Please wait a minute...
Journal of Integrative Agriculture
Advanced Online Publication | Current Issue | Archive | Adv Search
Multiple human-mediated introductions shape the disjunct distribution of an invasive weed Amaranthus palmeri in China

Jingjing Cao1*, Yongpan Qian1*, Jianying Guo1, Hongwei Wang2, Jianguo Fu3, Yibo Zhang1, Wanxue Liu1, Fanghao Wan1, Rui Wang1#

1 State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China

2 College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China

3 Animal, Plant and Food Inspection Center, Nanjing Customs, Nanjing 210019, China

 Highlights 

1.Trade-mediated propagules serve as direct genetic proxies, overcoming the limitation of unsampled native sources in invasion pathway reconstruction.

2.Multiple human-mediated introductions, not secondary spread from the initial introduction, dominate the genetically diverse and disjunct distribution of Amaranthus palmeri in China.

3.Soybean import volume predicts local genetic richness, highlighting the role of trade-driven propagule pressure in shaping invasion hotspots.

 

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

生物入侵对全球农业、粮食安全及自然生态系统构成严峻威胁,而国际贸易日益频繁,其网络也持续拓展,正持续加剧这一风险。以经由国际农产品贸易入侵的恶性杂草长芒苋(Amaranthus palmeri)为例,其在中国形成的广域不连续分布格局,其成因指向入侵生物学的一个核心问题:此类分布究竟源于初始入侵点的桥头堡式二次扩散,还是由人类活动介导的多次独立传入所致?为阐明其异质性分布格局的形成机制,本研究整合遗传学与稳定同位素地理溯源技术,系统检验了上述两种假说。创新性地将国际贸易中截获的繁殖体(混杂于进口大豆中的种子)作为源种群的动态遗传代表样本,并结合碳、氮稳定同位素指纹进行来源验证,克服了在广阔来源地直接采样的难题。通过对中国24个地理隔离种群(784株)及从美国、阿根廷和巴西进口大豆中收集的410粒种子进行叶绿体DNA测序分析,发现中国实地采集种群的核苷酸多样性(π = (0.78 ± 0.18) × 10-3)和单倍型多样性(Hd = 0.47 ± 0.04)均显著高于首次发现的北京南苑种群及来自美国来源区域的繁殖体集合,且拥有更为丰富的单倍型(31个)。种群遗传结构分析显示,南苑种群与中国多数实地种群存在显著遗传分化(FST > 0.20),其遗传影响仅限于本地,未能构成全国性入侵的桥头堡来源。中性检验与多峰型错配分布表明,这些中国种群未经历近期扩张或选择,其遗传特征更接近来源地稳定的大种群。尤为重要的是,港口地区的单倍型丰富度与当地历史大豆进口量呈显著正相关(r = 0.59P < 0.05),而种群间遗传距离与环境因子无显著关联。综上,长芒苋在中国的间断分布并非由初始入侵点的二次扩散导致,而是主要由与国际大豆贸易相关的、反复发生的、跨洲际的多次独立人类介导引入所驱动。本研究构建了一套基于贸易介导入侵植物繁殖体的入侵路径重建新框架,不仅阐明了特定入侵案例的机制,也为全球化贸易时代实施源头管控、制定精准生物安全策略提供了关键科学依据与研究方法。



Abstract  

A central challenge in invasion biology is to determine whether disjunct distributions of invasive species stem from secondary spread from an initial introduction bridgehead or from recurrent, human-mediated introductions. The devastating alien weed Amaranthus palmeri, with its large-scale disjunct distribution across China, provides an ideal system to address this question. We tested the competing hypotheses of bridgehead-mediated expansion (originating from the initial introduction in Beijing, 1985) versus multiple independent introductions. By integrating genetic analyses with stable isotope geolocation, we treated propagules from imported soybean shipments as direct, traceable links to potential source populations. Newly field-collected populations in China harbored significantly higher nucleotide diversity (π=(0.78 ± 0.18) × 10-3) and haplotype diversity (Hd = 0.47 ± 0.04) than both the initial introduced population and the pooled propagules from the primary source, the United States (US). Significant genetic differentiation (FST > 0.20was observed both among newly field-established populations and between them and the initial introduction. Non-significant neutrality tests, coupled with multimodal mismatch distributions (Raggedness index = 0.0946, P > 0.05), indicated that these populations did not undergo a recent demographic expansion or selection. Genetic diversity and structure correlated with regional soybean import volume (r = 0.59, P < 0.05but not with environmental distance (Mantel r = 0.24, P > 0.05). Our findings demonstrate that recurrent transcontinental introductions, mediated by global grain trade, are the dominant force shaping the genetic pattern and invasion process. This study provides a framework for reconstructing invasion pathways and highlights the need for proactive, source-targeted biosecurity strategies to manage invasions in the Anthropocene.

Keywords:  Amaranthus palmeri       transboundary dispersal       multiple introductions       bridgehead effect       invasion pathways       grain trade       agricultural biosecurity  
Online: 13 January 2026  
Fund: 

This research was supported by grants from National Key R&D Program of China (2022YFC2601000, 2022YFC2601100) and the National Nature Science Foundation of China (32272569, 32402403, 31471827).

About author:  Jingjing Cao, E-mail: caojingjing319@163.com; Yongpan Qian, E-mail: 15666501468@163.com; #Correspondence Rui Wang, E-mail: wangrui@caas.cn * These authors contributed equally to this work

Cite this article: 

Jingjing Cao, Yongpan Qian, Jianying Guo, Hongwei Wang, Jianguo Fu, Yibo Zhang, Wanxue Liu, Fanghao Wan, Rui Wang. 2026. Multiple human-mediated introductions shape the disjunct distribution of an invasive weed Amaranthus palmeri in China. Journal of Integrative Agriculture, Doi:10.1016/j.jia.2026.01.011

A growing problem. 2014. Nature, 510, 187.

Ahmed M A. 2011. BioEdit: An important software for molecular biology. GERF Bulletin of Biosciences, 2, 60-61.

Avise J C. 2000. Phylogeography: The history and formation of species. Harvard University Press, Cambridge, USA.

Baird H P, Moon K L, Janion-Scheepers C, Chown S L. 2020. Springtail phylogeography highlights biosecurity risks of repeated invasions and intraregional transfers among remote islands. Evolutionary Applications, 13, 960-973.

Bandelt H J, Forster P, Röhl A. 1999. Median-joining networks for inferring intraspecific phylogenies. Molecular Biology and Evolution, 16, 37-48.

Bertelsmeier C, Keller L. 2018. Bridgehead effects and role of adaptive evolution in invasive populations. Trends in Ecology and Evolution, 33, 527-534.

Blackburn T M, Pyšek P, Bacher S, Carlton J T, Duncan R P, Jarošík V, Wilson J R, Richardson D M. 2011. A proposed unified framework for biological invasions. Trends in Ecology and Evolution, 26, 333-339.

Blumenfeld A J, Eyer P A, Husseneder C, Mo J, Johnson L N L, Wang C, Grace J K, Chouvenc T, Wang S, Vargo E L. 2021. Bridgehead effect and multiple introductions shape the global invasion history of a termite. Communications Biology, 4, 196.

Cao J J. 2023. Rapid adaptation mechanism of invasive alien plant Amaranthus palmeri at different environments in China. China, Beijing, Chinese Academy of Agricultural Sciences, Graduate School. (in Chinese)

Cao J J, Wang H W, Fu J G, Wan F H, Guo J Y, Wang R. 2025. Dynamic genetic changes reveal: Intra-lineage diversity, not admixture, explains Amaranthus palmeri’s success in China. International Journal of Molecular Sciences, 26, 8128.

Cao J J, Wu Q M, Wan F H, Guo J Y, Wang R. 2022. Reliable and rapid identification of glyphosate-resistance in the invasive weed Amaranthus palmeri in China. Pest Management Science, 78, 2173-2182.

Diagne C, Leroy B, Vaissière A C, Gozlan R E, Roiz D, Jarić I, Salles J M, Bradshaw C J A, Courchamp F. 2021. High and rising economic costs of biological invasions worldwide. Nature, 592, 571-576.

Estoup A, Ravigné V, Hufbauer R, Vitalis R, Gautier M, Facon B. 2016. Is there a genetic paradox of biological invasion? Annual Review of Ecology, Evolution, and Systematics, 47, 51-72.

Excoffier L, Laval G, Schneider S. 2005. Arlequin (version 3.0): an integrated software package for population genetics data analysis. Evolutionary Bioinformatics, 1, 117693430500100003.

Eyer P A, Blumenfeld A J, Johnson L N L, Perdereau E, Shults P, Wang S, Dedeine F, Dupont S, Bagnères A G, Vargo E L. 2021. Extensive human-mediated jump dispersal within and across the source and introduced ranges of the invasive termite Reticulitermes flavipes. Molecular Ecology, 30, 3948-3964.

Fu Y X. 1997. Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics, 147, 915-925.

Gaines T A, Slavov G T, Hughes D, Küpper A, Sparks C D, Oliva J, Vila-Aiub M M, Garcia M A, Merotto A, Neve P. 2021. Investigating the origins and evolution of a glyphosate-resistant weed invasion in South America. Molecular Ecology, 30, 5360-5372.

Garnas J R, Auger-Rozenberg M A, Roques A, Bertelsmeier C, Wingfield M J, Saccaggi D L, Roy H E, Slippers B. 2016. Complex patterns of global spread in invasive insects: eco-evolutionary and management consequences. Biological Invasions, 18, 935-952.

Horvitz N, Wang R, Wan F H, Nathan R. 2017. Pervasive human-mediated large-scale invasion: analysis of spread patterns and their underlying mechanisms in 17 of China’s worst invasive plants. Journal of Ecology, 105, 85-94.

Hulme P E. 2021. Unwelcome exchange: international trade as a direct and indirect driver of biological invasions worldwide. One Earth, 4, 666-679.

Jombart T, Devillard S, Balloux F. 2010. Discriminant analysis of principal components: a new method for the analysis of genetically structured populations. BMC Genetics, 11, 94.

Kim H Y. 2017. Statistical notes for clinical researchers: Chi-squared test and Fisher’s exact test. Restorative Dentistry and Endodontics, 42, 152-155.

Knight T M, Steets J A, Vamosi J C, Mazer S J, Burd M C, Campbell D R, Dudash M R, Johnston M O, Mitchell R J, Ashman T L. 2005. Pollen limitation of plant reproduction: Pattern and process. Annual Review of Ecology, Evolution and Systematics, 36, 467-497.

Kumar S, Stecher G, Tamura K. 2016. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular Biology and Evolution, 33, 1870-1874.

Lavergne S, Molofsky J. 2007. Increased genetic variation and evolutionary potential drive the success of an invasive grass. Proceedings of the National Academy of Sciences, 104, 3883-3888.

Le Roux J J. 2022. Invasion genetics: Molecular genetic insights into the spatial and temporal dynamics of biological invasions. In: The Evolutionary Ecology of Invasive Species. Academic Press, USA. pp. 159-188.

Li Z Y. 2003. Amaranthus palmeri S. Watson, a newly naturalized species in China. Chinese Bulletin of Botany, 20, 734-735. (in Chinese)

Maddock S T, Nussbaum R A, Day J J, Latta L, Miller M, Fisk D L, Wilkinson M, Rocha S, Gower D J, Pfrender M E. 2020. The roles of vicariance and isolation by distance in shaping biotic diversification across an ancient archipelago: evidence from a Seychelles caecilian amphibian. BMC Evolutionary Biology, 20, 110.

Mairal M, Chown S L, Shaw J, Chala D, Chau J H, Hui C, Kalwij J M, Münzbergová Z, Jansen van Vuuren B, Le Roux J J. 2022. Human activity strongly influences genetic dynamics of the most widespread invasive plant in the sub-Antarctic. Molecular Ecology, 31, 1649-1665.

Marchioro C A. 2016. Global potential distribution of Bactrocera carambolae and the risks for fruit production in Brazil. Plos One, 11, e0166142.

McCauley D E. 1995. The use of chloroplast DNA polymorphism in studies of gene flow in plants. Trends in Ecology and Evolution, 10, 198-202.

McCue M D, Javal M, Clusella-Trullas S, Roux J L, Jackson M C, Ellis A G, Richardson D M, Valentine A J, Terblanche J S. 2019. Using stable isotope analysis to answer fundamental questions in invasion ecology: Progress and prospects. Methods in Ecology and Evolution, 11, 123-145.

Mohsen M, Sabry M, Shalaby W, Nagla T, Galahom A, Abdel-Rahman M. 2025. Accurate departure from nucleate boiling ratio (DNBR) prediction using SIMCA’s partial least squares regression and clustering. Kerntechnik, 90, 309-324.

Molin W T, Wright A A, VanGessel M J, McCloskey W B, Jugulam M, Hoagland R E. 2018. Survey of the genomic landscape surrounding the 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) gene in glyphosate-resistant Amaranthus palmeri from geographically distant populations in the USA. Pest Management Science, 74, 1109-1117.

Nagae K, Kurita Y, Ando D, Onikura N. 2025. Population structure of Cobitis striata complex (Cypriniformes, Cobitidae) based on the mitochondrial DNA in Northern Kyushu, Japan. Ichthyological Research. https://doi.org/10.1007/s10228-025-01042-x

Niu X, Xu Z, Lin Z, Tang Q, Du Z, Gao F. 2025. Population genetic analysis reveals recent demographic expansion and local differentiation of areca palm Velarivirus 1 in Hainan Island. Plants, 14, 2952.

Normile D. 2004. Invasive species: expanding trade with China creates ecological backlash. Science, 306, 968-969.

Oduor A M, Gómez J M, Herrador M B, Perfectti F. 2015. Invasion of Brassica nigra in North America: distributions and origins of chloroplast DNA haplotypes suggest multiple introductions. Biological Invasions, 17, 2447-2459.

Ortego J, Céspedes V, Millán A, Green A J. 2021. Genomic data support multiple introductions and explosive demographic expansions in a highly invasive aquatic insect. Molecular Ecology, 30, 4189-4203.

Peng C Y, Zhang Y L, Song W, Lv Y N, Xu Q, Zheng P, Cai H M. 2019. Using stable isotope signatures to delineate the geographic point-of-origin of Keemun black tea. Journal of the Science of Food and Agriculture, 99, 2596-2601.

Rogers A R, Harpending H. 1992. Population growth makes waves in distribution of pairwise genetic differences. Molecular Biology and Evolution, 9, 552-569.

Rozas J, Ferrer-Mata A, Sánchez-DelBarrio J C, Guirao-Rico S, Librado P, Ramos-Onsins S E, Sánchez-Gracia A. 2017. DnaSP 6: DNA sequence polymorphism analysis of large data sets. Molecular Biology and Evolution, 34, 3299-3302.

Shimono A, Kanbe H, Nakamura S, Ueno S, Yamashita J, Asai M. 2020. Initial invasion of glyphosate-resistant Amaranthus palmeri around grain-import ports in Japan. Plants, People, Planet, 2, 640-648.

Tajima F. 1989. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics, 123, 585-595.

Taylor K, Brummer T, Taper M L, Wing A, Rew L J. 2012. Human-mediated long-distance dispersal: an empirical evaluation of seed dispersal by vehicles. Diversity and Distributions, 18, 942-951.

USDA. 2023. Oilseeds: World markets and trade. U.S. Department of Agriculture, Foreign Agricultural Service. https://apps.fas.usda.gov/psdonline/circulars/oilseeds.pdf

Vallejo-Marín M, Friedman J, Twyford A D, Lepais O, Ickert-Bond S M, Streisfeld M A, Yant L, van Kleunen M, Rotter M C, Puzey J R. 2021. Population genomic and historical analysis suggests a global invasion by bridgehead processes in Mimulus guttatus. Communications Biology, 4, 327.

Wang X Y, Shen D W, Jiao J, Xu N N, Yu S, Zhou X F. 2012. Genotypic diversity enhances invasive ability of Spartina alterniflora. Molecular Ecology, 21, 2542-2551.

Wu Z Y, Milne R I, Liu J, Nathan R, Corlett R T, Li D Z. 2023. The establishment of plants following long-distance dispersal. Trends in Ecology and Evolution, 38, 289-300.

Xu H, Pan X, Wang C, Chen Y, Chen K, Zhu S, van Klinken R D. 2020. Species identification, phylogenetic analysis and detection of herbicide-resistant biotypes of Amaranthus based on ALS and ITS. Scientific Reports, 10, 11735.

[1] Ziqi Yin, Jiaxuan Hu, Jing Zhang, Xiangyang Zhou, Lingling Li, Jianzhai Wu.

Temporal and spatial evolution of global major grain trade patterns [J]. >Journal of Integrative Agriculture, 2024, 23(3): 1075-1086.

[2] YU Wu-sheng, CAO Li-juan. China’s meat and grain imports during 2000–2012 and beyond: A comparative perspective[J]. >Journal of Integrative Agriculture, 2015, 14(6): 1101-1114.
No Suggested Reading articles found!