Please wait a minute...
Journal of Integrative Agriculture
Advanced Online Publication | Current Issue | Archive | Adv Search
Synergistic regulation of carbohydrate metabolism by histone acetyltransferases FgSas3 and FgRtt109 in a mycotoxin-producing fungal pathogen

Kaili Duan, Yutong Shi, Hanru Gong, Qifang Shen, Chunlan Wu, Aliang Xia, Ping Xiang, Cong Jiang#, Guanghui Wang#

State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling 712100, China.

 Highlights 

1. Systematic characterization of histone acetyltransferases in F. graminearum revealed that FgSas3 and FgRtt109 have overlapping functions.

2. Transcriptome-metabolome analyses indicate that FgSas3 and FgRtt109 synergistically regulate the disaccharide-to-monosaccharide conversion.

3. Exogenous disaccharide supplementation partially rescued the growth defect of Fgsas3 Fgrtt109 double mutant, linking reduced disaccharide levels to impaired vegetative growth.

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

由禾谷镰孢菌(Fusarium graminearum)引起的小麦赤霉病是一种全球性真菌病害,不仅造成作物严重减产,其产生的真菌毒素还威胁食品安全。本研究发现,禾谷镰刀菌组蛋白乙酰转移酶FgSas3FgRtt109之间存在功能冗余。二者的双敲突变体Fgsas3 Fgrtt109在营养生长、分生孢子产生和毒素合成方面的缺陷更显著,且完全丧失有性生殖致病能力。转录组与代谢组联合分析进一步显示,该双敲突变体在双糖向单糖转化中存在严重缺陷,具体表现为二糖含量显著下降、单糖及其衍生物积累增加;而向培养基中添加外源二糖,可部分恢复其营养生长。综上所述,禾谷镰刀菌组蛋白乙酰转移酶FgSas3FgRtt109通过表观遗传机制协同调控碳水化合物代谢,进而影响真菌的生长发育、致病及毒素合成等关键生物学过程。



Abstract  

Fusarium head blight (FHB), primarily caused by Fusarium graminearum, is a globally destructive fungal disease that not only reduces cereal crop yields but also threatens food safety due to mycotoxin contamination. In this study, we systematically characterized histone acetyltransferases in F. graminearum and revealed the overlapping functions between FgSas3 and FgRtt109. The double deletion mutant Fgsas3 Fgrtt109 showed severely impaired vegetative growth, conidiation, mycotoxin production, as well as complete loss of sexual reproduction and pathogenicity. Furthermore, integrated transcriptome and metabolome analyses revealed that this double mutant had significant dysregulation in carbohydrate metabolism, particularly in the disaccharides to monosaccharides conversion. This metabolic shift was evidenced by the reduced disaccharide concentrations, accumulated monosaccharide and their derivatives, and enhanced growth on disaccharide-supplemented medium in the Fgsas3 Fgrtt109 double mutant. Taken together, our results demonstrate that FgSas3 and FgRtt109 synergistically regulate carbohydrate metabolism, which in turn modulates fungal development, and plant infection.

Keywords:  Fusarium head blight       Fusarium graminearum       histone acetyltransferase       sugar metabolism  
Online: 22 December 2025  
Fund: 

This work was supported by the Innovation Capability Support Program of Shaanxi (2023-CX-TD-56), Shaanxi Science Fund for Distinguished Young Scholars (2022JC-14), China Postdoctoral Science Foundation (2024M752641), and Shaanxi Province Postdoctoral Research Project (2024BSHSDZZ177). 

About author:  #Correspondence Guanghui Wang, E-mail: wgh2891458@163.com; Cong Jiang, E-mail: cjiang@nwafu.edu.cn

Cite this article: 

Kaili Duan, Yutong Shi, Hanru Gong, Qifang Shen, Chunlan Wu, Aliang Xia, Ping Xiang, Cong Jiang, Guanghui Wang. 2025. Synergistic regulation of carbohydrate metabolism by histone acetyltransferases FgSas3 and FgRtt109 in a mycotoxin-producing fungal pathogen. Journal of Integrative Agriculture, Doi:10.1016/j.jia.2025.12.037

Badaruddin M, Holcombe L J, Wilson R A, Wang Z Y, Kershaw M J, Talbot N J. 2013. Glycogen metabolic genes are involved in trehalose-6-phosphate synthase-mediated regulation of pathogenicity by the rice blast fungus Magnaporthe oryzae. PLoS Pathogens, 9, e1003604.

Bai G, Shaner G. 2004. Management and resistance in wheat and barley to Fusarium head blight. Annual Review of Phytopathology, 42, 135-161.

Boenisch M J, Schäfer W. 2011. Fusarium graminearum forms mycotoxin producing infection structures on wheat. BMC Plant Biology, 11, 110.

Bok J W, Chiang Y M, Szewczyk E, Reyes-Dominguez Y, Davidson A D, Sanchez J F, Lo H C, Watanabe K, Strauss J, Oakley B R, Wang C C, Keller N P. 2009. Chromatin-level regulation of biosynthetic gene clusters. Nature Chemical Biology, 5, 462-464.

Chang M, Bellaoui M, Boone C, Brown G W. 2002. A genome-wide screen for methyl methanesulfonate-sensitive mutants reveals genes required for S phase progression in the presence of DNA damage. Proceedings of the National Academy of Sciences of the United States of America, 99, 16934-16939.

Charidemou E, Kirmizis A. 2024. A two-way relationship between histone acetylation and metabolism. Trends in Biochemical Sciences, 49, 1046-1062.

Chen Y, Wang J, Yang N, Wen Z, Sun X, Chai Y, Ma Z. 2018. Wheat microbiome bacteria can reduce virulence of a plant pathogenic fungus by altering histone acetylation. Nature Communications, 9, 3429.

Cuomo C A, Güldener U, Xu J-R, Trail F, Turgeon B G, Di Pietro A, Walton J D, Ma L J, Baker S E, Rep M, Adam G, Antoniw J, Baldwin T, Calvo S, Chang Y L, Decaprio D, Gale L R, Gnerre S, Goswami R S, Hammond-Kosack K, Harris L J, Hilburn K, Kennell J C, Kroken S, Magnuson J K, Mannhaupt G, Mauceli E, Mewes H W, Mitterbauer R, Muehlbauer G, Münsterkötter M, Nelson D, O'Donnell K, Ouellet T, Qi W, Quesneville H, Roncero M I, Seong K Y, Tetko I V, Urban M, Waalwijk C, Ward T J, Yao J, Birren B W, Kistler H C. 2007. The Fusarium graminearum genome reveals a link between localized polymorphism and pathogen specialization. Science, 317, 1400-1402.

Duan K, Qin S, Cui F, Zhao L, Huang Y, Xu J-R, Wang G. 2025. MeJA inhibits fungal growth and DON toxin production by interfering with the cAMP-PKA signaling pathway in the wheat scab fungus Fusarium graminearum. mBio, e0315124.

Duan K, Shen Q, Wang Y, Xiang P, Shi Y, Yang C, Jiang C, Wang G, Xu J-R, Zhang X. 2023. Herbicide 2,4-dichlorophenoxyacetic acid interferes with MAP kinase signaling in Fusarium graminearum and is inhibitory to fungal growth and pathogenesis. Stress Biology, 3, 31.

Duan Y, Lu F, Zhou Z, Zhao H, Zhang J, Mao Y, Li M, Wang J, Zhou M. 2020. Quinone outside inhibitors affect DON biosynthesis, mitochondrial structure and toxisome formation in Fusarium graminearum. Journal of Hazardous Materials, 398, 122908.

Dubey A, Lee J, Kwon S, Lee Y H, Jeon J. 2019. A MYST family histone acetyltransferase, MoSAS3, is required for development and pathogenicity in the rice blast fungus. Molecular Plant Pathology, 20, 1491-1505.

Fan A, Mi W, Liu Z, Zeng G, Zhang P, Hu Y, Fang W, Yin W B. 2017. Deletion of a histone acetyltransferase leads to the pleiotropic activation of natural products in Metarhizium robertsii. Organic Letters, 19, 1686-1689.

Gómez-Rodríguez E Y, Uresti-Rivera E E, Patrón-Soberano O A, Islas-Osuna M A, Flores-Martínez A, Riego-Ruiz L, Rosales-Saavedra M T, Casas-Flores S. 2018. Histone acetyltransferase TGF-1 regulates Trichoderma atroviride secondary metabolism and mycoparasitism. PLoS One, 13, e0193872.

Gu Q, Wang Y, Zhao X, Yuan B, Zhang M, Tan Z, Zhang X, Chen Y, Wu H, Luo Y, Keller N P, Gao X, Ma Z. 2022. Inhibition of histone acetyltransferase GCN5 by a transcription factor FgPacC controls fungal adaption to host-derived iron stress. Nucleic Acids Research, 50, 6190-6210.

Hou X, Liu L, Xu D, Lai D, Zhou L. 2024. Involvement of LaeA and velvet proteins in regulating the production of mycotoxins and other fungal secondary metabolites. Journal of Fungi, 10, 561.

Howe L, Auston D, Grant P, John S, Cook R G, Workman J L, Pillus L. 2001. Histone H3 specific acetyltransferases are essential for cell cycle progression. Genes & Development, 15, 3144-3154.

Hsieh W C, Sutter B M, Ruess H, Barnes S D, Malladi V S, Tu B P. 2022. Glucose starvation induces a switch in the histone acetylome for activation of gluconeogenic and fat metabolism genes. Molecular Cell, 82, 60-74.

Janevska S, Baumann L, Sieber C M K, Münsterkötter M, Ulrich J, Kämper J, Güldener U, Tudzynski B. 2018. Elucidation of the two H3K36me3 histone methyltransferases Set2 and Ash1 in Fusarium fujikuroi unravels their different chromosomal targets and a major impact of Ash1 on genome stability. Genetics, 208, 153-171.

Jiang C, Cao S, Wang Z, Xu H, Liang J, Liu H, Wang G, Ding M, Wang Q, Gong C, Feng C, Hao C, Xu J-R. 2019. An expanded subfamily of G-protein-coupled receptor genes in Fusarium graminearum required for wheat infection. Nature Microbiology, 4, 1582-1591.

Jiang C, Hei R, Yang Y, Zhang S, Wang Q, Wang W, Zhang Q, Yan M, Zhu G, Huang P, Liu H, Xu J-R. 2020. An orphan protein of Fusarium graminearum modulates host immunity by mediating proteasomal degradation of TaSnRK1α. Nature Communications, 11, 4382.

Jiang H, Xia A, Ye M, Ren J, Li D, Liu H, Wang Q, Lu P, Wu C, Xu J-R, Jiang C. 2020. Opposing functions of Fng1 and the Rpd3 HDAC complex in H4 acetylation in Fusarium graminearum. PLoS Genetics, 16, e1009185.

Jiao F, Kawakami A, Nakajima T. 2008. Effects of different carbon sources on trichothecene production and Tri gene expression by Fusarium graminearum in liquid culture. FEMS Microbiology Letters, 285, 212-219.

John S, Howe L, Tafrov S T, Grant P A, Sternglanz R, Workman J L. 2000. The something about silencing protein, Sas3, is the catalytic subunit of NuA3, a yTAF(II)30-containing HAT complex that interacts with the Spt16 subunit of the yeast CP (Cdc68/Pob3)-FACT complex. Genes & Development, 14, 1196-1208.

Kim H, Smith J E, Ridenour J B, Woloshuk C P, Bluhm B H. 2011. HXK1 regulates carbon catabolism, sporulation, fumonisin B₁ production and pathogenesis in Fusarium verticillioides. Microbiology, 157, 2658-2669.

Kong X, van Diepeningen A D, van der Lee T A J, Waalwijk C, Xu J, Xu J, Zhang H, Chen W, Feng J. 2018. The Fusarium graminearum histone acetyltransferases are important for morphogenesis, DON biosynthesis, and pathogenicity. Frontiers in Microbiology, 9, 654.

Kwon S, Lee J, Jeon J, Kim S, Park S Y, Jeon J, Lee Y H. 2018. Role of the histone acetyltransferase Rtt109 in development and pathogenicity of the rice blast fungus. Molecular Plant-Microbe Interactions, 31, 1200-1210.

Lan H, Sun R, Fan K, Yang K, Zhang F, Nie X Y, Wang X, Zhuang Z, Wang S. 2016. The Aspergillus flavus histone acetyltransferase AflGcnE regulates morphogenesis, aflatoxin biosynthesis, and pathogenicity. Frontiers in Microbiology, 7, 1324.

Lee T I, Causton H C, Holstege F C, Shen W C, Hannett N, Jennings E G, Winston F, Green M R, Young R A. 2000. Redundant roles for the TFIID and SAGA complexes in global transcription. Nature, 405, 701-704.

Lee Y, Min K, Son H, Park A R, Kim J C, Choi G J, Lee Y W. 2014. ELP3 is involved in sexual and asexual development, virulence, and the oxidative stress response in Fusarium graminearum. Molecular Plant-Microbe Interactions, 27, 1344-1355.

Liu C, Shao W, Duan Y, Zhao Y, Liu Z, Ma Z. 2024. Biological and molecular characterization of pydiflumetofen and phenamacril dual-resistant Fusarium graminearum strains. Pest Management Science, 80, 4959-4966.

Lopes da Rosa J, Boyartchuk V L, Zhu L J, Kaufman P D. 2010. Histone acetyltransferase Rtt109 is required for Candida albicans pathogenesis. Proceedings of the National Academy of Sciences of the United States of America, 107, 1594-1599.

Lu P, Chen D, Qi Z, Wang H, Chen Y, Wang Q, Jiang C, Liu H, Xu J-R. 2022. Landscape and regulation of alternative splicing and alternative polyadenylation in a plant pathogenic fungus. New Phytologist, 235, 674-689.

Martínez-Soto D, González-Prieto J M, Ruiz-Herrera J. 2015. Transcriptomic analysis of the GCN5 gene reveals mechanisms of the epigenetic regulation of virulence and morphogenesis in Ustilago maydis. FEMS Yeast Research, 15, fov055.

Moonjely S, Ebert M, Paton-Glassbrook D, Noel Z A, Roze L, Shay R, Watkins T, Trail F. 2023. Update on the state of research to manage Fusarium head blight. Fungal Genetics and Biology, 169, 103829.

Nützmann H W, Reyes-Dominguez Y, Scherlach K, Schroeckh V, Horn F, Gacek A, Schümann J, Hertweck C, Strauss J, Brakhage A A. 2011. Bacteria-induced natural product formation in the fungus Aspergillus nidulans requires Saga/Ada-mediated histone acetylation. Proceedings of the National Academy of Sciences of the United States of America, 108, 14282-14287.

Ni Y, Wang J, Chen L, Liu H, Wang G. 2024. Fgk3, a glycogen synthase kinase, regulates chitin synthesis through the carbon catabolite repressor FgCreA in Fusarium graminearum. Journal of Agricultural and Food Chemistry, 72, 24013-24023.

Qin J, Wang G, Jiang C, Xu J-R, Wang C. 2015. Fgk3 glycogen synthase kinase is important for development, pathogenesis, and stress responses in Fusarium graminearum. Scientific Reports, 5, 8504.

Rösler S M, Kramer K, Finkemeier I, Humpf H U, Tudzynski B. 2016. The SAGA complex in the rice pathogen Fusarium fujikuroi: structure and functional characterization. Molecular Microbiology, 102, 951-974.

Reyes-Dominguez Y, Bok J W, Berger H, Shwab E K, Basheer A, Gallmetzer A, Scazzocchio C, Keller N, Strauss J. 2010. Heterochromatic marks are associated with the repression of secondary metabolism clusters in Aspergillus nidulans. Molecular Microbiology, 76, 1376-1386.

Schneider J, Bajwa P, Johnson F C, Bhaumik S R, Shilatifard A. 2006. Rtt109 is required for proper H3K56 acetylation: a chromatin mark associated with the elongating RNA polymerase II. The Journal of Biological Chemistry, 281, 37270-37274.

Shen Y, Wei W, Zhou D X. 2015. Histone acetylation enzymes coordinate metabolism and gene expression. Trends in Plant Science, 20, 614-621.

Shinohara Y, Kawatani M, Futamura Y, Osada H, Koyama Y. 2016. An overproduction of astellolides induced by genetic disruption of chromatin-remodeling factors in Aspergillus oryzae. Journal of Antibiotics, 69, 4-8.

Smith J E, Bluhm B H. 2011. Metabolic fingerprinting in Fusarium verticillioides to determine gene function. Methods in Molecular Biology, 722, 237-247.

Soukup A A, Chiang Y M, Bok J W, Reyes-Dominguez Y, Oakley B R, Wang C C, Strauss J, Keller N P. 2012. Overexpression of the Aspergillus nidulans histone 4 acetyltransferase EsaA increases activation of secondary metabolite production. Molecular Microbiolog, 86, 314-330.

Suarez-Fernandez M, Álvarez-Aragón R, Pastor-Mediavilla A, Maestre-Guillén A, Del Olmo I, De Francesco A, Meile L, Sánchez-Vallet A. 2023. Sas3-mediated histone acetylation regulates effector gene activation in a fungal plant pathogen. mBio, 14, e0138623.

Sun R, Wen M, Wu L, Lan H, Yuan J, Wang S. 2021. The fungi-specific histone acetyltransferase Rtt109 mediates morphogenesis, aflatoxin synthesis and pathogenicity in Aspergillus flavus by acetylating H3K9. IMA Fungus, 12, 9.

Takechi S, Nakayama T. 1999. Sas3 is a histone acetyltransferase and requires a zinc finger motif. Biochemical and Biophysical Research Communications, 266, 405-410.

Tang Y, Holbert M A, Wurtele H, Meeth K, Rocha W, Gharib M, Jiang E, Thibault P, Verreault A, Cole PA, Marmorstein R. 2008. Fungal Rtt109 histone acetyltransferase is an unexpected structural homolog of metazoan p300/CBP. Nature Structural & Molecular Biology, 15, 738-745.

Vicente-Muñoz S, Romero P, Magraner-Pardo L, Martinez-Jimenez C P, Tordera V, Pamblanco M. 2014. Comprehensive analysis of interacting proteins and genome-wide location studies of the Sas3-dependent NuA3 histone acetyltransferase complex. FEBS Open Bio, 4, 996-1006.

Wang C, Li P, Cong W, Ma N, Zhou M, Hou Y. 2025a. The transcription factor FgCreA modulates ergosterol biosynthesis and sensitivity to DMI fungicides by regulating transcription of FgCyp51A and FgErg6A in Fusarium graminearum. International Journal of Biological Macromolecules, 284, 137903.

Wang C, Mao X, Cong W, Yang L, Hou Y. 2025b. Mitochondrial protein FgDML1 regulates DON toxin biosynthesis and cyazofamid sensitivity in Fusarium graminearum by affecting mitochondrial homeostasis. eLife, 14, RP107417.

Wang J J, Cai Q, Qiu L, Ying S H, Feng M G. 2018. The histone acetyltransferase Mst2 sustains the biological control potential of a fungal insect pathogen through transcriptional regulation. Applied Microbiology and Biotechnology, 102, 1343-1355.

Wang Y, Fan J, Zhou Z, Goldman G H, Lu L, Zhang Y. 2024. Histone acetyltransferase Sas3 contributes to fungal development, cell wall integrity, and virulence in Aspergillus fumigatus. Applied and Environmental Microbiology, 90, e0188523.

Wittschieben B O, Fellows J, Du W, Stillman D J, Svejstrup J Q. 2000. Overlapping roles for the histone acetyltransferase activities of SAGA and elongator in vivo. The EMBO Journal, 19, 3060-3068.

Wu G, Zhou H, Zhang P, Wang X, Li W, Zhang W, Liu X, Liu H W, Keller N P, An Z, Yin W B. 2016. Polyketide production of pestaloficiols and macrodiolide ficiolides revealed by manipulations of epigenetic regulators in an endophytic fungus. Organic Letters, 18, 1832-1835.

Wurtele H, Tsao S, Lépine G, Mullick A, Tremblay J, Drogaris P, Lee E H, Thibault P, Verreault A, Raymond M. 2010. Modulation of histone H3 lysine 56 acetylation as an antifungal therapeutic strategy. Nature Medicine, 16, 774-780.

Xu H, Jiang R, Fu X, Wang Q, Shi Y, Zhao X, Jiang C, Jiang H. 2025. A missense mutation in the Sin3 subunit of Rpd3 histone deacetylase complex bypasses the requirement for FNG1 in wheat scab fungus. Journal of Integrative Agriculture, 24, 3087-3094.

Xu H, Ye M, Xia A, Jiang H, Huang P, Liu H, Hou R, Wang Q, Li D, Xu J-R, Jiang C. 2022. The Fng3 ING protein regulates H3 acetylation and H4 deacetylation by interacting with two distinct histone-modifying complexes. New Phytologist, 235, 2350-2364.

Zhang Q, Akhberdi O, Wei D, Chen L, Liu H, Wang D, Hao X, Zhu X. 2018. A MYST histone acetyltransferase modulates conidia development and secondary metabolism in Pestalotiopsis microspora, a taxol producer. Scientific Reports, 8, 8199.

Zhang Q, Chen L, Yu X, Liu H, Akhberdi O, Pan J, Zhu X. 2016. A B-type histone acetyltransferase Hat1 regulates secondary metabolism, conidiation, and cell wall integrity in the taxol-producing fungus Pestalotiopsis microspora. Journal of Basic Microbiology, 56, 1380-1391.

Zhang Y, Fan J, Ye J, Lu L. 2021. The fungal-specific histone acetyltransferase Rtt109 regulates development, DNA damage response, and virulence in Aspergillus fumigatus. Molecular Microbiology, 115, 1191-1206.

Zheng D, Zhang S, Zhou X, Wang C, Xiang P, Zheng Q, Xu J-R. 2012. The FgHOG1 pathway regulates hyphal growth, stress responses, and plant infection in Fusarium graminearum. PLoS One, 7, e49495.

[1] Jie Zhang, Han Gao, Fuhao Ren, Zehua Zhou, Huan Wu, Huahua Zhao, Lu Zhang, Mingguo Zhou, Yabing Duan. The stress regulator FgWhi2 and phosphatase FgPsr1 play crucial roles in the regulation of secondary metabolite biosynthesis and the response to fungicides in Fusarium graminearum[J]. >Journal of Integrative Agriculture, 2025, 24(8): 3095-3111.
[2] Luoyu Wu, Furong Chen, Pengwei Wang, Chongjing Xu, Weidong Wen, Matthias Hahn, Mingguo Zhou, Yiping Hou. Application of dsRNA of FgPMA1 for disease control on Fusarium graminearum[J]. >Journal of Integrative Agriculture, 2025, 24(6): 2285-2298.
[3] Zhenchao Fu, Huiqian Zhuang, Vincent Ninkuu, Jianpei Yan, Guangyue Li, Xiufen Yang, Hongmei Zeng. A novel secreted protein FgHrip1 from Fusarium graminearum triggers immune responses in plants[J]. >Journal of Integrative Agriculture, 2024, 23(11): 3774-3787.
[4] KANG Jin-bo, ZHANG Jie, LIU Yin-kai, SONG Ji-chang, OU Jian-lin, TAO Xian, ZHOU Ming-guo, DUAN Ya-bing. Mitochondrial dynamics caused by QoIs and SDHIs fungicides depended on FgDnm1 in Fusarium graminearum[J]. >Journal of Integrative Agriculture, 2023, 22(2): 481-494.
[5] CHEN A-hai, Tofazzal ISLAM, MA Zhong-hua. An integrated pest management program for managing fusarium head blight disease in cereals[J]. >Journal of Integrative Agriculture, 2022, 21(12): 3434-3444.
[6] SUN Yu-ming, HUANG Xiao-lei, ZHANG Ting, YANG Yong-heng, CHENG Xiao-fang, XU Xiao-yang, YUAN Hai-yan. Potassium deficiency inhibits steviol glycosides synthesis by limiting leaf sugar metabolism in stevia (Stevia rebaudiana Bertoni) plants[J]. >Journal of Integrative Agriculture, 2021, 20(11): 2932-2943.
[7] FAN Yan-hui, HOU Bing-qian, SU Pei-sen, WU Hong-yan, WANG Gui-ping, KONG Ling-rang, MA Xin, WANG Hong-wei. Application of virus-induced gene silencing for identification of FHB resistant genes[J]. >Journal of Integrative Agriculture, 2019, 18(10): 2183-2192.
[8] HU Li-qin, MU Jing-jing, SU Pei-sen, WU Hong-yan, YU Guang-hui, WANG Gui-ping, WANG Liang, MA Xin, LI An-fei, WANG Hong-wei, ZHAO Lan-fei, KONG Ling-rang . Multi-functional roles of TaSSI2 involved in Fusarium head blight and powdery mildew resistance and drought tolerance
 
[J]. >Journal of Integrative Agriculture, 2018, 17(2): 368-380.
[9] QI Jun-xian, LIU Tai-guo, XU Ying, CHEN Huai-gu, GAO Li, LIU Bo , CHEN Wan-quan. Jellyfish Green Fluorescent Protein (GFP) as a Reporter for Fusarium gramminearum Development on Wheat[J]. >Journal of Integrative Agriculture, 2014, 13(10): 2177-2183.
[10] CHEN Yu, WANG Wen-xiang, ZHANG Ai-fang, GU Chun-yan, ZHOU Ming-guo , GAO Tong-chun. Activity of the Fungicide JS399-19 Against Fusarium Head Blight of Wheat and the Risk of Resistance[J]. >Journal of Integrative Agriculture, 2011, 10(12): 1906-1913.
No Suggested Reading articles found!