|
|
|
The Effect of Wheat Mixtures on the Powdery Mildew Disease and Some Yield Components |
LI Ning, JIA Shao-feng, WANG Xiu-na, DUAN Xia-yu, ZHOU Yi-lin, WANG Zong-hua , LU Guodong |
1.State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, P.R.China
2.School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, P.R.China |
|
|
摘要 Mixtures composed of five wheat cultivars, Jingshuang 16, Jing 411, Jingdong 8, Lunxuan 987, and Baofeng 104, with different levels of resistance against powdery mildew were tested for their potential containment of the disease development in the field and for the influence on grain yield and the content of crude protein in the years 2007 and 2010. The plots were inoculated artificially with mixed isolates collected in the fields and propagated in the greenhouse and the disease was scored in 7 d interval during the two growing seasons. It was indicated that certain combinations, e.g., Jingdong 8: Lunxuan 987, Jingdong 8:Baofeng 104, and Jing 411:Jingdong 8:Baofeng 104, showed positive efficacy on the mildew. The cultivar combinations tested in 2007 showed increase of grain yield, while most of the combinations tested in 2010 did not show the increase. The differences of the increases or decreases were not statistically significant except combinations Jing 411:Jingdong 8:Baofeng104, Jingshuang16:Jingdong8:Lunxuang 987 and Jingshuang 16:Jingdong 8:Lunxuan 987: Baofeng 104, which showed the decrease of the grain yield. The mixtures did not show influence on the content of crude protein in grain. More cultivar combinations need to be tested.
Abstract Mixtures composed of five wheat cultivars, Jingshuang 16, Jing 411, Jingdong 8, Lunxuan 987, and Baofeng 104, with different levels of resistance against powdery mildew were tested for their potential containment of the disease development in the field and for the influence on grain yield and the content of crude protein in the years 2007 and 2010. The plots were inoculated artificially with mixed isolates collected in the fields and propagated in the greenhouse and the disease was scored in 7 d interval during the two growing seasons. It was indicated that certain combinations, e.g., Jingdong 8: Lunxuan 987, Jingdong 8:Baofeng 104, and Jing 411:Jingdong 8:Baofeng 104, showed positive efficacy on the mildew. The cultivar combinations tested in 2007 showed increase of grain yield, while most of the combinations tested in 2010 did not show the increase. The differences of the increases or decreases were not statistically significant except combinations Jing 411:Jingdong 8:Baofeng104, Jingshuang16:Jingdong8:Lunxuang 987 and Jingshuang 16:Jingdong 8:Lunxuan 987: Baofeng 104, which showed the decrease of the grain yield. The mixtures did not show influence on the content of crude protein in grain. More cultivar combinations need to be tested.
|
Received: 04 May 2011
Accepted:
|
Fund: This work was supported by the National Basic Research Program of China (2006CB100203 and 2011CB100403), the Key Technology R & D Program of China during the 11th Five-Year Plan period (2006BAD08A05) and the Special Fund for Agro-Scientific Research in the Public Interest, China (3-15). |
Corresponding Authors:
Correspondence DUAN Xia-yu, Tel: +86-10-62815946, Fax: +86-10-62896114, E-mail: xyduan@ippcaas.cn
E-mail: xyduan@ippcaas.cn
|
Cite this article:
LI Ning, JIA Shao-feng, WANG Xiu-na, DUAN Xia-yu, ZHOU Yi-lin, WANG Zong-hua , LU Guodong .
2012.
The Effect of Wheat Mixtures on the Powdery Mildew Disease and Some Yield Components. Journal of Integrative Agriculture, 12(4): 611-620.
|
[1]Bowden R, Shoyer J, Roozeboom K, Claasen M, Evans P, Gordon B, Heer B, Janssen K, Long J, Martin J, et al. 2001. Performance of wheat variety blends in Kansas. Kansas State University Agricultural Extension Station and Cooperative Extension Service. 128. [2006-09-25]. http://www.oznet.ksu.edu/library/crpsl2/ SRL128.pdf [2]Browning J A, Frey K J. 1981. The multiline concept in theory and practice. In: Jenkyn J F, Plumb R T, eds., Strategies for the Control of Cereal Disease. Blackwell Scientific, London. pp. 36-37. [3]Chin K M, Wolfe M S. 1984. Selection on Erysiphe graminis in pure and mixed stands of barley. Plant Pathology, 33, 535-545. [4]Deng Z Y, Tian J C, Hu R B, Zhou X F, Zhang Y X. 2006. Effects of genotype and environment on wheat main quality characteristics. Acta Ecologica Scinca, 26, 2757-2763. (in Chinese) [5]Dileone J A, Mundt C C. 1994. Effect of wheat cultivar mixtures on populations of Puccinia striiformis races. Plant Pathology, 43, 917-930. [6]Dubin H J, Wolfe M S. 1994. Comparative behavior of three wheat cultivars and their mixture in India, Nepal and Pakistan. Field Crops Research, 39, 71-83. [7]Fang H, Zhu Y Y, Wang Y Y. 2004. Field experiment of mixture variety inter-cropping. In: Zhu Y Y, ed., Biodiversity for Sustainable Crop Diseases Management Theory and Technology. Yunnan Science and Technology Press, Kunming. pp. 512-517. (in Chinese) [8]Finckh M R. 2008. Integration of breeding and technology into diversification strategies for disease control in modern agriculture. European Journal of Plant Pathology, 121, 399-409. [9]Finckh M R, Mundt C C. 1992. Stripe rust, yield, and plant c o m p e t i t i o n i n w h e a t c u l t i v a r m i x t u r e s . Phytopathology, 82, 905-913. [10]Graybosch R A. 1996. Genotype and environment effects on wheat flour protein components and processing quality. Crop Science, 36, 296-300. [11]Guo S B, Kang Z S, Zhang L Z. 2007. Studies on temporal dynamic of epidemic of wheat stripe rust in different cultivars mixture. Journal of Northwest Sci-Tech University of Agriculture and Forestry, 35, 125-128. (in Chinese) [12]Jin Q, Jiang D, Dai Y B, Cao W X. 2003. Effects of genotype and environment on wheat grain quality and protein components. Chinese Journal of Applied Ecology, 14, 1649-1653. (in Chinese) [13]Liu E M, Zhu Y Y, Liu X M, Zhang S Y, Liu A M, Ye H Z. 2002. Studies on Control of rice blast by alternatively planting diverse rice varieties in a hilly region. Crop Research, 16, 7-10. (in Chinese) [14]Mew T W, Borromeo E, Hardy B. 2001. Exploiting Biodiversity for Sustainable Pest Management. International Rice Research Institute. IPPI, Philipines. p. 256. [15]Mille B, Belhaj Fraj M, Monod H, Vallavieille-Pope C. 2006, Assessing four-way mixtures of winter wheat cultivars from the performances of their two-way and individual component. European Journal of Plant Pathology, 114, 163-173. [16]Muller K, Mcdermott J M, Wolfe M S, Limpert E. 1996. Analysis of diversity in populations of plant pathogens: the barley powdery mildew pathogen across Europe. European Journal of Plant Pathology, 102, 385-395. [17]Munck L. 1997. Variety mixtures: 19 years of experience in Denmark. In: Wolfe M S, ed., Variety Mixtures In theory and Practice. European Union Variety and Species Mixtures working group of COST Action 817. [2006-09-25]. http://www.scri.ac.uk/ [18]Mundt C C. 1994. Use of host geneti c diversity to control creeal disaeses: implications for rice blast. In: Zeigler R S, Leong S A, Teng P S, eds., Rice Blast Disease. CAB International, London. pp. 293-307. [19]Mundt C C. 2002. Use of multiline cultivars and cultivar mixtures for disease management. Annual Review of Phytopathol, 40, 381-410. [20]Mundt C C, Brophy L S, Schmitt M E. 1995. Disease severity and yield of pure line wheat cultivars and mixtures in the presence of eyespot, yellow rust, and their combination. Plant Pathology, 44, 173-182. [21]Mundt C C, Cowger C, Hoffer M E. 1999. Disease management using variety mixtures. In: Ginkel M V, McNab A, Krupinsky J, eds., Septoria and Stagonospora Diseases of Cereals: A Compilation of Global Research. pp. 111-116. [22]Mundt C C, Hayes P M, Schon C C. 1994. Influence of barley variety mixtures on severity of scald and net blotch and on yield. Plant Pathology, 43, 356-361. [23]Newton A C, Ellis R P, Hackett C A, Guy D C. 1997. The effect of component number on Rhynchosporium secalis infection and yield in mixtures of winter barley cultivars. Plant Pathology, 45, 930-938. [24]Peterson C J, Graybosch R A, Benziger P S. 1992. Genotype and environment effects on quality characteristics of hard red wheat. Crop Science, 32, 98-103. [25]Shao Z R, Liu W C. 1996. Chinese wheat powdery mildew occurred status and countermeasures. Chinese Agricultural Science Bulletin, 12, 21-23. (in Chinese) [26]Shen Y, Huang D N. 1990. Preliminary studies on induced resistance to rice plant by non-pathogenic and mild pathogenic isolates of Pyricularia oryzae Cav. Chinese Rice Science, 4, 95-96. (in Chinese) [27]Sheng B, Duan X. 1991. Modification to the 0-9 scale in scoring of wheat powdery mildew in adult plants. Beijing Agricultural Sciences, 9, 38-39. (in Chinese) [28]Wolfe M S, Barrett J A. 1980. Can we lead the pathogen astray? Plant Diseases, 64, 148-155. [29]Wolfe M S. 1992. Barley diseases: maintaining the value of our varieties. In: Munck L, ed., Barley Genetics VI, Proceedings of the Sixth International Barley Genetics Symposium, VoII. Munksgaard, Copenhagen. pp. 1055-1067. [30]Wolfe M S. 1985. The current status and prospects of multiline cultivars and variety mixtures for disease resistance. Phytopathology, 23, 251-273. [31]Zhou Y L. 1997. The interaction between host and pathogen populations in the Triticum aestivum-Erysiphe g r a m i n i s f . s p . t r i t i c i p a t h o s y s t e m . A c t a Phytopathologica Sinica, 2, 191. (in Chinese) Zhu J B, Liu G T, Zhang S Z. 1995. Effects of genotype and environment on wheat baking quality. Crop Journal, 21, 679-684. (in Chinese) [32]Zhu Y Y, Chen H R, Fan J H. 2000. Genetic diversity and disease control in rice. Nature, 406, 718-722. |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|