Please wait a minute...
Journal of Integrative Agriculture  2024, Vol. 23 Issue (3): 1075-1086    DOI: 10.1016/j.jia.2023.10.032
Agricultural Economics and Management Advanced Online Publication | Current Issue | Archive | Adv Search |

Temporal and spatial evolution of global major grain trade patterns

Ziqi Yin1, 2*, Jiaxuan Hu1*, Jing Zhang1, Xiangyang Zhou1, Lingling Li 3, 4, Jianzhai Wu1#

1 Agricultural Information Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China

2 Institute of Scientific and Technical Information of China, Beijing 100038, China

3 Zibo Agricultural Science Research Institute, Zibo 255000, China

4 Zibo Institute for Digital Agriculture and Rural Research, Zibo 255000, China

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

日益复杂多变的国际形势对全球粮食供给安全产生了深刻的影响。本研究采用复杂网络分析模型,从网络拓扑、中心排名、社团结构等方面对1990-2020年全球主要粮食贸易的演变规律及发展趋势进行分析。结果表明:(11990-2020年全球主要粮食贸易网络规模不断扩大,且逐渐呈现出多元、均衡的特征。美国、加拿大、中国、巴西在考察期中始终是网络核心节点,2020年乌克兰地位迅速提升,成为粮食贸易第二大国。粮食出口国家主要分布在亚洲、美洲与欧洲,进口国家主要分布在亚洲、非洲与欧洲。(2)网络中高中心性国家明显增多,均有较高的出口能力,且大多具有耕地资源丰富,气候适宜等自然优势。(3)全球主要粮食贸易网络划分为四个社团,美洲-欧洲社团是目前全球分布最广、规模最大的粮食贸易团体,地理邻近是社团格局形成的因素之一。因此,全球应进一步发展并优化现有贸易模式、促进粮食贸易网络多极化,各国家地区应树立未来共同体的全球愿景,积极参与全球粮食贸易安全治理和体制改革,扩大与其他国家的贸易联系,优化进出口政策,以降低贸易风险。



Abstract  The complex and volatile international landscape has significantly impacted global grain supply security.  This study uses a complex network analysis model to examine the evolution and trends of the global major grain trade from 1990 to 2020, focusing on network topology, centrality ranking, and community structure.  There are three major findings.  First, the global major grain trade network has expanded in scale, with a growing emphasis on diversification and balance.  During the study period, the United States, Canada, China, and Brazil were the core nodes of the network.  Grain-exporting countries were mainly situated in Asia, the Americas, and Europe, and importing countries in Asia, Africa, and Europe.  Second, a significant increase in the number of high centrality countries with high export capacity occurred, benefiting from natural advantages such as fertile land and favorable climates.  Third, the main global grain trade network is divided into four communities, with the Americas-Europe community being the largest and most widespread.  The formation of the community pattern was influenced by geographic proximity, driven by the core exporting countries.  Therefore, the world needs to enhance the existing trade model, promote the multi-polarization of the grain trade network, and establish a global vision for the future community.  Countries and regions should participate actively in global grain trade security governance and institutional reform, expand trade links with other countries, and optimize import and export policies to reduce trade risks.
Keywords:  Grain trade        Pattern evolution        Complex network   
Received: 06 February 2023   Accepted: 03 August 2023
Fund: This research was funded by the National Natural Science Foundation of China (42271313), the Chinese Academy of Agricultural Sciences Innovation Project (CAAS-ASTIP-2021-AII), the Central Public-interest Scientific Institution Basal Research Fund, China (JBYW-AII-2022-06, JBYW-AII-2022-40).  
About author:  Ziqi Yin, E-mail: yinzq@istic.ac.cn; Jiaxuan Hu, E-mail: hujx99@163.com; #Correspondence Jianzhai Wu, E-mail: wujianzhai@caas.cn * These authors contributed equally to this study.

Cite this article: 

Ziqi Yin, Jiaxuan Hu, Jing Zhang, Xiangyang Zhou, Lingling Li, Jianzhai Wu. 2024.

Temporal and spatial evolution of global major grain trade patterns . Journal of Integrative Agriculture, 23(3): 1075-1086.

An H Z, Zhong W Q, Chen Y R, Li H J, Gao X Y. 2014. Features and evolution of international crude oil trade relationships: A trading-based network analysis. Energy, 74, 254–259.

Barabasi A L, Albert R, Jeong H. 1999. Mean-field theory for scale-free random networks. Physica (A), 272, 173–187.

Blondel V D, Guillaume J L, Lambiotte R, Lefebvre E. 2008. Fast unfolding of communities in large networks. Journal of Statistical Mechanics–Theory and Experiment, 12, 10008.

Carr J A, D’Odorico P, Laio F, Ridolfi L. 2013. Recent history and geography of virtual water trade. PLoS ONE, 8, 9.

Cottrell R S, Nash K L, Halpern B S, Remenyi T A, Corney S P, Fleming A, Fulton E A, Hornborg S, Johne A, Watson R A, Blanchard J L. 2019. Food production shocks across land and sea. Nature Sustainability, 2, 130–137.

D’Odorico P, Carr J A, Laio F, Ridolfi L, Vandoni S. 2014. Feeding humanity through global food trade. Earths Future, 2, 458–469.

Ercsey-Ravasz, M, Toroczkai, Z, Lakner, Z, Baranyi J. 2012. Complexity of the international agro-food trade network and its impact on food safety. PLoS ONE, 7, 7.

Erokhin V, Gao T M. 2020. Impacts of COVID-19 on trade and economic aspects of food security: Evidence from 45 developing countries. International Journal of Environmental Research and Public Health, 17, 28.

Fair K R, Bauch C T, Anand M. 2017. Dynamics of the global wheat trade network and resilience to shocks. Scientific Reports, 7, 14.

Freshwater D. 2016. The development of American agriculture: A historical analysis. Journal of Economic Issues, 15, 252–255.

Gephart J A, Rovenskaya E, Dieckmann U, Pace M L, Brannstrom A. 2016. Vulnerability to shocks in the global seafood trade network. Environmental Research Letters, 11, 10.

Godfray H C J, Beddington J R, Crute I R, Haddad L, Lawrence D, Muir J F, Pretty J, Robinson S, Thomas S M, Toulmin C. 2010. Food security: The challenge of feeding 9 billion people. Science, 327, 812–818.

Hu X Q, Wang C, Lim M K, Chen W Q. 2020a. Characteristics of the global copper raw materials and scrap trade systems and the policy impacts of China’s import ban. Ecological Economics, 172, 17.

Hu X Q, Wang C, Lim M K, Koh S C L. 2020b. Characteristics and community evolution patterns of the international scrap metal trade. Journal of Cleaner Production, 243, 15.

Kassaye A Y, Shao G C, Wang X J, Shifaw E, Wu S Q. 2021. Impact of climate change on the staple food crops yield in Ethiopia: Implications for food security. Theoretical and Applied Climatology, 145, 327–343.

Newman M E J. 2003. The structure and function of complex networks. SIAM Review, 45, 167–256.

O’Bannon C, Carr J, Seekell D A, D’Odorico P. 2014. Globalization of agricultural pollution due to international trade. Hydrology and Earth System Sciences, 18, 503–510.

Peng P, Cheng S F, Lu F. 2020. Characterizing the global liquefied petroleum gas trading community using mass vessel trajectory data. Journal of Cleaner Production, 252, 9.

Porkka M, Kummu M, Siebert S, Varis O. 2013. From food insufficiency towards trade dependency, a historical analysis of global food availability. PLoS ONE, 8, 12.

Puma M J, Bose S, Chon S Y, Cook B I. 2015. Assessing the evolving fragility of the global food system. Environmental Research Letters, 10, 14.

de Raymond A B, Alpha A, Ben-Ari T, Daviron B, Nesme T, Tetart G. 2021. Systemic risk and food security. Emerging trends and future avenues for research. Global Food Security, 29, 9.

Rosegrant M W, Cline S A. 2003. Global food security: Challenges and policies. Science, 302, 1917–1919.

Sartori M, Schiavo S. 2015. Connected we stand: A network perspective on trade and global food security. Food Policy, 57, 114–127.

Serrano M Á, Boguñá M. 2003. Topology of the world trade web. Physical Review (E), 68, 015101.

Sun J, Mooney H, Wu W B, Tang H J, Tong Y X, Xu Z C, Huang B R, Cheng Y Q, Yang X J, Wei D, Zhang F S, Liu J G. 2018. Importing food damages domestic environment: Evidence from global soybean trade. Proceedings of the National Academy of Sciences of the United States of America, 115, 5415–5419.

Torreggiani S, Mangioni G, Puma M J, Fagiolo G. 2018. Identifying the community structure of the food-trade international multi-network. Environmental Research Letters, 13, 14.

Udhayakumar M, Karunakaran K R. 2020. Trade dynamics of basmati and non-basmati rice exports from India. Journal of Economics, Management and Trade, 26, 68–76.

Vidmer A, Zeng A, Medo M, Zhang Y C. 2015. Prediction in complex systems: The case of the international trade network. Physica A: Statistical Mechanics and its Applications, 436, 188–199.

Wang C, Huang X, Lim M K, Tseng M L, Ghadimi P. 2020a. Mapping the structural evolution in the global scrap copper trade network. Journal of Cleaner Production, 275, 15.

Wang C, Zhao L F, Lim M K, Chen W Q, Sutherland J W. 2020b. Structure of the global plastic waste trade network and the impact of China’s import ban. Resources Conservation and Recycling, 153, 12.

Wang X B, Ge J P, Wei W D, Li H S, Wu C, Zhu G. 2016. Spatial dynamics of the communities and the role of major countries in the international rare earths trade: A complex network analysis. PLoS ONE, 11, 22.

Watts D J, Strogatz S H. 1998. Collective dynamics of ‘small-world’ networks. Nature, 393, 440–442.

Wu F, Guclu H. 2013. Global maize trade and food security: Implications from a social network model. Risk Analysis, 33, 2168–2178.

No related articles found!
No Suggested Reading articles found!