Please wait a minute...
Journal of Integrative Agriculture
Advanced Online Publication | Current Issue | Archive | Adv Search
Superoxide anion-induced ferritinophagy is involved in ferroptosis occurrence of cashmere goat sperm during cryopreservation

Erhan Hai1, 2, Boyuan Li1, 2, Yukun Song1, 2, Jian Zhang1, 2, Bingbing Xu1, 2, Yongbin Liu1, 2#, Jiaxin Zhang1, 2#

1Inner Mongolia Key Laboratory of Sheep & Goat Genetics, Breeding and Reproduction, College of Animal Science, Inner Mongolia Agricultural University, Hohhot, 010018, China

2Key Laboratory of Mutton Sheep & Goat Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Hohhot, 010018, China

 Highlights 

Ferroptosis initiates at the cooling-equilibration phase, which is associated with the decreased levels of ferroptosis inhibitory proteins.

The occurrence of ferroptosis during sperm cryopreservation is mediated by superoxide anions, and ferritinophagy is involved in this process.

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

铁死亡是绒山羊精子冷冻保存过程中主要的细胞调节性死亡类型,该过程会显著制约精液冷冻保存技术的应用,但其具体调控机制仍不明确。本研究发现,铁死亡在降温-平衡阶段就已经发生,且与FTH1等关键铁死亡抑制蛋白的降解相关。冷冻处理会通过上调CYTB表达、降低线粒体抗氧化蛋白水平来导致超氧阴离子累积,而Fer-1无法阻断这一累积过程。超氧阴离子可呈剂量依赖性诱导铁死亡,该效应能被Fer-1缓解;自噬/铁蛋白自噬抑制剂可减轻铁死亡程度,提示铁蛋白自噬参与了这一过程。本研究证实超氧阴离子是绒山羊精子冻融铁死亡的关键介导因子,为优化精子冷冻保存技术提供了新的作用靶点。



Abstract  

Ferroptosis is the primary form of regulated cell death in cashmere goat sperm during the freeze-thaw process, which significantly hinders the efficacy and application of frozen semen technology, yet its specific regulatory mechanisms remain unclear. Here, we found it activated during the cooling-equilibration phase, linked to the degradation of critical ferroptosis inhibitory proteins like ferritin heavy chain 1 (FTH1). Freezing causes superoxide anion accumulation via cytochrome b (CYTB) upregulation and reduced mitochondrial antioxidants, unblocked by ferrostatin-1 (Fer-1). Superoxide anions dose-dependently induce ferroptosis, mitigated by Fer-1. Autophagy/ferritinophagy inhibitors alleviate it, implicating ferritinophagy. This identifies superoxide anions as key mediators, offering new targets for sperm cryopreservation.

Keywords:  cashmere goat       ferroptosis       superoxide anion       sperm cryoinjury  
Online: 19 December 2025  
Fund: 

This research was funded by grants from Science and Technology Plan of Inner Mongolia Autonomous Region (2025KYPT0035), Inner Mongolia Education Department Special Research Project for First Class Disciplines (YLXKZX-NND-007), Biological Breeding-National Science and Technology Major Project (2023ZD0405104) and the 12th Inner Mongolia "Grassland Talent" High-level Talent Training Project (2023). 

About author:  Erhan Hai, E-mail: haierhannb@163.com; #Correspondence Yongbin Liu, E-mail: ybliu@imu.edu.cn, Jiaxin Zhang, zjxcau@163.com

Cite this article: 

Erhan Hai, Boyuan Li, Yukun Song, Jian Zhang, Bingbing Xu, Yongbin Liu, Jiaxin Zhang. 2025. Superoxide anion-induced ferritinophagy is involved in ferroptosis occurrence of cashmere goat sperm during cryopreservation. Journal of Integrative Agriculture, Doi:10.1016/j.jia.2025.12.033

Akhatayeva Z., Dan H., Salehian D H, Seiteuov T, Abdurasulov A., Aitjanov R, Lin K, Xu S. 2025. Recent advances in genomic studies for domestication and genetic improvement of traits in goats. Journal of Integrative Agriculture. Doi:10.1016/j.jia.2025.07.020

Bu D, Luo H, Huo P, Wang Z, Zhang S, He Z, Wu Y, Zhao L, Liu J, Guo J, Fang S, Cao W, Yi L, Zhao Y, Kong L. 2021. KOBAS-i: Intelligent prioritization and exploratory visualization of biological functions for gene enrichment analysis. Nucleic Acids Research. 49, W317–W325

Chen X, Tsvetkov A S, Shen H M, Isidoro C, Ktistakis N T, Linkermann A, Koopman W J H, Simon H U, Galluzzi L, Luo S, Xu D, Gu W, Peulen O, Cai Q, Rubinsztein D C, Chi J T, Zhang D D, Li C, Toyokuni S, Liu, J, et al. 2024. International consensus guidelines for the definition, detection, and interpretation of autophagy-dependent ferroptosis. Autophagy. 20, 1213-1246

Dai E, Chen X, Linkermann A, Jiang X, Kang R, Kagan V E, Bayir H, Yang W S, Garcia-Saez A J, Ioannou M S, Janowitz T, Ran Q, Gu W, Gan B, Krysko D V, Zhu X, Wang J, Krautwald S, Toyokuni S, Xie Y, et al. 2024. A guideline on the molecular ecosystem regulating ferroptosis. Nature Cell Biology. 26, 1447–1457

Fang Y, Chen X, Tan Q, Zhou H, Xu J, Gu Q. 2021. Inhibiting ferroptosis through disrupting the NCOA4–FTH1 interaction: A new mechanism of action. ACS Central Science. 7, 980–989

Freitas F P, Alborzinia H, dos Santos A F, Nepachalovich P, Pedrera L, Zilka O, Inague A, Klein C, Aroua N, Kaushal K, Kast B, Lorenz S M, Kunz V, Nehring H, Xavier da Silva T N, Chen Z, Atici S, Doll S G, Schaefer E L, Ekpo I, et al. 2024. 7-Dehydrocholesterol is an endogenous suppressor of ferroptosis. Nature. 626, 401–410

Hai E, Li B, Song Y, Zhang J and Zhang J X. 2025. Ferroptosis emerges as the predominant form of regulated cell death in goat sperm cryopreservation. Journal of Animal Science and Biotechnology. 16, 26

Hai E, Li B, Zhang J and Zhang J X. 2024. Sperm freezing damage: the role of regulated cell death. Cell Death Discovery. 10, 1–13

Li Y, Ran Q, Duan Q, Jin J, Wang Y, Yu L, Wang C, Zhu Z, Chen X, Weng L, Li Z, Wang J, Wu Q, Wang H, Tian H, Song S, Shan Z, Zhai Q, Qin H, Chen S, et al. 2024. 7-Dehydrocholesterol dictates ferroptosis sensitivity. Nature, 626, 411–418

Qin X, Zhang J, Wang B, Xu G, Yang X, Zou Z, Yu C. 2021. Ferritinophagy is involved in the zinc oxide nanoparticles-induced ferroptosis of vascular endothelial cells. Autophagy. 17, 4266–4285

Shi H, Li Q Y, Li H, Wang H Y, Fan C X, Dong Q Y, Pan B C, Ji Z L, Li J Y. 2024. ROS-induced oxidative stress is a major contributor to sperm cryoinjury. Human Reproduction. 39, 310–325

Stockwell B R. 2022. Ferroptosis turns 10: Emerging mechanisms, physiological functions, and therapeutic applications. Cell. 185, 2401–2421

Suleiman S A, Ali M E, Zaki Z M S, El-Malik E M A, Nasr M A. 1996. Lipid peroxidation and human sperm motility: protective role of vitamin E. Journal of Andrology. 17, 530–537

Yánez-Ortiz I, Catalán J, Rodríguez-Gil J E, Miró J, Yeste M. 2022. Advances in sperm cryopreservation in farm animals: Cattle, horse, pig and sheep. Animal Reproduction Science. 246, 106904

Yeste M. 2016. Sperm cryopreservation update: Cryodamage, markers, and factors affecting the sperm freezability in pigs. Theriogenology. 85. 47–64

Zhou N, Yuan X, Du Q, Zhang Z, Shi X, Bao J, Ning Y, Peng L. 2023. FerrDb V2: update of the manually curated database of ferroptosis regulators and ferroptosis-disease associations. Nucleic Acids Research, 51, D571–D582

[1] XUE Chen-chen, XU Jin-yan, WANG Can, GUO Na, HOU Jin-feng, XUE Dong, ZHAO Jin-ming, XING Han. Molecular cloning and functional characterization of a soybean GmGMP1 gene reveals its involvement in ascorbic acid biosynthesis and multiple abiotic stress tolerance in transgenic plants[J]. >Journal of Integrative Agriculture, 2018, 17(03): 539-553.
[2] WU Jiang-hong, ZHANG Yan-jun, ZHANG Jia-xin, CHANG Zi-li, LI Jin-quan, YAN Zu-wei, Husile , ZHANG Wen-guang . Hoxc13/β-catenin Correlation with Hair Follicle Activity in Cashmere Goat[J]. >Journal of Integrative Agriculture, 2012, 12(7): 1159-1166.
[3] ZHENG Xu, YANG Jiao-fu, WANG Xiao-jing, LIANG Yan, WU Man-lin, SHI Jie-jun, ZHANG Tao, QIN Yin, LI Shu-yu, HAO Xi-yan, WANG Zhi-gang , LIU Dong-jun . Molecular Characterization and Expression Pattern of Rheb Gene in Inner Mongolia Cashmere Goat (Capra hircus) [J]. >Journal of Integrative Agriculture, 2011, 10(9): 1452-1458.
No Suggested Reading articles found!