Please wait a minute...
Journal of Integrative Agriculture  2025, Vol. 24 Issue (3): 1167-1180    DOI: 10.1016/j.jia.2023.05.028
Animal Science · Veterinary Medicine Advanced Online Publication | Current Issue | Archive | Adv Search |
Comparative genomics study between high and low laying goose breeds reveals the important role of ESR1 in laying abilit
Qingyuan Ouyang1, 2*, Hengli Xie1, 2*, Shenqiang Hu1, 2*, Cong Lan1, 2, Mingxia Ran1, 2, Jiwei Hu1, 2, Hua He1, 2, Liang Li1, 2, Hehe Liu1, 2, Hao Qu2, Jiwen Wang1, 2#

1 Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China

2 State Key Laboratory of Swine and Poultry Breeding Industry, Chengdu 611830, China

 Highlights 
ESR1 plays a major role in goose laying ability.
The genotype of Indelchr3:54429172 affects ESR1 expression in ovarian stroma and correlates significantly with body weight at first egg and laying frequency.
ESR1 promotes apoptosis and inhibits proliferation of goose pre-hierarchical follicles granulosa cells, with transcriptome data suggesting its involvement in the MAPK and TGF-β signaling pathways.
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

较低的产量极大地限制了鹅产业的发展。中国拥有最丰富的鹅品种资源。本研究利用鸿雁及其驯化而来的高产和低产地方鹅种的基因组重测序数据,鉴定了与鹅产蛋能力相关的关键基因,并验证了它们的功能。选择性清除分析揭示,在驯化过程中与低产鹅种相比,416个基因在高产鹅种中受到了特异性选择。此外, GWAS分析结果表明,RTCBBPIFCSYN3SYNE1VIPESR1可能与鹅产蛋能力的差异有关。值得注意的是,只有ESR1同时被GWAS和选择性清除分析两种方法鉴定出来。位于ESR1下游的Indelchr3:54429172位点的基因型被证实会影响ESR1在卵巢基质中的表达,并与首次产卵时的体重和鹅的产频率显著相关。CCK-8EdU和流式细胞实验证实,ESR1可以促进鹅等级前卵泡颗粒细胞phGCs)的凋亡并抑制其增殖。结合转录组数据,发现ESR1参与鹅phGCs的功能可能与MAPKTGF-β信号通路有关。总的来说,我们的研究使用了来自不同鹅品种的基因组信息来确定ESR1下游的一个indel位点可能与鹅产蛋密切相关。通过细胞生物学和转录组学方法鉴定了ESR1参与鹅产蛋能力调控的主要途径和生物学过程。这些结果有助于进一步了解鹅的产蛋能力特征,提高鹅的产蛋量。



Abstract  

The low egg production of goose greatly limits the development of the industry.  China possesses the most abundant goose breeds resources.  In this study, genome resequencing data of swan goose (Anser cygnoides) and domesticated high and low laying goose breeds (Anser cygnoides domestiation) were used to identify key genes related to egg laying ability in geese and verify their functions.  Selective sweep analyses revealed 416 genes that were specifically selected during the domestication process from swan geese to high laying geese.  Furthermore, SNPs and Indels markers were used in GWAS analyses between high and low laying breed geese.  The results showed that RTCB, BPIFC, SYN3, SYNE1, VIP, and ESR1 may be related to the differences in laying ability of geese.  Notably, only ESR1 was identified simultaneously by GWAS and selective sweep analysis.  The genotype of Indelchr3:54429172, located downstream of ESR1, was confirmed to affect the expression of ESR1 in the ovarian stroma and showed significant correlation with body weight at first egg and laying frequency of geese.  CCK-8, EdU, and flow cytometry confirmed that ESR1 can promote the apoptosis of goose pre-hierarchical follicles ganulosa cells (phGCs) and inhibit their proliferation.  Combined with transcriptome data, it was found ESR1 involved in the function of goose phGCs may be related to MAPK and TGF-beta signaling pathways.  Overall, our study used genomic information from different goose breeds to identify an indel located in the downstream of ESR1 associated with goose laying ability.  The main pathways and biological processes of ESR1 involved in the regulation of goose laying ability were identified by cell biology and transcriptomics methods.  These results are helpful to further understand the laying ability characteristics of goose and improve the egg production of geese.


Keywords:  goose       laying ability       genome       ESR1  
Received: 23 February 2023   Accepted: 21 April 2023
Fund: 

This research was supported by the China Agriculture Research System of MOF and MARA (CARS-42-4), School Cooperation Project of Ya’an (21SXHZ0028),  the Key Technology Support Program of Sichuan Province, China (2021YFYZ0014), for the financial support.

About author:  Qingyuan Ouyang, E-mail: oyqy222@163.com; #Correspondence Jiwen Wang, Tel: +86-28-86291010, E-mail: wjw2886166@163.com * These authors contributed equally to this study.

Cite this article: 

Qingyuan Ouyang, Hengli Xie, Shenqiang Hu, Cong Lan, Mingxia Ran, Jiwei Hu, Hua He, Liang Li, Hehe Liu, Hao Qu, Jiwen Wang. 2025. Comparative genomics study between high and low laying goose breeds reveals the important role of ESR1 in laying abilit. Journal of Integrative Agriculture, 24(3): 1167-1180.

Bu D C, Luo H T, Huo P P, Wang Z H, Zhang S, He Z H, Wu Y, Zhao L H, Liu J J, Guo J C, Fang S S, Cao W C, Yi L, Zhao Y, Kong L. 2021. KOBAS-i: Intelligent prioritization and exploratory visualization of biological functions for gene enrichment analysis. Nucleic Acids Research49, W317–W325.

Chen X, Huang K L, Hu S Q, Lan G, Gan X, Gao S Y, Deng Y, Hu J W, Li L, Hu B, He H, Liu H H, Xia L, Wang J W. 2022. Integrated transcriptome and metabolome analysis reveals the regulatory mechanisms of FASN in geese granulosa cells. International Journal of Molecular Sciences23, 14717.

CNLPGR (Committee National Livestock and Poultry Genetic Resources). 2011. China Livestock and Poultry Genetic Resources–Poultry.

Drummond A EFuller P J. 2010. The importance of ERbeta signalling in the ovary. Journal of Endocrinology205, 15–23.

Du L, Gu T, Zhang Y, Huang Z, Wu N, Zhao W, Chang G, Xu Q, Chen G. 2018. Transcriptome profiling to identify key mediators of granulosa cell proliferation upon FSH stimulation in the goose (Anser cygnoides). British Poultry Science59, 416–421.

Gao G L, Gao D F, Zhao X Z, Xu S S, Zhang K S, Wu R, Yin C H, Li J, Xie Y H, Hu S L, Wang Q G. 2021a. Genome-wide association study-based identification of SNPs and haplotypes associated with goose reproductive performance and egg quality. Frontiers in Genetics12, 602583.

Gao G L, Hu S L, Zhang K S, Wang H W, Xie Y H, Zhang C L, Wu R, Zhao X Z, Zhang H M, Wang Q G. 2021b. Genome-wide gene expression profiles reveal distinct molecular characteristics of the goose granulosa cells. Frontiers in Genetics12, 786287.

Gilbert AB, Evans AJ, Perry MM, Davidson MH. 1977. A method for separating the granulosa cells, the basal lamina and the theca of the preovulatory ovarian follicle of the domestic fowl (Gallus domesticus). Journal of Reproduction and Fertility50, 179–181.

Guclu-Geyik F, Coban N, Can G, Erginel-Unaltuna N. 2020. The rs2175898 polymorphism in the ESR1 gene has a significant sex-specific effect on obesity. Biochemical Genetics58, 935–952.

Hrabia A, Wilk M, Rzasa J. 2008. Expression of alpha and beta estrogen receptors in the chicken ovary. Folia Biologica56, 187–191.

Hu S Q, Gan C, Wen R, Xiao Q H, Gou H, Liu H H, Zhang Y Y, Li L, Wang J W. 2014. Role of leptin in the regulation of sterol/steroid biosynthesis in goose granulosa cells. Theriogenology82, 677–685.

Johnson A L. 2014. The avian ovary and follicle development: Some comparative and practical insights. Turkish Journal of Veterinary & Animal Sciences38, 660–669.

Kamiyoshi M, Niwa T, Tanaka T. 1986. Nuclear estrogen receptor bindings in granulosa cells and estradiol-17 beta contents in follicular membranes of the ovary of the hen during the ovulatory cycle. General and Comparative Endocrinology61, 428–435.

Kang B, Jiang D M, He H, Ma R, Chen Z Y, Yi Z X. 2017. Effect of Oaz1 overexpression on goose ovarian granulosa cells. Amino Acids49, 1123–1132.

Kim D, Paggi J M, Park C, Bennett C, Salzberg S L. 2019. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nature Biotechnology37, 907–915.

Kosmaczewski S G, Edwards T J, Han S M, Eckwahl M J, Meyer B I, Peach S, Hesselberth J R, WolinS R, Hammarlund M. 2014. The RtcB RNA ligase is an essential component of the metazoan unfolded protein response. EMBO Reports15, 1278–1285.

Lei M M, Chen R, Qin Q M, Zhu H X, Shi Z D. 2020. Transcriptome analysis to unravel the gene expression profile of ovarian follicular development in magang goose. Journal of Reproduction and Development66, 331–340.

Li H. 2013. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. doi: 10.48550/arXiv.1303.3997.

Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R. 2009. The sequence alignment/map format and SAMtools. Bioinformatics25, 2078–2079.

Li Q, Hu S Q, Wang Y S, Deng Y, Yang S, Hu J W, Li L, Wang J W. 2019. mRNA and miRNA transcriptome profiling of granulosa and theca layers grom geese ovarian follicles reveals the crucial pathways and interaction networks for regulation of follicle selection. Frontiers in Genetics10, 988.

Li Z, Jiang J Y, Yi X H, Wang G Y, Wang S H, Sun X Z. 2021. miR-18b regulates the function of rabbit ovary granulosa cells. ReproductionFertility and Development33, 363–371.

Liao Y, Smyth G K, Shi W. 2014. FeatureCounts: An efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics30, 923–930.

Liu M, Xie W W, Zheng W, Yin D Y, Luo R, Guo F J. 2019. Targeted binding of estradiol with ESR1 promotes proliferation of human chondrocytes in vitro by inhibiting activation of ERK signaling pathway. Journal of Southern Medical Universtity39, 134–143. (in Chinese)

Niu C Y, Zhang S J, Mo G L, Jiang Y L, Li L, Xu H Y, Han C C, Zhao H, Yan Y H, Hu S Q, Hu J W, Kang B, Jiang D M. 2021. Effects of ODC on polyamine metabolism, hormone levels, cell proliferation and apoptosis in goose ovarian granulosa cells. Poultry Science100, 101226.

Niu X T, Tyasi TL, Qin N, Liu D H, Zhu H Y, Chen X X, Zhang F W, Yuan S G, Xu R F. 2017. Sequence variations in estrogen receptor 1 and 2 genes and their association with egg production traits in Chinese Dagu chickens. Journal of Veterinary Medical Science79, 927–934.

Ouyang Q Y, Hu S Q, Wang G S, Hu J W, Zhang J M, Li L, Hu B, He H, Liu H H, Xia L, Wang J W. 2020. Comparative transcriptome analysis suggests key roles for 5-hydroxytryptamlne receptors in control of goose egg production. Genes11, 455.

Ouyang Q Y, Cong L, Hu S Q, Gong H Z, Tang B C, Chen Q L, He Z Y, Wang J Q, Liu T Z, Wang S M, Zhang X, Hu J W, He H, Li L, Liu H H, Wang J W. 2024. Multiomics integration identifies regulatory factors underlying reproductive disorders in geese. Journal of Integrative Agriculture. doi: 10.1016/j.jia.2024.05.030.

Patel R KJain M. 2012. NGS QC Toolkit: A toolkit for quality control of next generation sequencing data. PLoS ONE7, e30619.

Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D, Maller J, Sklar P, de Bakker P I, Daly M J, Sham P C. 2007. PLINK: A tool set for whole-genome association and population-based linkage analyses. American Journal of Human Genetics81, 559–575.

Regan S L P, Knight P G, Yovich J L, Leung Y, Arfuso F, Dharmarajan A. 2018. Granulosa cell apoptosis in the ovarian follicle-A changing view. Frontiers in Endocrinology9, 61.

Royer C, Lucas T F, Lazari M F, Porto C S. 2012. 17Beta-estradiol signaling and regulation of proliferation and apoptosis of rat sertoli cells. Biology of Reproduction86, 108.

Rubin C J, Zody M C, Eriksson J, Meadows J R, Sherwood E, Webster M T, Jiang L, Ingman M, Sharpe T, Ka S, Hallböök F, Besnier F, Carlborg O, Bed’hom B, Tixier-Boichard M, Jensen P, Siegel P, Lindblad-Toh K, Andersson L. 2010. Whole-genome resequencing reveals loci under selection during chicken domestication. Nature464, 587–591.

Schomberg D W, Couse J F, Mukherjee A, Lubahn D B, Sar M, Mayo K E, Korach K S. 1999. Targeted disruption of the estrogen receptor-alpha gene in female mice: Characterization of ovarian responses and phenotype in the adult. Endocrinology140, 2733–2744.

Shi X W, Wang J W, Zeng F T, Qiu X P. 2006. Mitochondrial DNA cleavage patterns distinguish independent origin of Chinese domestic geese and Western domestic geese. Biochemical Genetics, 44, 237–245.

Singh S P, Wolfe A, Ng Y, DiVall S A, Buggs C, Levine J E, Wondisford F E, Radovick S. 2009. Impaired estrogen feedback and infertility in female mice with pituitary-specific deletion of estrogen receptor alpha (ESR1). Biology of Reproduction, 81, 488–496.

Smiderle L, Fiegenbaum M, Hutz M H, Van Der Sand C R, Van Der Sand L C, Ferreira M E, Pires R C, Almeida S. 2016. ESR1 polymorphisms and statin therapy: A sex-specific approach. The Pharmacogenomics Journal16, 507–513.

Sun Y, Liu W Z, Liu T, Feng X, Yang N, Zhou H F. 2015. Signaling pathway of MAPK/ERK in cell proliferation, differentiation, migration, senescence and apoptosis. Journal of Receptors and Signal Transduction Research35, 600–604.

Sun Y T, Cai J H, Bao S. 2022. Overexpression of lncRNA HCP5 in human umbilical cord mesenchymal stem cell-derived exosomes promoted the proliferation and inhibited the apoptosis of ovarian granulosa cells via the musashi RNA-binding protein 2/oestrogen receptor alpha 1 axis. Endocrine Journal69, 1117–1129.

Toy W, Shen Y, Won H, Green B, Sakr R A, Will M, Li Z, Gala K, Fanning S, King T A, Hudis C, Chen D, Taran T, Hortobagyi G, Greene G, Berger M, Baselga J, Chandarlapaty S. 2013. ESR1 ligand-binding domain mutations in hormone-resistant breast cancer. Nature Genetics45, 1439–1445.

Wang K, Li M, Hakonarson H. 2010. ANOVAR: Functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Research, 38, e164.

Wang X. 2020. Primary analysis of uterine phenotype in PGR α (Cre/wt) knockout mice. M.S. thesis, Shandong Normal University. (in Chinese)

Xie S, Yang X, Wang D, Zhu F, Yang N, Hou Z, Ning Z. 2018. Thyroid transcriptome analysis reveals different adaptive responses to cold environmental conditions between two chicken breeds. PLoS ONE, 13, e0191096.

Yang S, Deng Y, Chen D, Hu S Q, Zhang Y Y, Huang H L, Hu J W, Li L, He H, Wang J W. 2019. Promoter identification and transcriptional regulation of the goose AMH gene. Animals9, 816.

Yuan X, Hu S Q, Li L, Han C C, Liu H H, He H, Xia L, Hu J W, Hu B, Ran M X, Liu Y L, Wang J W. 2021. Lipidomics profiling of goose granulosa cell model of stearoyl-CoA desaturase function identifies a pattern of lipid droplets associated with follicle development. Cell and Bioscience11, 95.

Yuan X, Hu S Q, Li L, Liu H H, He H, Wang J W. 2020. Metabolomic analysis of SCD during goose follicular development: Implications for lipid metabolism. Genes11, 1001.

Zhang Y, Alexander P B, Wang X F. 2017. TGF-beta family signaling in the control of cell proliferation and survival. Cold Spring Harbor Perspectives in Biology9, a022145.

Zhao N. 2019. Rtcb expression and regulation in the mouse ovary. M.S. thesis, Shandong Normal University. (in Chinese)

Zhao Q Q, Chen J P, Zhang X H, Xu Z Y, Lin Z P, Li H X, Lin W C, Xie Q M. 2019. Genome-Wide association analysis reveals key genes responsible for egg production of Lion head goose. Frontiers in Genetics10, 1391.

Zhao X R, Nie C S, Zhang J X, Li X H, Zhu T, Guan Z, Chen Y, Wang L, Lv X Z, Yang W F, Jia Y X, Ning Z H, Li H Y, Qu C Q, Wang H, Qu L J. 2021. Identification of candidate genomic regions for chicken egg production traits based on genome wide association study. BMC Genomics22, 610.

Zheng S M, Ouyang J, Liu S Y, Tang H B, Xiong Y P, Yan X M, Chen H. 2023. Genomic signatures reveal selection in Lingxian white goose. Poultry Science102, 102269.

Zhou X and Stephens M. 2012. Genome-wide efficient mixed-model analysis for association studies. Nature Genetics, 44, 821–824.

Zhou Z K, Li M, Cheng H, Fan W L, Yuan Z R, Gao Q, Xu Y X, Guo Z B, Zhang Y S, Hu J, Liu H H, Liu D P, Chen W H, Zheng Z Q, Jiang Y, Wen Z G, Liu Y M, Chen H, Xie M, Zhang Q, et al. 2018. An intercross population study reveals genes associated with body size and plumage color in ducks. Nature Communications9, 2648.

[1] Yuhan Yang, Dou Wang, Yaning Bai, Wenyan Huang, Shimin Gao, Xingchen Wu, Ying Wang, Jianle Ren, Jinxin He, Lin Jin, Mingming Hu, Zhiwei Wang, Zhongbing Wang, Haili Ma, Junping Li, Libin Liang. Genetic and pathogenic characterization of new infectious bronchitis virus strains in the GVI-1 and GI-19 lineages isolated in central China[J]. >Journal of Integrative Agriculture, 2024, 23(7): 2407-2420.
[2] HUA Jin-feng, ZHANG Lei, HAN Yong-hua, GOU Xiao-wan, CHEN Tian-yuan, HUANG Yong-mei, LI Yan-qing, MA Dai-fu, LI Zong-yun. Chromosome-level genome assembly of Cylas formicarius provides insights into its adaptation and invasion mechanisms[J]. >Journal of Integrative Agriculture, 2023, 22(3): 825-843.
[3] LIAO Guang-lian, HUANG Chun-hui, JIA Dong-feng, ZHONG Min, TAO Jun-jie, QU Xue-yan, XU Xiao-biao. A high-quality genome of Actinidia eriantha provides new insight into ascorbic acid regulation[J]. >Journal of Integrative Agriculture, 2023, 22(11): 3244-3255.
[4] WANG Chen, CHEN Yao-sheng, HAN Jian-lin, MO De-lin, LI Xiu-jin, LIU Xiao-hong. Mitochondrial DNA diversity and origin of indigenous pigs in South China and their contribution to western modern pig breeds[J]. >Journal of Integrative Agriculture, 2019, 18(10): 2338-2350.
No Suggested Reading articles found!