plant Pathology, 15, 333–341.
Wang M G, Liu Y J, Zhang C C, Liu J P, Liu X, Wang L C, Wang W Y, Chen H, Wei C C, Ye X F, Li X Y, Tu J M. 2015. Gene editing by co-transformation of TALEN and chimeric RNA/DNA oligonucleotides on the rice OsEPSPS gene and the inheritance of mutations. PLOS ONE, 10, e0122755.
Wang X L, Wang Y B, Wu X W, Wang J H, Wang Y J, Qiu Z J, Chang T, Huang H, Lin R J, Yee J K. 2015. Unbiased detection of off-target cleavage by CRISPR-Cas9 and TALENs using integrase-defective lentiviral vectors. Nature Biotechnology, 33, 175–178.
Wang Y P, Cheng X, Shan Q W, Zhang Y, Liu J X, Gao C X, Qiu J L. 2014. Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew. Nature Biotechnology, 32, 947–951.
Weeks D P, Spalding M H, Yang B. 2016. Use of designer nucleases for targeted gene and genome editing in plants. Plant Biotechnology Journal, 14, 483–495.
Wendt T, Holm P B, Starker C G, Christian M, Voytas D F, Brinch-Pedersen H, Holme I B. 2013. TAL effector nucleases induce mutations at a pre-selected location in the genome of primary barley transformants. Plant Molecular Biology, 83, 279–285.
Wolt J D, Wang K, Yang B. 2016. The regulatory status of genome-edited crops. Plant Biotechnology Journal, 14, 510–518.
Wood A J, Lo T W, Zeitler B, Pickle C S, Ralston E J, Lee A H, Amora R, Miller J C, Leung E, Meng X D, Zhang L, Rebar E J, Gregory P D, Urnov F D, Meyer B J. 2011. Targeted genome editing across species using ZFNs and TALENs. Science, 333, 307–307.
Wright D A, Li T, Yang B, Spalding M H. 2014. TALEN-mediated genome editing: Prospects and perspectives. Biochemical Journal, 462, 15–24.
Zhang H, Gou F, Zhang J S, Liu W S, Li Q Q, Mao Y F, Botella J R, Zhu J K. 2016. TALEN-mediated targeted mutagenesis produces a large variety of heritable mutations in rice. Plant Biotechnology Journal, 14, 186–194.
Zhang H, Zhang J S, Wei P L, Zhang B T, Gou F, Feng Z Y, Mao Y F, Yang L, Zhang H, Xu N F, Zhu J K. 2014. The CRISPR/Cas9 system produces specific and homozygous targeted gene editing in rice in one generation. Plant Biotechnology Journal, 12, 797–807.
Zhang Y, Su J B, Duan S, Ao Y, Dai J R, Liu J, Wang P, Li Y G, Liu B, Feng D R, Wang J F, Wang H B. 2011. A highly efficient rice green tissue protoplast system for transient gene expression and studying light/chloroplast-related processes. Plant Methods, 7, 30.
Zhao K J, Wang C L, Zheng C K, Zhang X P, Wang F J, Qin T F. 2014. A Simplified Method and Plasmids for Construction of TAL Effector and TALENs. China Patent, ZL201410032382.6. [2015-10-07]. (in Chinese)
Zhao K J, Yang B. 2012. TALENs: Molecular scissors for site-specific genome editing in plants. Scientia Agricultura Sinica, 45, 2787–2792. (in Chinese)
Zheng C K, Wang C L, Zhang X P, Wang F J, Qin T F, Zhao K J. 2014. The last half-repeat of transcription activator-like effector (TALE) is dispensable and thereby TALE-based technology can be simplified. Molecular Plant Pathology, 15, 690–697.
[1] ZHAO Jun-yang, LU Hua-ming, QIN Shu-tao, PAN Peng, TANG Shi-de, CHEN Li-hong, WANG Xue-li, TANG Fang-yu, TAN Zheng-long, WEN Rong-hui, HE Bing. Soil conditioners improve Cd-contaminated farmland soil microbial communities to inhibit Cd accumulation in rice[J]. >Journal of Integrative Agriculture, 2023, 22(8): 2521-2535.
[2] GAO Peng, ZHANG Tuo, LEI Xing-yu, CUI Xin-wei, LU Yao-xiong, FAN Peng-fei, LONG Shi-ping, HUANG Jing, GAO Ju-sheng, ZHANG Zhen-hua, ZHANG Hui-min. Improvement of soil fertility and rice yield after long-term application of cow manure combined with inorganic fertilizers[J]. >Journal of Integrative Agriculture, 2023, 22(7): 2221-2232.
[3] SHI Shi-jie, ZHANG Gao-yu, CAO Cou-gui, JIANG Yang . Untargeted UHPLC–Q-Exactive-MS-based metabolomics reveals associations between pre- and post-cooked metabolites and the taste quality of geographical indication rice and regular rice[J]. >Journal of Integrative Agriculture, 2023, 22(7): 2271-2281.
[4] CHEN Guang-yi, PENG Li-gong, LI Cong-mei, TU Yun-biao, LAN Yan, WU Chao-yue, DUAN Qiang, ZHANG Qiu-qiu, YANG Hong, LI Tian. Effects of the potassium application rate on lipid synthesis and eating quality of two rice cultivars[J]. >Journal of Integrative Agriculture, 2023, 22(7): 2025-2040.
[5] WEI Huan-he, GE Jia-lin, ZHANG Xu-bin, ZHU Wang, DENG Fei, REN Wan-jun, CHEN Ying-long, MENG Tian-yao, DAI Qi-gen. Decreased panicle N application alleviates the negative effects of shading on rice grain yield and grain quality[J]. >Journal of Integrative Agriculture, 2023, 22(7): 2041-2053.
[6] DU Xiang-bei, XI Min, WEI Zhi, CHEN Xiao-fei, WU Wen-ge, KONG Ling-cong. Raised bed planting promotes grain number per spike in wheat grown after rice by improving spike differentiation and enhancing photosynthetic capacity[J]. >Journal of Integrative Agriculture, 2023, 22(6): 1631-1644.
[7] LIU Yu, LIU Wen-wen, LI Li, Frederic FRANCIS, WANG Xi-feng. Transcriptome analysis reveals different response of resistant and susceptible rice varieties to rice stripe virus infection[J]. >Journal of Integrative Agriculture, 2023, 22(6): 1750-1762.
[8] ZHANG Zi-han, NIE Jun, LIANG Hai, WEI Cui-lan, WANG Yun, LIAO Yu-lin, LU Yan-hong, ZHOU Guo-peng, GAO Song-juan, CAO Wei-dong. The effects of co-utilizing green manure and rice straw on soil aggregates and soil carbon stability in a paddy soil in southern China[J]. >Journal of Integrative Agriculture, 2023, 22(5): 1529-1545.
[9] LI Min, ZHU Da-wei, JIANG Ming-jin, LUO De-qiang, JIANG Xue-hai, JI Guang-mei, LI Li-jiang, ZHOU Wei-jia. Dry matter production and panicle characteristics of high yield and good taste indica hybrid rice varieties[J]. >Journal of Integrative Agriculture, 2023, 22(5): 1338-1350.
[10] CHEN Chang-zhao, WANG Ya-Liang, HE Meng-xing, LI Zhi-wen, SHEN Lan, LI Qing, RE De-yong, HU Jiang, ZHU Li, ZHANG Guang-heng, GAO Zhen-yu, ZENG Da-li, GUO Long-biao, QIAN Qian, ZHANG Qiang. OsPPR9 encodes a DYW-type PPR protein that affects editing efficiency of multiple RNA editing sites and is essential for chloroplast development[J]. >Journal of Integrative Agriculture, 2023, 22(4): 972-980.
[11] WANG Xin-yu, YANG Guo-dong, XU Le, XIANG Hong-shun, YANG Chen, WANG Fei, PENG Shao-bing. Grain yield and nitrogen use efficiency of an ultrashort-duration variety grown under different nitrogen and seeding rates in direct-seeded and double-season rice in Central China[J]. >Journal of Integrative Agriculture, 2023, 22(4): 1009-1020.
[12] Kanokwan KAEWMUNGKUN, Keasinee TONGMARK, Sriprapai CHAKHONKAEN, Numphet SANGARWUT, Thiwawan WASINANON, Natjaree PANYAWUT, Khanittha DITTHAB, Kannika SIKAEWTUNG, QI Yong-bin, Sukanya DAPHA, Atikorn PANYA, Natthaporn PHONSATTA, Amorntip MUANGPROM. Development of new aromatic rice lines with high eating and cooking qualities[J]. >Journal of Integrative Agriculture, 2023, 22(3): 679-690.
[13] CAO Peng-hui, WANG Di, GAO Su, LIU Xi, QIAO Zhong-ying, XIE Yu-lin, DONG Ming-hui, DU Tan-xiao, ZHANG Xian, ZHANG Rui, JI Jian-hui. OsDXR interacts with OsMORF1 to regulate chloroplast development and the RNA editing of chloroplast genes in rice[J]. >Journal of Integrative Agriculture, 2023, 22(3): 669-678.
[14] WANG Yuan-zheng, Olusegun IDOWU, WANG Yun, HOMMA Koki, NAKAZAKI Tetsuya, ZHENG Wen-jing, XU Zheng-jin, SHIRAIWA Tatsuhiko.
Effects of erect panicle genotype and environment interactions on rice yield and yield components
[J]. >Journal of Integrative Agriculture, 2023, 22(3): 716-726.
[15] REN Chuan-ying, ZHANG Shan, HONG Bin, GUAN Li-jun, HUANG Wen-gong, FENG Jun-ran, SHA Di-xin, YUAN Di, LI Bo, JI Ni-na, LIU Wei, LU Shu-wen. Germinated brown rice relieves hyperlipidemia by alleviating gut microbiota dysbiosis[J]. >Journal of Integrative Agriculture, 2023, 22(3): 945-957.
No Suggested Reading articles found!