Please wait a minute...
Journal of Integrative Agriculture
Advanced Online Publication | Current Issue | Archive | Adv Search
Continuous cropping of common vetch (Vicia sativa L.) induces disease suppression via microbial community shifts

Rongchun Zheng, Faxi Li, Qiong Wang, Yingde Li, Youlei Shen, Zhibiao Nan, Tingyu Duan#

State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Lanzhou University/Key Laboratory of Grassland Livestock Industry Innovation of the Ministry of Agriculture and Rural Affairs/Engineering Research Center of Grassland Industry of the Ministry of Education, Gansu Tech Innovation Centre of Western China Grassland Industry/College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China

 Highlights 

1. Continuous cropping of common vetch decreased yield and quality but reduced disease prevalence.

2. The effect of disease suppression was associated with altered soil microbial diversity, network stability, and community composition. Beneficial taxa (Bacillus, Sphingomonas, Arthrobacter) were enriched.

3. The shifts modulated nitrogen allocation and triggered induced systemic resistance. Pot experiments confirmed microbial-driven suppression of anthracnose in common vetch.

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

连作面临诸多挑战,包括土地退化、土传病原体扩散以及作物产量下降等问题,但也能促进植物-土壤正反馈的形成。然而,这一过程中涉及的微生物机制及地上部病害对其的影响尚不明确。本研究系统评估了不同连作年限下箭筈豌豆(Vicia sativa L.)的生长状况、病害发生情况、土壤性质以及根际微生物网络的复杂性与稳定性。结果表明,尽管连作导致作物产量和品质下降,但病情指数显著降低。病害抑制机制与以下变化相关:病害发生率降低、土壤全氮含量减少、微生物多样性下降,以及微生物网络复杂性与稳定性的非对称变化。根际富集的关键有益微生物(如芽孢杆菌属Bacillus、鞘氨醇单胞菌属Sphingomonas和节杆菌属Arthrobacter)被鉴定为潜在的病害抑制因子。在炭疽病侵染的土壤中,微生物介导的土壤遗留效应通过调控氮分配并激活植物系统获得性抗性,改变了箭筈豌豆的生长-防御权衡策略,从而降低了病害发生率。本研究揭示了微生物驱动的病害抑制机制在调控有益微生物群落中的关键作用,为农业系统的可持续病害管理提供了新见解。



Abstract  

Continuous cropping presents various challenges including land degradation, the proliferation of soilborne pathogens, diminished yields. However, it can also foster the development of positive plant–soil feedbacks. The related microbial mechanisms and the potential impact of aboveground diseases on its formation remain unclear. This study systematically assessed the growth, occurrence of disease, soil properties and complexity and stability of the rhizosphere microbial network of common vetch (Vicia sativa L.) across different continuous cropping years. In this study, although continuous cropping decreased crop yield and quality, it reduced disease prevalence. The establishment of disease suppression was linked to a decrease in the incidence of disease, reduction in the soil nitrogen, decrease in microbial diversity and asymmetric alterations in the complexity and stability of the microbial network. Key beneficial microorganisms recruited in rhizosphere, such as Bacillus, Sphingomonas and Arthrobacter, were identified as potential contributors to disease suppression. The microbial-mediated soil legacy of anthracnose-infected modulated the growth-defense trade-off of common vetch by influencing the allocation of N and activating the plant's induced systemic resistance. The study underscores the significance of microbial-driven suppression in modulating the beneficial microbiome and offers novel insights into sustainable strategies of disease management in agricultural systems.

Keywords:  continuous cropping       soil properties        microbial co-occurrence network        core species        growth-defense trade-off  
Online: 05 December 2025  
Fund: 

This study was financially supported by the China Modern Agriculture Research System (CARS-22 Green Manure).

About author:  Rongchun Zheng, E-mail: zhengrch2023@lzu.edu.cn;#Correspondence Tingyu Duan, E-mail: duanty@lzu.edu.cn;

Cite this article: 

Rongchun Zheng, Faxi Li, Qiong Wang, Yingde Li, Youlei Shen, Zhibiao Nan, Tingyu Duan. 2025. Continuous cropping of common vetch (Vicia sativa L.) induces disease suppression via microbial community shifts. Journal of Integrative Agriculture, Doi:10.1016/j.jia.2025.12.021

Ahsan T, Tian P C, Gao J, Wang C, Liu C, Huang, Y Q. 2024. Effects of microbial agent and microbial fertilizer input on soil microbial community structure and diversity in a peanut continuous cropping system. Journal of Advanced Research, 64, 1-13.

Alahmad A, Harir M, Fochesato S, Tulumello J, Walker A, Barakat M, Ndour P M S, Schmitt-Kopplin P, Cournac L, Laplaze L, Heulin T, Achouak W. 2024. Unraveling the interplay between root exudates, microbiota, and rhizosheath formation in pearl millet. Microbiome, 12, 1.

Bai L, Cui J, Jie W, Cai B. 2015. Analysis of the community compositions of rhizosphere fungi in soybeans continuous cropping fields. Microbiological Research, 180, 49-56.

Bakker P A H M, Pieterse C M J, de Jonge R, Berendsen RL. 2018. The soil-borne legacy. Cell, 172, 1178-1180.

Banerjee S, Schlaeppi K, van der Heijden M G A0 2018. Keystone taxa as drivers of microbiome structure and functioning. Nature Reviews Microbiology, 16, 567-576.

Berendsen R L, Vismans G, Yu K, Song Y, de Jonge R, Burgman W P, Burmølle M, Herschend J, Bakker P A H M, Pieterse C M J. 2018. Disease-induced assemblage of a plant-beneficial bacterial consortium. The ISME journal, 12, 1496-1507.

Callahan B J, Mcmurdie P J, Rosen M J, Han A W, Johnson A J A, Holmes S P. 2016. DADA2: High-resolution sample inference from Illumina amplicon data. Nature Methods, 13, 581–583.

Caporaso J G, Kuczynski J, Stombaugh J, Bittinger K, Bushman F D, Costello E K, Fierer N, Gonzalez Peña A, Goodrich J K, Gordon J I, Huttley G A, Kelley S T, Knights D, Koenig J E, Ley R E, Lozupone C A, McDonald D, Muegge B D, Pirrung M, Reeder J, Sevinsky J R, Turnbaugh P J, Walters W A, Widmann J, Yatsunenko T, Zaneveld J, Knight R. 2010. QIIME allows analysis of high-throughput community sequencing data. Nature Methods, 7, 335–336.

Carrion V J, Perez-Jaramillo J, Cordovez V, Tracanna V, de Hollander M, Ruiz-Buck D, Lucas W M, van Ijcken W F J, Gomez-Exposito R, Elsayed S S, Mohanraju P, Arifah A, van der Oost J, Paulson J N, Mendes R, van Wezel G P, Medema M H., Raaijmakers J M. 2019. Pathogen-induced activation of disease-suppressive functions in the endophytic root microbiome. Science, 366, 606- 612.

Chen H, Ma K, Huang Y, Fu Q, Qiu Y, Lin J, Schadt C W, Chen H. 2022. Lower functional redundancy in “narrow” than “broad” functions in global soil metagenomics. Soil, 8, 297-308.

Chen P, Wang Y, Liu Q Z, Zhang, Y, Li X, Li H, Li W. 2020. Phase changes of continuous cropping obstacles in strawberry (Fragaria×ananassa Duch.) production. Applied Soil Ecology, 155, 103626.

Chen Q, Long C, Chen, J, Cheng, X. 2021. Differential response of soil CO2, CH4, and N2O emissions to edaphic properties and microbial attributes following afforestation in central China. Global Change Biology, 27, 5657–5669.

Cornell C R, Zhang Y, Ning D, Xiao N, Wagle P, Xiao X, Zhou J. 2023. Land use conversion increases network complexity and stability of soil microbial communities in a temperate grassland. The ISME Journal, 17, 2210-2220.

de Vries F T, Griffiths R I, Bailey M, Craig H, Girlanda M, Gweon H S, Hallin S, Kaisermann A, Keith A M, Kretzschmar M, Lemanceau P, Lumini E, Mason K E, Oliver A, Ostle N, Prosser J I, Thion C, Thomson B, Bardgett R D. 2018. Soil bacterial networks are less stable under drought than fungal networks. Nature communications, 9, 3033.

Fang H, Guo C, Mei X, Hao M, Zhang J, Luo L, Liu H, Liu Y, Huang H, He X, Zhu Y, Yang M, Zhu S. 2024. Light stress elicits soilborne disease suppression mediated by root-secreted flavonoids in Panax notoginseng. Horticulture Research, 11, uhae213.

Fang W, Tian W, Yan D, Li Y, Cao A, Wang Q. 2025. Linkages between soil nutrient turnover and above‐ground crop nutrient metabolism: The role of soil microbes. IMetaOmics, 2, e55.

Feng Z, Liang Q, Yao Q, Bai Y, Zhu H. 2024. The role of the rhizobiome recruited by root exudates in plant disease resistance: current status and future directions. Environmental Microbiome, 19, 91.

Francisco C S, Abuhhalaf M, Igelmann C, Gustke J, Habig M, Cassidy L, Tholey A, Stukenbrock E H. 2023. The apoplastic space of two wheat genotypes provide highly different environment for pathogen colonization: Insights from proteome and microbiome profiling. bioRxiv, 2023-06. https://doi.org/10.1101/2023.06.05.543792.

Gao M, Hao Z, Ning Y. He Z, 2024. Revisiting growthdefence tradeoffs and breeding strategies in crops. Plant Biotechnology Journal22, 1198-1205.

Giolai M, Laine A L. 2024. A trade-off between investment in molecular defense repertoires and growth in plants. Science, 386, 677-680.

Gu S, Xiong X, Tan L, Deng Y, Du X, Yang X, Hu Q. 2022. Soil microbial community assembly and stability are associated with potato (Solanum tuberosum L.) fitness under continuous cropping regime. Frontiers in Plant Science, 13, 1000045.

Harbort C J, Hashimoto M, Inoue H, Niu Y, Guan R, Rombolà A D, Kopriva S, Voges M J, Sattely E S, Garrido-Oter R, Schulze-Lefert P. 2020. Root-secreted coumarins and the microbiota interact to improve iron nutrition in Arabidopsis[J]. Cell Host & Microbe, 28, 825-837.

Hartmann M, Six J. 2023. Soil structure and microbiome functions in agroecosystems. Nature Reviews Earth & Environment, 4, 4-18.

He Z, Webster S, He S Y. 2022. Growth-defense trade-offs in plants. Current Biology, 32, R634-R639.

Hernandez D J, David A S, Menges E S, Searcy C A, Afkhami M E. 2021. Environmental stress destabilizes microbial networks. The ISME Journal, 15, 1722-1734.

Herren C M, McMahon K D. 2017. Cohesion: a method for quantifying the connectivity of microbial communities. The ISME Journal, 11, 2426-2438.

Huber D M, Watson R D. 1974. Nitrogen form and plant disease. Annual Review of Phytopathology, 12, 139-165.

Jiao S, Qi J, Jin C, Liu,Y, Wang Y, Pan H, Chen S, Liang C, Peng Z, Chen B, Qian X, Wei G. 2022. Core phylotypes enhance the resistance of soil microbiome to environmental changes to maintain multifunctionality in agricultural ecosystems. Global Change Biology, 28, 6653–6664.

Li J, Cheng X, Chu G, Hu B, Tao R. 2023. Continuous cropping of cut chrysanthemum reduces rhizospheric soil bacterial community diversity and co-occurrence network complexity. Applied Soil Ecology, 185, 104801.

Li X, Ding C, Zhang T, Wang X. 2014. Fungal pathogen accumulation at the expense of plant-beneficial fungi as a consequence of consecutive peanut monoculturing. Soil Biology and Biochemistry, 72, 11-18.

Li Y, Wei Y, Shen Y, Zheng R, Wang Y, Duan T, Nan Z. 2025. Common mycorrhizal networks enhance defense responses against pathogens in neighboring plants. iMetaOmics, 2, e46.

Ling N, Wang T, Kuzyakov Y. 2022. Rhizosphere bacteriome structure and functions. Nature Communications, 13, 836.

Liu B, Wei H, Shen W, Smith H. 2020. Long-term effect of non-irrigation and irrigation on soil Pythium, Fusarium, and Rhizoctonia communities and their relation with seed-rot, root-rot, and damping-off of soybean. European Journal of Plant Pathology, 158, 297-314.

Liu C, Xia R, Tang M, Chen X, Zhong B, Liu X, Bian R, Yang L, Zheng J, Cheng K, Zhang X, Drosos M, Li L, Shan S, Joseph S, Pan G. 2022. Improved ginseng production under continuous cropping through soil health reinforcement and rhizosphere microbial manipulation with biochar: a field study of Panax ginseng from Northeast China. Horticulture Research, 9, uhac108.

Liu S, Tao C, Zhang L, Wang Z, Xiong W, Xiang D, Sheng O, Wang J, Li R, Shen Z, Li C, Shen Q, Kowalchuk G A. 2023. Plant pathogen resistance is mediated by recruitment of specific rhizosphere fungi. The ISME Journal, 17, 931-942.

Liu Y, Shi A, Chen Y, Xu Z, Liu Y, Yao Y, Wang Y, Jia B. 2024. Beneficial microorganisms: Regulating growth and defense for plant welfare. Plant Biotechnology Journal, 23, 986-998.

Liu Z, Liu J, Yu Z, Li Y, Hu X, Gu H, Li L, Jin J, Liu X, Wang G. 2022. Archaeal communities perform an important role in maintaining microbial stability under long term continuous cropping systems. Science of The Total Environment, 838, 156413.

Kudjordjie E N, Sapkota R, Steffensen S K, Fomsgaard I S, Nicolaisen M. 2019. Maize synthesized benzoxazinoids affect the host associated microbiome. Microbiome, 7, 59.

Ma Z, Guan Z, Liu Q, Hu Y, Liu L, Wang B, Huang L, Li H, Yang Y, Han M, Gao Z, Saleem M. 2023. Obstacles in continuous cropping: mechanisms and control measures. Advances in agronomy, 179, 205-256.

Matchado M S, Lauber M, Reitmeier S, Kacprowski T, Baumbach J, Haller D, List M. 2021. Network analysis methods for studying microbial communities: A mini review. Computational and Structural Biotechnology Journal, 19, 2687-2698.

Mendes R, Kruijt M, De Bruijn I, Dekkers E, Van Der Voort M, Schneider J H M, Piceno Y M, DeSantis T Z, Andersen G L, Bakker P A H M, Raaijmakers J M. 2011. Deciphering the rhizosphere microbiome for disease-suppressive bacteria. Science, 332, 1097-1100.

Nishisaka C S, Quevedo H D, Ventura J P, Andreote F D, Mauchline T H, Mendes R. 2025. Soil Microbial Diversity: A Key Factor in Pathogen Suppression and Inoculant Performance. Geoderma, 460, 117444.

Ochieno D M. 2022. Soil sterilization eliminates beneficial microbes that provide natural pest suppression ecosystem services against Radopholus similis and Fusarium Oxysporum V5w2 in the endosphere and rhizosphere of tissue culture banana plants. Frontiers in Sustainable Food Systems, 6, 688194.

Ping X, Khan R A A, Chen S, Jiao Y, Zhuang X, Jiang L, Song L, Yang Y, Zhao J, Li Y, Mao Z, Xie B, Ling J. 2024. Deciphering the role of rhizosphere microbiota in modulating disease resistance in cabbage varieties. Microbiome, 12, 160.

Pang Z, Xu P. 2024. Probiotic model for studying rhizosphere interactions of root exudates and the functional microbiome. The ISME Journal, 18, wrae223.

Pang Z, Chen J, Wang T, Gao C, Li Z, Guo L, Xu J, Cheng, Y. 2021. Linking plant secondary metabolites and plant microbiomes: a review. Frontiers in Plant Science, 12, 621276.

Qiao Y, Wang T, Huang Q, Guo H, Zhang H, Xu Q, Shen Q, Ling N. 2024. Core species impact plant health by enhancing soil microbial cooperation and network complexity during community coalescence. Soil Biology and Biochemistry, 188, 109231.

Rudrappa T, Czymmek K J, Paré P W, Bais H P. 2008. Root-secreted malic acid recruits beneficial soil bacteria. Plant physiology, 148, 1547-1556.

Schlatter D, Kinkel L, Thomashow L, Weller D, Paulitz T. 2017. Disease suppressive soils: new insights from the soil microbiome. Phytopathology, 107, 1284-1297.

Spooren J, van Bentum S, Thomashow L S, Pieterse C M, Weller D M, Berendsen R L. 2024. Plant-driven assembly of disease-suppressive soil microbiomes. Annual Review of Phytopathology, 62, 1-30.

Stassen M J, Hsu S H, Pieterse C M, Stringlis I A. 2021. Coumarin communication along the microbiome–root–shoot axis. Trends in Plant Science, 26, 169-183.

Tian T, Gheysen G, Kyndt T, Mo C, Xiao X, Lv Y, Long H, Wang G, Xiao Y. 2025. Pepper root exudate alleviates cucumber root-knot nematode infection by recruiting a rhizobacterium. Plant Communications, 6, 101139.

Wang C, Pan X, Yu W, Ye X, Erdenebileg E, Wang C, Ma L, Wang R, Huang Z, Indree T, Liu G. 2023. Aridity and decreasing soil heterogeneity reduce microbial network complexity and stability in the semi-arid grasslands. Ecological Indicators, 151, 110342.

Wang F, Zhang H, Liu H, Wu C, Wan Y, Zhu L, Yang J, Cai P, Chen J, Ge T. 2024. Combating wheat yellow mosaic virus through microbial interactions and hormone pathway modulations. Microbiome, 12, 200.

Wang K, Lu Q, Dou Z, Chi Z, Cui D, Ma J, Wang G, Kuang J, Wang N, Zuo Y. 2024. A review of research progress on continuous cropping obstacles. Frontiers of Agricultural Science and Engineering, 11, 253-270.

Wang Q, Zhu R, Li F, Li Y, Bai M, Duan T, 2024. Anthracnose changes the diversity and composition of rhizosphere soil microbial community in common vetch. Journal of Plant Diseases and Protection, 131, 1673-1684.

Wang X, Reilly K, Heathcott R, Biswas A, Johnson L J, Teasdale S, Grelet G A, Podolyan A, Gregorini P, Attwood G T, Palevich N, Morales S E. 2022. Soil nitrogen treatment alters microbiome networks across farm niches. Frontiers in Microbiology, 12, 786156.

Wei Z, Yang T, Friman V P, Xu Y, Shen Q, Jousset A. 2015. Trophic network architecture of root-associated bacterial communities determines pathogen invasion and plant health. Nature Communications, 6, 8413.

Wu J, Liu S, Zhang H, Chen S, Si J, Liu L, Wang Y, Tan S, Du Y, Jin Z, Xie J, Zhang, D. 2025. Flavones enrich rhizosphere Pseudomonas to enhance nitrogen utilization and secondary root growth in Populus. Nature Communications, 16, 1461.

Xia X, Wei Q, Wu H, Chen X, Xiao C, Ye Y, Liu C, Yu H, Guo Y, Sun W, Liu W. 2024. Bacillus species are core microbiota of resistant maize cultivars that induce host metabolic defense against corn stalk rot. Microbiome, 12, 156.

Xu S, Christensen M J. Li Y. 2017. Pathogenicity and characterization of Colletotrichum lentis: A causal agent of anthracnose in common vetch (Vicia Sativa). European Journal of Plant Pathology, 149, 1-13.

Yang X, Cheng J, Franks A E, Huang X, Yang Q, Cheng Z, Liu Y, Ma B, Xu J, He Y. 2023. Loss of microbial diversity weakens specific soil functions, but increases soil ecosystem stability. Soil Biology and Biochemistry, 177, 108916.

Yuan M M, Guo X, Wu L, Zhang Y A, Xiao N, Ning D, Shi Z, Zhou X, Wu L, Yang Y, Tiedje J M, Zhou J. 2021. Climate warming enhances microbial network complexity and stability. Nature Climate Change, 11, 343-348.

Zhu R, Yan W, Wang Y, Li, Y., Zheng, R., Dong, W., Yao T., 2024. Plant growth‐promoting rhizobacteria and Trichoderma shift common vetch (Vicia sativa) physiology and phyllosphere bacteria toward antagonism against anthracnose caused by Colletotrichum spinaciae. Grassland Research, 3, 275-289.

Zhu S, Vivanco J M, Manter, D K. 2016. Nitrogen fertilizer rate affects root exudation, the rhizosphere microbiome and nitrogen-use-efficiency of maize. Applied Soil Ecology, 107, 324-333.

[1] Zhechao Dou, Jing Ma, Kunguang Wang, Qiaofang Lu, Zhiguang Chi, Dongming Cui, Chang Pan, Zhuchi He, Yuanmei Zuo. Use of soil nematodes as indicators of soil and plant health in continuous cropping systems: A case study in dragon fruit[J]. >Journal of Integrative Agriculture, 2025, 24(5): 1987-2001.
[2] Peihua Du, Yang Cao, Huaite Liu, Jiahao Ji, Wei Sun, Xueying Zhang, Jizhong Xu, Bowen Liang. Dopamine improves apple replant disease resistance by regulating physiological resilience and rhizosphere microbial community structure[J]. >Journal of Integrative Agriculture, 2024, 23(9): 3025-3044.
[3] ZHANG Nai-yu, WANG Qiong, ZHAN Xiao-ying, WU Qi-hua, HUANG Shao-min, ZHU Ping, YANG Xue-yun, ZHANG Shu-xiang. Characteristics of inorganic phosphorus fractions and their correlations with soil properties in three non-acidic soils[J]. >Journal of Integrative Agriculture, 2022, 21(12): 3626-3636.
[4] LIU Hang, PAN Feng-juan, HAN Xiao-zeng, SONG Feng-bin, ZHANG Zhi-ming, YAN Jun, XU Yan-li. A comprehensive analysis of the response of the fungal community structure to long-term continuous cropping in three typical upland crops[J]. >Journal of Integrative Agriculture, 2020, 19(3): 866-880.
[5] CUI Li, GUO Feng, ZHANG Jia-lei, YANG Sha, MENG Jing-jing, GENG Yun, WANG Quan, LI Xinguo, WAN Shu-bo. Arbuscular mycorrhizal fungi combined with exogenous calcium improves the growth of peanut (Arachis hypogaea L.) seedlings under continuous cropping[J]. >Journal of Integrative Agriculture, 2019, 18(2): 407-416.
No Suggested Reading articles found!