Please wait a minute...
Journal of Integrative Agriculture  2025, Vol. 24 Issue (3): 1181-1197    DOI: 10.1016/j.jia.2023.12.035
Animal Science · Veterinary Medicine Advanced Online Publication | Current Issue | Archive | Adv Search |
Salmonella YrbD protein mediates invasion into the host by interacting with β2 integrin
Jun Cao, Jinliang Wang, Guanghui Dang, Shihao Ding, Yao Lu, Qiu Xu, Siguo Liu#, Shenye Yu#

State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China

 Highlights 
● β2 integrin is an important host factor that promotes the invasion of Salmonella into host cells.
● The soluble protein in the extracellular domain of β2 integrin can neutralize Salmonella infection.
● The direct interaction between β2 integrin and Salmonella protein YrbD promotes the adhesion and internalization
of Salmonella to host cells.
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  
鼠伤寒沙门菌是胃肠炎的病原体,是最成功的细胞内病原体之一。尽管沙门菌感染的某些宿主因素已经被揭示,但介导沙门菌进入的因素,特别是入侵过程,仍然不清楚。本研究首先在质谱筛选出的28种潜在沙门菌宿主因子中选择β2整合素为研究目标,在HeLa细胞中过表达β2整合素或用siRNA转染,再用沙门菌感染。结果显示β2整合素过表达的HeLa细胞中沙门菌感染显著高于对照组,siRNA转染组的β2整合素mRNA转录下降了90%,表明β2整合素是促进沙门菌入侵的重要宿主因子。其次,用沙门菌分别感染β2整合素过表达与沉默的HeLa细胞,对细胞表面的沙门菌进行共聚焦显微观察,结果显示沙门菌与β2整合素沉默的HeLa细胞的结合减少,而与β2整合素过表达的HeLa细胞的结合增加。将识别β2整合素胞外结构域的单克隆抗体或多克隆抗体分别与HeLa、Caco-2和RAW264.7细胞预孵育,对膜表面的β2整合素进行抗体阻断,测定感染率,结果显示阻断细胞表面的β2整合素显著减少了沙门菌感染,而且呈剂量依赖性,表明β2整合素与沙门菌感染存在特异的相关性。再次,分别进行细胞感染性中和试验和小鼠感染性中和试验,结果显示β2整合素胞外结构域的可溶性重组蛋白以剂量依赖的方式有效地中和了HeLa、Caco-2和RAW264.7细胞中的沙门菌感染;重组蛋白组的存活期比对照组延长了48小时,表明β2整合素胞外结构域可溶性蛋白在细胞(体外)和小鼠(体内)中和了沙门菌感染。然后,通过β2整合素与沙门菌外膜蛋白的pull-down试验以及β2整合素和YrbD的免疫共沉淀和pull-down试验,证明β2整合素与沙门菌YrbD直接相互作用,并且I-like结构域是相互作用所必需的。庆大霉素保护试验显示,沙门菌的yrbD缺失显著降低了对HeLa细胞的侵袭,表明YrbD有助于沙门菌入侵细胞。用纯化的YrbD蛋白包被的乳胶珠孵育HeLa细胞,透射电镜显示乳胶珠被非吞噬性HeLa细胞特异性吸收并内化。本研究首次表明,YrbD蛋白通过与β2整合素相互作用介导沙门菌粘附和内化到宿主细胞中。这些发现不仅拓宽了我们对沙门菌进入机制的理解,而且确定了治疗控制的潜在靶点。


Abstract  
Salmonella enterica serovar Typhimurium, the causative agent of gastroenteritis, is one of the most successful intracellular pathogens.  Although certain host factors for Salmonella infection have been unveiled, the factors mediating Salmonella entry, particularly the invasion process, remain obscure.  Here, we have unearthed β2 integrin, a crucial member of the integrin family, as an important host factor facilitating Salmonella invasion.  It is demonstrated that overexpression of β2 integrin promotes Salmonella invasion, while the knockdown of β2 integrin significantly diminishes the extent of invasion.  Moreover, Salmonella exhibits specific binding affinity towards β2 integrin, and the block of β2 integrin on cell surface substantially reduces the infection of cells in vitro.  The ectodomain soluble protein of β2 integrin neutralized Salmonella infection both in cells (in vitro) and in mice (in vivo).  Additionally, Salmonella protein YrbD directly interacts with β2 integrin to facilitate its invasion.  To our knowledge, this study showed for the first time that the protein YrbD mediates Salmonella adhesion and internalization into host cells by interacting with β2 integrin.  These findings not only broaden our understanding of the mechanisms underlying Salmonella entry, but also identify a prospective target for therapeutic control.


Keywords:  β2 integrin       adhesion       internalization       Salmonella       protein YrbD  
Received: 25 August 2023   Accepted: 31 October 2023
Fund: 
This work was supported by the National Key R&D Program of China (2022YFF0710500), the the National Natural Science Foundation, China (31802192, 32172853 and 32373013), the Natural Science Foundation of Heilongjiang Province of China (C2018070), China Postdoctoral Science Foundation (2017M620076), and the Central Public-interest Scientific Institution Basal Research Fund, China (1610302022001).
About author:  Jun Cao, E-mail: yufei@126.com; #Correspondence Shenye Yu, Tel: +86-451-51051733, E-mail: yushenye@caas.cn

Cite this article: 

Jun Cao, Jinliang Wang, Guanghui Dang, Shihao Ding, Yao Lu, Qiu Xu, Siguo Liu, Shenye Yu. 2025. Salmonella YrbD protein mediates invasion into the host by interacting with β2 integrin. Journal of Integrative Agriculture, 24(3): 1181-1197.

Angelo K M, Reynolds J, Karp B E, Hoekstra R M, Scheel C M, Friedman C. 2016. Antimicrobial resistance among nontyphoidal Salmonella isolated from blood in the united states, 2003–2013. Journal of Infectious Diseases214, 1565–1570.

Aviv G, Cornelius A, Davidovich M, Cohen H, Suwandi A, Galeev A, Steck N, Azriel S, Rokney A, Valinsky L, Rahav G, Grassl G A, Gal-Mor O. 2019. Differences in the expression of SPI-1 genes pathogenicity and epidemiology between the emerging Salmonella enterica serovar infantis and the model Salmonella enterica serovar Typhimurium. Journal of Infectious Diseases220, 1071–1081.

Brandstaetter H, Kendrick-Jones J, Buss F. 2012. Myo1c regulates lipid raft recycling to control cell spreading, migration and Salmonella invasion. Journal of Cell Science125, 1991–2003.

Bridgewater R E, Norman J C, Caswell P T. 2012. Integrin trafficking at a glance. Journal of Cell Science125, 3695–3701.

Brooks A B, Humphreys D, Singh V, Davidson A C, Arden S D, Buss F, Koronakis V. 2017. MYO6 is targeted by Salmonella virulence effectors to trigger PI3-kinase signaling and pathogen invasion into host cells. Proceedings of the National Academy of Sciences of the United States of America114, 3915–3920.

Brumell J H, Tang P, Mills S D, Finlay B B. 2001. Characterization of Salmonella-induced filaments (Sifs) reveals a delayed interaction between Salmonella-containing vacuoles and late endocytic compartments. Traffic2, 643–653.

Bulgin R, Raymond B, Garnett J A, Frankel G, Crepin V F, Berger C N, Arbeloa A. 2010. Bacterial guanine nucleotide exchange factors SopE-like and WxxxE effectors. Infection and Immunity78, 1417–1425.

Colonne P M, Winchell C G, Voth D E. 2016. Hijacking host cell highways: Manipulation of the host actin cytoskeleton by obligate intracellular bacterial pathogens. Frontiers in Cellular and Infection Microbiology6, 107.

Colosimo D A, Kohn J A, Luo P M, Piscotta F J, Han S M, Pickard A J, Rao A, Cross J R, Cohen L J, Brady S F. 2019. Mapping interactions of microbial metabolites with human G-Protein-Coupled receptors. Cell Host & Microbe26, 273–282. e277.

Cuypers W L, Meysman P, Weill F X, Hendriksen R S, Beyene G, Wain J, Nair S, Chattaway M A, Perez-Sepulveda B M, Ceyssens P J, de Block T, Lee W W Y, Pardos de la Gandara M, Kornschober C, Moran-Gilad J, Veldman K T, Cormican M, Torpdahl M, Fields P I, Cerny T, Hardy L, et al. 2023. A global genomic analysis of Salmonella concord reveals lineages with high antimicrobial resistance in Ethiopia. Nature Communications14, 3517.

Dang G, Cao J, Cui Y, Song N, Chen L, Pang H, Liu S. 2016. Characterization of Rv0888, a novel extracellular nuclease from Mycobacterium tuberculosisScientific Reports6, 19033.

Davidson A C, Humphreys D, Brooks A B, Hume P J, Koronakis V. 2015. The Arf GTPase-activating protein family is exploited by Salmonella enterica serovar Typhimurium to invade nonphagocytic host cells. mBio6, e02253–14.

Elhenawy W, Bording-Jorgensen M, Valguarnera E, Haurat M F, Wine E, Feldman M F. 2016. LPS remodeling triggers formation of outer membrane vesicles in SalmonellamBio7, e00940–16.

Ferrer-Navarro M, Ballesté-Delpierre C, Vila J, Fàbrega A. 2016. Characterization of the outer membrane subproteome of the virulent strain Salmonella Typhimurium SL1344. Journal of Proteomics146, 141–147.

Liu G S, LV X L, Tian Q F, Zhang W J, Fei Y I, Zhang Y L, YU S Y. 2025. Deletion of Salmonella pathogenicity islands SPI-1, 2 and 3 induces substantial morphological and metabolic alternation and protective immune potential. Journal of Integrative Agriculture24, 272–289.

Gu Z, Noss E H, Hsu V W, Brenner M B. 2011. Integrins traffic rapidly via circular dorsal ruffles and macropinocytosis during stimulated cell migration. Journal of Cell Biology193, 61–70.

Hannemann S, Gao B, Galán J E. 2013. Salmonella modulation of host cell gene expression promotes its intracellular growth. PLoS Pathogens9, e1003668.

Hardt W D, Chen L M, Schuebel K E, Bustelo X R, Galán J E. 1998. S. typhimurium encodes an activator of Rho GTPases that induces membrane ruffling and nuclear responses in host cells. Cell93, 815–826.

Hernandez L D, Hueffer K, Wenk M R, Galán J E. 2004. Salmonella modulates vesicular traffic by altering phosphoinositide metabolism. Science304, 1805–1807.

Kechagia J Z, Ivaska J, Roca-Cusachs P. 2019. Integrins as biomechanical sensors of the microenvironment. Nature Reviews Molecular Cell Biology20, 457–473.

Knodler L A. 2015. Salmonella enterica: Living a double life in epithelial cells. Current Opinion in Microbiology23, 23–31.

Li X, Bleumink-Pluym N M C, Luijkx Y, Wubbolts R W, van Putten J P M, Strijbis K. 2019. MUC1 is a receptor for the Salmonella SiiE adhesin that enables apical invasion into enterocytes. PLoS Pathogens15, e1007566.

Liebl D, Qi X, Zhe Y, Barnett T C, Teasdale R D. 2017. SopB-mediated recruitment of SNX18 facilitates Salmonella typhimurium internalization by the host cell. Frontiers in Cellular and Infection Microbiology7, 257.

Lim J S, Na H S, Lee H C, Choy H E, Park S C, Han J M, Cho K A. 2009. Caveolae-mediated entry of Salmonella typhimurium in a human M-cell model. Biochemical Biophysical Research Communications390, 1322–1327.

Lim J S, Shin M, Kim H J, Kim K S, Choy H E, Cho K A. 2014. Caveolin-1 mediates Salmonella invasion via the regulation of SopE-dependent rac1 activation and actin reorganization. Journal of Infectious Diseases210, 793–802.

Liu B, Zhang X, Ding X, Bin P, Zhu G. 2023. The vertical transmission of Salmonella Enteritidis in a One-Health context. One Health16, 100469.

Malik-Kale P, Jolly C E, Lathrop S, Winfree S, Luterbach C, Steele-Mortimer O. 2011. Salmonella at home in the host cell. Frontiers in Microbiology2, 125.

Mallo G V, Espina M, Smith A C, Terebiznik M R, Alemán A, Finlay B B, Rameh L E, Grinstein S, Brumell J H. 2008. SopB promotes phosphatidylinositol 3-phosphate formation on Salmonella vacuoles by recruiting Rab5 and Vps34. Journal of Cell Biology182, 741–752.

Marchese A, Paing M M, Temple B R, Trejo J. 2008. G protein-coupled receptor sorting to endosomes and lysosomes. Annual Review of Pharmacology and Toxicology48, 601–629.

Margadant C, Monsuur H N, Norman J C, Sonnenberg A. 2011. Mechanisms of integrin activation and trafficking. Current Opinion in Cell Biology23, 607–614.

Misselwitz B, Dilling S, Vonaesch P, Sacher R, Snijder B, Schlumberger M, Rout S, Stark M, von Mering C, Pelkmans L, Hardt W D. 2011a. RNAi screen of Salmonella invasion shows role of COPI in membrane targeting of cholesterol and Cdc42. Molecular Systems Biology7, 474.

Misselwitz B, Kreibich S K, Rout S, Stecher B, Periaswamy B, Hardt W D. 2011b. Salmonella enterica serovar Typhimurium binds to HeLa cells via Fim-mediated reversible adhesion and irreversible type three secretion system 1-mediated docking. Infection and Immunity79, 330–341.

Paul N R, Jacquemet G, Caswell P T. 2015. Endocytic trafficking of integrins in cell migration. Current Biology25, R1092–R1105.

del Pozo M A, Balasubramanian N, Alderson N B, Kiosses W B, Grande-Garcia A, Anderson R G, Schwartz M A. 2005. Phospho-caveolin-1 mediates integrin-regulated membrane domain internalization. Nature Cell Biology7, 901–908.

Ristow L C, Tran V, Schwartz K J, Pankratz L, Mehle A, Sauer J D, Welch R A. 2019. The extracellular domain of the β2 integrin beta subunit (CD18) is sufficient for Escherichia coli hemolysin and Aggregatibacter actinomycetemcomitans leukotoxin cytotoxic activity. mBio10, e01459–19.

Santos J C, Duchateau M, Fredlund J, Weiner A, Mallet A, Schmitt C, Matondo M, Hourdel V, Chamot-Rooke J, Enninga J. 2015. The COPII complex and lysosomal VAMP7 determine intracellular Salmonella localization and growth. Cellular Microbiology17, 1699–1720.

Sewald X, Gebert-Vogl B, Prassl S, Barwig I, Weiss E, Fabbri M, Osicka R, Schiemann M, Busch D H, Semmrich M, Holzmann B, Sebo P, Haas R. 2008. Integrin subunit CD18 is the T-lymphocyte receptor for the Helicobacter pylori vacuolating cytotoxin. Cell Host & Microbe3, 20–29.

Spanò S, Galán J E. 2018. Taking control: Hijacking of Rab GTPases by intracellular bacterial pathogens. Small GTPases9, 182–191.

Steeb B, Claudi B, Burton N A, Tienz P, Schmidt A, Farhan H, Mazé A, Bumann D. 2013. Parallel exploitation of diverse host nutrients enhances Salmonella virulence. PLoS Pathogens9, e1003301.

Streuli C H. 2016. Integrins as architects of cell behavior. Molecular Biology of the Cell27, 2885–2888.

Sun L, Yang S, Deng Q, Dong K, Li Y, Wu S, Huang R. 2020. Salmonella effector SpvB disrupts intestinal epithelial barrier integrity for bacterial translocation. Frontiers in Cellular and Infection Microbiology10, 606541.

Tanner J R, Kingsley R A. 2018. Evolution of Salmonella within hosts. Trends in Microbiology26, 986–998.

Teo W X, Kerr M C, Teasdale R D. 2016. MTMR4 is required for the stability of the Salmonella-containing vacuole. Frontiers in Cellular and Infection Microbiology6, 91.

de Tymowski C, Heming N, Correia M D T, Abbad L, Chavarot N, Le Stang M B, Flament H, Bex J, Boedec E, Bounaix C, Soler-Torronteras R, Denamur E, Galicier L, Oksenhendler E, Fehling H J, Pinheiro da Silva F, Benhamou M, Monteiro R C, Ben Mkaddem S. 2019. CD89 is a potent innate receptor for bacteria and mediates host protection from sepsis. Cell Reports27, 762–775. e765.

Vazquez-Torres A, Jones-Carson J, Bäumler A J, Falkow S, Valdivia R, Brown W, Le M, Berggren R, Parks W T, Fang F C. 1999. Extraintestinal dissemination of Salmonella by CD18-expressing phagocytes. Nature401, 804–808.

Weber M M, Faris R. 2018. Subversion of the endocytic and secretory pathways by bacterial effector proteins. Frontiers in Cell and Developmental Biology6, 1.

Xie M, Chen K, Chan E W, Chen S. 2022. Identification and genetic characterization of two conjugative plasmids that confer azithromycin resistance in SalmonellaEmerging Microbes & Infections11, 1049–1057.

Yu X J, Liu M, Holden D W. 2016. Salmonella effectors SseF and SseG interact with mammalian protein ACBD3 (GCP60) to anchor Salmonella-containing vacuoles at the golgi network. mBio7, e00474–16.

Zhang K, Griffiths G, Repnik U, Hornef M. 2018. Seeing is understanding: Salmonella’s way to penetrate the intestinal epithelium. International Journal of Medical Microbiology308, 97–106.

Zhou D, Chen L M, Hernandez L, Shears S B, Galán J E. 2001. A Salmonella inositol polyphosphatase acts in conjunction with other bacterial effectors to promote host cell actin cytoskeleton rearrangements and bacterial internalization. Molecular Microbiology39, 248–259.

[1] XIE Xing,  HAO Fei, WANG Hai-yan, PANG Mao-da, GAN Yuan, LIU Bei-bei, ZHANG Lei, WEI Yan-na, CHEN Rong, ZHANG Zhen-zhen, BAO Wen-bin, BAI Yun, SHAO Guo-qing, XIONG Qi-yan, FENG Zhi-xin. Construction of a telomerase-immortalized porcine tracheal epithelial cell model for swine-origin mycoplasma infection[J]. >Journal of Integrative Agriculture, 2022, 21(2): 504-520.
[2] ZHAO Dan-dan, SHUAI Lei, GE Jin-ying, WANG Jin-liang, WEN Zhi-yuan, LIU Ren-qiang, WANG Chong, WANG Xi-jun, BU Zhi-gao. Generation of recombinant rabies virus ERA strain applied to virus tracking in cell infection[J]. >Journal of Integrative Agriculture, 2019, 18(10): 2361-2368.
[3] JIANG Dai-xun, LIU Shu-rong, ZHANG Mei-hua, ZHANG Tao, MA Wen-jing, MU Xiang, CHEN Wu. Luteolin prevents fMLP-induced neutrophils adhesion via suppression of LFA-1 and phosphodiesterase 4 activity[J]. >Journal of Integrative Agriculture, 2015, 14(1): 140-147.
No Suggested Reading articles found!