Please wait a minute...
Journal of Integrative Agriculture
Advanced Online Publication | Current Issue | Archive | Adv Search
Influence of long-term livestock manure substitution on water erosion and labile organic carbon lateral loss on subtropical sloping croplands

Keke Hua1, 2, Bo Zhu2*, Zhibin Guo1, Daozhong Wang1, Linchuan Zhan1, Lin Jin1, Hirohiko Nagano3, Kazuyuki Inubushi4

1 Key Laboratory of Nutrient Cycling and Arable Land Conservation of Anhui Province/National Agricultural Experimental Station for Soil Quality, Soil and Fertilizer Institute, Anhui Academy of Agricultural Sciences, 230001 Hefei, China

2 Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610041, China

3 Institute of Science and Technology, Niigata University, Niigata 950-2181, Japan

4 Department of Agricultural Chemistry, Tokyo University of Agriculture, Setagaya-ku, Tokyo 156-8502, Japan

 Highlights 

l Long-term livestock manure substitution enhances soil aggregate stability and reduces water erosion intensity

Annual labile organic carbon lateral loss increases significantly with long-term livestock manure substitution

While water erosion intensity decreases, the risk of labile organic carbon loss increases following long-term livestock manure substitution

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

活性有机碳侧向迁移是土壤有机碳损失的重要途径,其可降低土壤固碳能力和加剧水体污染风险。有机肥替代化肥是农田生态系统保障作物产量、增强土壤固碳能力和降低水蚀强度的有效手段。然而,长期有机替代对农田土壤活性有机碳水文迁移的定量影响尚不清楚。因此,本文以亚热带坡耕地长期定位试验为平台,通过三年的田间连续观测,分析不施肥(CK)、常规施肥(SF)、猪粪替代40%化肥氮(PMF)和猪粪替代100%化肥氮(PM)对可溶性有机碳(DOC)和颗粒态有机碳(POC)随地表径流、壤中流和泥沙迁移的影响。与SF相比,PMFPM处理年累积地表径流可分别降低13.521.6%,年累积泥沙通量降低12.919.1%表层土壤(0-20cm)水稳性团聚体平均重量直径增加37.773.6%年累积POC随泥沙流失通量分别增加61.147.9%,活性有机碳(DOCPOC之和)流失通量分别增加11.931.4%P<0.05)。这说明在亚热带坡耕地区,长期有机替代可提高土壤团聚体稳定性降低水蚀强度,但仍有增加活性有机碳流失加剧水体污染的风险。今后还应加强对不同土壤类型和不同坡度条件下有机替代对活性有机碳流失的影响研究,以期全面理解极端降雨事件下亚热带坡耕地有机替代对活性有机碳流失的影响过程与机制。



Abstract  

The lateral transport of labile organic carbon represents a critical pathway for soil organic carbon (SOC) loss, reducing organic carbon sequestration and increasing the risk of waterbody pollution. Livestock manure application on croplands serves as a common fertilizer reduction practice to sustain crop yields, enhance SOC sequestration, and reduce water erosion. However, limited quantitative assessments have examined the effects of livestock manure substitution on labile organic carbon lateral loss and fluxes in long-term experiments. This study conducted a three-year field investigation on subtropical sloping croplands to assess the impact of livestock manure substitution on dissolved organic carbon (DOC) and particulate organic carbon (POC) loss via surface runoff, interflow and eroded sediments. There are four treatments: no fertilization (CK); chemical nitrogen fertilizer (SF), 40% nitrogen substitution with pig manure (PMF), and 100% nitrogen substitution from pig manure (PM). Compared to SF treatment, long-term livestock manure substitution in PMF and PM treatments significantly (P<0.05) reduced annual cumulative surface runoff fluxes by 13.5 and 21.6%, respectively. Manure applications decreased annual sediment fluxes by 12.9 and 19.1%, respectively. Soil water stable aggregates for mean weight diameter (MWD) increased significantly by 37.7 and 73.6%. Annual cumulative POC loss flux via eroded sediment under PMF and PM treatments increased significantly (P<0.05) by 61.1 and 47.9%, respectively. The labile organic carbon loss fluxes, including DOC and POC losses, under PMF and PM treatments increased significantly (P<0.05) by 11.9 and 31.4%, respectively. These results demonstrate that while water erosion intensity decreases due to enhanced soil aggregate stability, the risk of labile organic carbon loss increases after long-term livestock manure substitution in subtropical sloping croplands. Future research should examine labile organic carbon lateral migration under various soil types and slope gradients for livestock manure application in subtropical agricultural ecosystem croplands to better understand extreme rainfall effects.

Keywords:  hydrological carbon loss       runoff and sediment       organic manure       sloping croplands  
Online: 21 July 2025  
Fund: 

This research was funded by the Joint Funds of the National Natural Science Foundation of China (U20A20107 and U22A20562), the National Key Research and Development Program of China (2023YFD1900201-3) and the International Cooperation Project, Ministry of Science and Technology of China (G2023019005L). 

About author:  Keke Hua, huakeke1220@126.com; #Correspondence Bo Zhu, Tel: +86-28-85232090, E-mail: bzhu@imde.ac.cn

Cite this article: 

Keke Hua, Bo Zhu, Zhibin Guo, Daozhong Wang, Linchuan Zhan, Lin Jin, Hirohiko Nagano, Kazuyuki Inubushi. 2025. Influence of long-term livestock manure substitution on water erosion and labile organic carbon lateral loss on subtropical sloping croplands. Journal of Integrative Agriculture, Doi:10.1016/j.jia.2025.07.023

Agbede T M, Ojeniyi S O. 2009. Tillage and poultry manure effects on soil fertility and sorghum yield in southwestern Nigeria. Soil and Tillage Research, 104, 74–81.

Bah H, Zhou M H, Ren X, Hu L, Dong Z X, Zhu B. 2020. Effects of organic amendment applications on nitrogen and phosphorus losses from sloping cropland in the upper Yangtze River. Agriculture, Ecosystems and Environment, 302, 107086.

Berhe A A, Harden J W, Torn M S, Harte J. 2008. Linking soil organic matterdynamics and erosion-induced terrestrial carbon sequestration at different landformpositions. Journal of Geophysical Research, 13, G04039.

Cambardella C A, Elliott E T. 1992. Particulate soil organic-matter changes across a grassland cultivation sequence. Soil Science Society of America Journal, 56, 777–783.

Cantón Y, Solé-Benet A, Asensio C, Chamizo S, Puigdefábregas J. 2009. Aggregate stability in range sandy loam soils Relationships with runoff and erosion. Catena, 77, 192–199.

Cao M H, Duan Y, Li M H, Tang C G, Kan W J, Li JY, Zhang H L, Zhong W L, Wu L F. 2024. Manure substitution improves maize yield by promoting soil fertility and mediating the microbial community in lime concretion black soil. Journal of Integrative Agriculture, 23, 698–710.

Chifflard P, Kyle S, Boodoo, Ditzel L, Reiss M, Fasching C. 2024. Icelandic glacial dissolved organic carbon fluxes, composition and variability-relevance for the global glacial carbon budget. Science of the Total Environment, 957, 177366.

Chung H, Ngo K J, Plante A, Six J. 2010. Evidence for carbon saturation in a highly structured and organic-matter-rich soil. Soil Science Society of America Journal, 74, 130–138.

Elliott E T. 1986. Aggregate structure and carbon, nitrogen, and phosphorus in native and cultivated soils. Soil Science Society of America Journal, 50, 627.

Ge L B, Zhan Z X, Me X M, Xie J W, Li H. 2025. Migration of dissolved organic carbon in the hydrological processes and driving factors on the Loess Plateau. Catena, 254, 108937.

Hancock G R, Gibson A, Kirk E, Conway I, Parrod A. 2024. Soil erosion and carbon export: A case study in a steep slope grazing landscape. Geoderma Regional, 36, e00751.

Hua K K, Zhu B, Wang X G, Tian L L. 2016. Forms and fluxes of soil organic carbon transport via overland flow, interflow, and soil erosion. Soil Science Society of America Journal, 80, 1011–1019.

Huang X L, Jia Z X, Jiao X Y, Wang J L, Huang X F. 2022. Long-term manure applications to increase carbon sequestration and macroaggregate-stabilized carbon. Soil Biology and Biochemistry, 174, 108827.

International Union of Soil Sciences Working Group World Reference Base for Soil Resources (IUSS Working Group WRB). 2006. World reference base for soil resources 2006. 2nd ed. World Soil Resources Report. No. 103. FAO, Rome, Italy.

Jacinthe P A, Lal R, Owens L B, Hothem D L. 2004. Transport of labile carbon in runoff as affected by land use and rainfall characteristics. Soil and Tillage Research, 77, 111–123.

Jiang N, Bah H, Zhou M H, Xu P, Zhang B W, Zhu B. 2022. Effects of straw and biochar amendment on hydrological fluxes of dissolved organic carbon in a subtropical montane agricultural landscape. Environmental Pollution, 296, 118751.

Jung B J, Lee H J, Jeong J J, Owen J, Kim B, Meusburger K, Alewell C, Gebauer G, Shope C, Park J H. 2012. Storm pulses and varying sources of hydrologic carbon export from a mountainous watershed. Journal of Hydrology, 440–441, 90–101.

Kinnell P I A. 2005. Raindrop impact induced erosion processes and prediction: a review. Hydrological Processes, 19, 2815–2844.

Lal R. 2019. Accelerated soil erosion as a source of atmospheric CO2. Soil and Tillage Research, 188, 35–40.

Li F Y, Jin Y B, He S, Jin J W, Wang Z W, Khan S, Tian G M, Liang X Q. 2021. Use of polyacrylamide modified biochar coupled with organic and chemical fertilizers for reducing phosphorus loss under different cropping systems. Agriculture, Ecosystems and Environment, 310, 107306.

Liang K, Li T Y, He B H, Qian Tian. Dynamics of dissolved organic carbon in runoff discharge under different rainfall patterns in a representative agricultural catchment. 2023. Journal of Hydrology, 617, 129079.

Liang K, Xia L Y, Li T Y, Liu J Y, Zhang H X, He B H. 2025. Runoff-associated concentration and composition of dissolved organic carbon in response to varying straw mulching rates on sloping lands. Journal of Hydrology, 652, 132638.

Liu D, Sun Z D, Shen M, Tian L Q, Shujie Yu, Xintong Jiang, Hongtao Duan. 2023. Three-dimensional observations of particulate organic carbon in shallow eutrophic lakes from space. Water Research, 229, 119519.

Liu X J, Fu Z Y, Zhang W, Xiao S S, Chen H S, Wang K L. 2023. Soluble carbon loss through multiple runoff components in the shallow subsurface of a karst hillslope: Impact of critical zone structure and land use. Catena, 222, 106868.

Liu Y, Walling D E, Yang M Y, Zhang F B, Zhang J Q. 2024. Using the check dam deposit for an individual event to document the sources and erosional loss of sediment-associated organic carbon from a small catchment on the Chinese Loess Plateau. Catena, 246, 108444.

Lu J, Zheng F L, Li G F, Bian F, An J. 2016. The effects of raindrop impact and runoff detachment on hillslope soil erosion and soil aggregate loss in the Mollisol region of Northeast China. Soil and Tillage Research, 161, 79–85.

Ma W, Li Z, Ding K, Huang J, Nie X, Zeng G. 2014. Effect of soil erosion on dissolved organic carbon redistribution in subtropical red soil under rainfall simulation. Geomorphology, 226, 217–225.

Márquez-García F, Hayas A, Peña A, Ordóñez-Fernández R, González-Sánchez E J. 2024. Influence of cover crops and tillage on organic carbon loss in Mediterranean olive orchards. Soil and Tillage Research, 235, 105905.

Nakhavali M A, Lauerwald R, Regnier P, Guenet B, Friedlingstein P. 2021. Leaching of dissolved organic carbon from mineral soils plays a significant role in the terrestrial carbon balance. Global Change Biology, 27, 1083–1096.

Polyakov V O, Lal R. 2008. Soil organic matter and CO2 emission as affected by water erosion on field runoff plots. Geoderma, 143, 216–222.

Ren H L, Lv H S, Xu Q, Yao Z Y, Yao P W, Zhao N, Wang Z H, Huang D L, Cao W D, Gao Y J, Zhang D B. 2024. Green manure provides growth benefits for soil mesofauna by promoting soil fertility in agroecosystems. Soil and Tillage Research, 238, 106006.

Schlüter S, Lucas M, Phalempin M, Knecht L, Langehenke F, Deubel A, Reddersen B, Rusch C, Rücknagel J. 2023. Organic farming systems affect carbon stocks but not soil structure and associated physical properties in a long-term farming trial on Chernozem. Geoderma, 438, 116619.

Simon C, Miltner A, Mulder I, Kaiser K, Lorenz M, Thiele-Bruhn S, Lechtenfeld O. 2025. Long-term effects of manure addition on soil organic matter molecular composition: Carbon transformation as a major driver of energetic potential. Soil Biology and Biochemistry, 205, 109755.

Six J, Bossuyt H, Degryze S, Denef K. 2004. A history of research on the link between (micro)aggregates, soil biota, and soil organic matter dynamics. Soil and Tillage Research, 79, 7–31.

Smith J C, Galy A, Hovius N, Andrew M T, Turowski J M, Schleppi P. 2013. Runoff-driven export of particulate organic carbon from soil in temperate forested uplands. Earth and Planetary Science Letters, 365, 198–208.

Srinivasan V, Maheswarappa H P, Lal R. 2012. Long term effects of topsoil depth and amendments on particulate and non particulate carbon fractions in a Miamian soil of Central Ohio. Soil and Tillage Research, 121, 10–17.

Su X P, Xu C, Lin T C, Yang Z J, Liu X F, Chen S D, Xiong D C, Yang Y S. 2024. Response of erosion-induced carbon loss to rainfall characteristics is forest type dependent. Agricultural and Forest Meteorology, 345, 109835.

Widanagamage N, Santos E, Rice C W, Patrignani A. 2025. Study of soil heterotrophic respiration as a function of soil moisture under different land covers. Soil Biology and Biochemistry, 200, 109593.

Zheng J Y, Zhao J S, Shi Z H, Wang L. 2021. Soil aggregates are key factors that regulate erosion-related carbon loss in citrus orchards of southern China: Bare land vs. grass-covered land. Agriculture, Ecosystems and Environment, 309, 107254.

Zhou P, Pan G X, Spaccini R, Piccolo A. 2010. Molecular changes in particulate organic matter (POM) in a typical Chinese paddy soil under different long-term fertilizer treatments. European Journal of Soil Science, 61, 231–242.

Zhu B, Wang T, Kuang F, Luo Z, Tang J, Xu T. 2009. Measurements of nitrate leaching from a hillslope cropland in the Central Sichuan Basin, China. Soil Science Society of America Journal, 73, 1419e1426.

Zhu Y C, Zhang M, Han X Z, Lu X C, Chen X, Feng H L, Wu Z M, Liu C Z, Yan J, Zou W X. 2024. Evaluation of the soil aggregate stability under long term manure and chemical fertilizer applications: Insights from organic carbon and humic acid structure in aggregates. Agriculture, Ecosystems and Environment, 376, 109217.

[1] Delei Kong, Xianduo Zhang, Qidong Yu, Yaguo Jin, Peikun Jiang, Shuang Wu, Shuwei Liu, Jianwen Zou. Mitigation of N2O emissions in water-saving paddy fields: Evaluating organic fertilizer substitution and microbial mechanisms[J]. >Journal of Integrative Agriculture, 2024, 23(9): 3159-3173.
[2] Zhimin Wu, Xiaozeng Han, Xu Chen, Xinchun Lu, Jun Yan, Wei Wang, Wenxiu Zou, Lei Yan.

Application of organic manure as a potential strategy to alleviate the limitation of microbial resources in soybean rhizospheric and bulk soils [J]. >Journal of Integrative Agriculture, 2024, 23(6): 2065-2082.

[3] Nafiu Garba HAYATU, LIU Yi-ren, HAN Tian-fu, Nano Alemu DABA, ZHANG Lu, SHEN Zhe, LI Ji-wen, Haliru MUAZU, Sobhi Faid LAMLOM, ZHANG Hui-min. Carbon sequestration rate, nitrogen use efficiency and rice yield responses to long-term substitution of chemical fertilizer by organic manure in a rice–rice cropping system[J]. >Journal of Integrative Agriculture, 2023, 22(9): 2848-2864.
[4] WANG Ren-jie, SONG Jia-shan, FENG Yong-tao, ZHOU Jiang-xiang, XIE Jun-yu, Asif KHAN, CHE Zong-xian, ZHANG Shu-lan, YANG Xue-yun. Changes in soil organic carbon pools following long-term fertilization under a rain-fed cropping system in the Loess Plateau, China[J]. >Journal of Integrative Agriculture, 2021, 20(9): 2512-2525.
[5] ZHANG Zhi-qiang, WANG Xiu-bin, LI Chun-hua, HUANG Shao-wen, GAO Wei, TANG Ji-wei, JIN Jiyun. Effects of straw addition on increased greenhouse vegetable yield and reduced antibiotic residue in fluvo-aquic soil[J]. >Journal of Integrative Agriculture, 2015, 14(7): 1423-1433.
[6] GUAN Guan, TU Shu-xin, YANG Jun-cheng, ZHANG Jian-feng, YANG Li. A Field Study on Effects of Nitrogen Fertilization Modes on Nutrient Uptake,Crop Yield and Soil Biological Properties in Rice-Wheat Rotation System[J]. >Journal of Integrative Agriculture, 2011, 10(8): 1254-1261.
[7] ZHAI Li-mei, LIU Hong-bin, ZHANG Ji-zong, HUANG Jing , WANG Bo-ren. Long-Term Application of Organic Manure and Mineral Fertilizer on N2O and CO2 Emissions in a Red Soil from Cultivated Maize-Wheat Rotation in China [J]. >Journal of Integrative Agriculture, 2011, 10(11): 1748-1757.
No Suggested Reading articles found!