Please wait a minute...
Journal of Integrative Agriculture  2024, Vol. 23 Issue (1): 177-186    DOI: 10.1016/j.jia.2023.04.009
Plant Protection Advanced Online Publication | Current Issue | Archive | Adv Search |
Effect of mutations on acetohydroxyacid synthase (AHAS) function in Cyperus difformis L.
Xiaotong Guo1, Xiangju Li1, Zheng Li2, Licun Peng1, Jingchao Chen1, Haiyan Yu1, Hailan Cui1#

1 State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China

2 College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

异型莎草(Cyperus difformis L.)是莎草科莎草属一年生杂草,主要危害水稻田从上世纪90年代开始,吡嘧磺隆用于防除水稻田杂草,属于乙酰羟酸合成酶(acetohydroxyacid synthaseAHAS)抑制剂中的磺酰脲类除草剂。近年来,这类除草剂连年施用引起杂草抗性问题愈发严重,其中包括异型莎草,而靶标突变是导致异型莎草对AHAS抑制剂产生抗性的主要原因。本研究以异型莎草Pro197ArgPro197SerPro197LeuAsp376GluTrp574Leu 5AHAS突变型和1种野生型为研究对象,通过整株生物测定、AHAS离体活性、AHAS与底物亲和力及AHAS对支链氨基酸反馈抑制敏感性的测定,明确AHAS不同位点发生突变时,对吡嘧磺隆敏感性及酶功能的影响。主要研究结果为:(1)通过整株生物测定明确了不同突变型对吡嘧磺隆的抗性水平不同,其中,Trp574Leu突变型对吡嘧磺隆的抗性水平最高。(2)离体AHAS活性测定表明,突变明显降低了AHAS对吡嘧磺隆的敏感性,野生型及Asp376GluPro197LeuPro197ArgPro197SerTrp574Leu 5种突变型AHASI50分别为0.043.9811.540.3838.19311.43 μmol L-1,其中Trp574Leu突变型对吡嘧磺隆的敏感性最低。(3)测定了不同突变型AHAS的动力学参数,结果显示,与野生型AHAS相比,Asp376GluPro197LeuTrp574LeuPro197Ser突变型的Km值显著下降,表明其与底物的亲和力增加,而Pro197Arg突变型的Km值上升,表明其与底物的亲和力下降;Asp376GluPro197SerPro197ArgTrp574Leu的最大反应速率Vmax与野生型AHAS相比显著增加,但Pro197Leu突变型的Vmax没有显著变化。(4)支链氨基酸对不同突变型AHAS活性的反馈抑制结果表明,与敏感型AHAS相比,Pro197Arg突变型AHAS活性受到更强的抑制,而Asp376GluPro197LeuTrp574LeuPro197Ser突变型AHAS活性受到的抑制作用小。

综上,本文通过AHAS催化活性、动力学及反馈抑制调节的研究,明确了异型莎草AHAS在不同位点发生突变对其功能的影响。



Abstract  

Cyperus difformis L. is a troublesome weed in paddy fields and has attracted attention due to its resistance to acetohydroxyacid synthase (AHAS) inhibitors.  It was found that the amino acid mutation in AHAS was the primary cause for the resistance of Cyperus difformis.  However, the effect of different mutations on AHAS function is not clear in Cyperus difformis.  To confirm the effect of mutations on AHAS function, six biotypes were collected, including Pro197Arg, Pro197Ser, Pro197Leu, Asp376Glu, Trp574Leu and wild type, from Hunan, Anhui, Jiangxi and Jiangsu provinces, China and the function of AHAS was characterized.  The AHAS in vitro inhibition assay results indicated that the mutations decreased the sensitivity of AHAS to pyrazosulfuron-ethyl, in which the I50 (the half maximal inhibitory concentration) of wild type AHAS was 0.04 μmol L–1 and Asp376Glu, Pro197Leu, Pro197Arg, Pro197Ser and Trp574Leu mutations were 3.98, 11.50, 40.38, 38.19 and 311.43 μmol L–1, respectively.  In the determination of enzyme kinetics parameters, the Km and the maximum reaction velocity (Vmax) of the wild type were 5.18 mmol L–1 and 0.12 nmol mg–1 min–1, respectively, and the Km values of AHAS with Asp376Glu, Trp574Leu, Pro197Leu and Pro197Ser mutations were 0.38–0.93 times of the wild type.  The Km value of the Pro197Arg mutation was 1.14 times of the wild type, and the Vmax values of the five mutations were 1.17–3.33-fold compared to the wild type.  It was found that the mutations increased the affinity of AHAS to the substrate, except for the Pro197Arg mutation.  At a concentration of 0.0032–100 mmol L–1 branched-chain amino acids (BCAAs), the sensitivity of the other four mutant AHAS biotypes to feedback inhibition decreased, except for the Pro197Arg mutation.  This study elucidated the effect of different mutations on AHAS function in Cyperus difformis and provided ideas for further study of resistance development.

 

Keywords:  acetohydroxyacid synthase (AHAS)        mutation        enzyme function        Cyperus difformis


  
Received: 19 December 2022   Accepted: 14 February 2023
Fund: This research was funded by the National Natural Science Foundation of China (31972281).  
About author:  Xiaotong Guo, E-mail: xtg96318@163.com;#Correspondence Hailan Cui, E-mail: cuihailan@caas.cn

Cite this article: 

Xiaotong Guo, Xiangju Li, Zheng Li, Licun Peng, Jingchao Chen, Haiyan Yu, Hailan Cui. 2024. Effect of mutations on acetohydroxyacid synthase (AHAS) function in Cyperus difformis L.. Journal of Integrative Agriculture, 23(1): 177-186.

Ashigh J, Tardif F J. 2007. An Ala(205)Val substitution in acetohydroxyacid synthase of eastern black nightshade (Solanum ptychanthum) reduces sensitivity to herbicides and feedback inhibition. Weed Science, 55, 558–565.

Ashigh J, Tardif F J. 2009. An amino acid substitution at position 205 of acetohydroxyacid synthase reduces fitness under optimal light in resistant populations of Solanum ptychanthum. Weed Research, 49, 479–489.

Beckie H J, Tardif F J. 2012. Herbicide cross resistance in weeds. Crop Protection, 35, 15–28.

Busi R, Vidotto F, Fischer A J, Osuna M D, De Prado R, Ferrero A. 2006. Patterns of resistance to ALS herbicides in smallflower umbrella sedge (Cyperus difformis) and ricefield bulrush (Schoenoplectus mucronatus). Weed Technology, 20, 1004–1014.

Chaleff R S, Mauvais C J. 1984. Acetolactate synthase is the site of action of two sulfonylurea herbicides in higher plants. Science, 224, 1443–1445.

Chang A K, Duggleby R G. 1998. Herbicide-resistant forms of Arabidopsis thaliana acetohydroxyacid synthase: Characterization of the catalytic properties and sensitivity to inhibitors of four defined mutants. Biochemical Journal, 333, 765–777.

Choudhary V K, Reddy S S, Mishra S K, Kumar B, Gharde Y, Kumar S, Yadav M, Barik S, Singh P K. 2021. Resistance in smallflower umbrella sedge (Cyperus difformis) to an acetolactate synthase-inhibiting herbicide in rice: First case in India. Weed Technology, 35, 710–717.

Dale S, Stidham A. 1984. Imidazolinones: Potent inhibitors of acetohydroxyacid synthase. Plant Physiology, 76, 545–546.

Deng W, Cao Y, Yang Q, Liu M J, Mei Y, Zheng M Q. 2014. Different cross-resistance patterns to AHAS herbicides of two tribenuron-methyl resistant flixweed (Descurainia sophia L.) biotypes in China. Pesticide Biochemistry and Physiology, 112, 26–32.

Du L, Qu M, Jiang X, Li X, Ju Q, Lu X, Wang J. 2019. Fitness costs associated with acetyl-coenzyme A carboxylase mutations endowing herbicide resistance in American sloughgrass (Beckmannia syzigachne Steud.). Ecology and Evolution, 9, 2220–2230.

Duggleby R G, Pang S S. 2000. Acetohydroxyacid synthase. Journal of Biochemistry and Molecular Biology, 33, 1–36.

Duggleby R G, Pang S S, Yu H, Guddat L W. 2003. Systematic characterization of mutations in yeast acetohydroxyacid synthase. Interpretation of herbicide-resistance data. European Journal of Biochemistry, 270, 2895–2904.

Eberlein C V, Guttieri M J, Berger P H, Fellman J K, Mallory-Smith C A, Thill D C, Baerg R J, Belknap W R. 1999. Physiological consequences of mutation for ALS-inhibitor resistance. Weed Science, 47, 383–392.

Eberlein C V, Guttieri M J, Mallorysmith C A, Thill D C, Baerg R J. 1997. Altered acetolactate synthase activity in ALS-inhibitor resistant prickly lettuce (Lactuca serriola). Weed Science, 45, 212–217.

Fang J, Yang D, Zhao Z, Chen J, Dong L. 2022. A novel Phe-206-Leu mutation in acetolactate synthase confers resistance to penoxsulam in barnyardgrass (Echinochloa crus-galli (L.) P. Beauv). Pest Management Science, 78, 2560–2570.

Gaines T A, Duke S O, Morran S, Rigon C, Tranel P J, Küpper A, Dayan F E. 2020. Mechanisms of evolved herbicide resistance. Journal of Biological Chemistry, 295, 10307–10330.

Gerwick B C, Subramanian M V, Loney-Gallant V I, Chandler D P. 1990. Mechanism of action of the 1,2,4-triazolo[1,5-a] pyrimidines. Pesticide Science, 29, 357–364.

Hattori J, Brown D, Mourad G, Labbé H, Miki B. 1995. An acetohydroxy acid synthase mutant reveals a single siteinvolved in multiple herbicide resistance. Molecular Genetics and Genomics, 246, 419–425.

Heap I. 2022. The international herbicide-resistant weed database. [2022-12-31]. http://www.weedscience.org

Hwang I T, Lee K H, Park S H, Lee B H, Hong K S, Han S S, Cho K Y. 2001. Resistance to acetolactate synthase inhibitors in a biotype of Monochoria vaginalis discovered in Korea. Pesticide Biochemistry and Physiology, 71, 69–76.

Jasieniuk M, Brulebabel A L, Morrison I N. 1996. The evolution and genetics of herbicide resistance in weeds. Weed Science, 44, 176–193.

Kim J, Beak D G, Kim Y T, Choi J D, Yoon M Y. 2004. Effects of deletions at the C-terminus of tobacco acetohydroxyacid synthase on the enzyme activity and cofactor binding. Biochemical Journal, 384, 59–68.

Larran A S, Palmieri V E, Perotti V E, Lieber L, Permingeat H R. 2017. Target-site resistance to acetolactate synthase (ALS)-inhibiting herbicides in Amaranthus palmeri from Argentina. Pest Management Science, 73, 2578–2584.

Lee Y T, Duggleby R G. 2001. Identification of the regulatory subunit of Arabidopsis thaliana acetohydroxyacid synthase and reconstitution with its catalytic subunit. Biochemistry, 40, 6836–6844.

Lee Y T, Duggleby R G. 2002. Regulatory interactions in Arabidopsis thaliana acetohydroxyacid synthase. Febs Letters, 512, 180–184.

Li Z, Li X J, Chen J C, Peng L C, Wang J J, Cui H L. 2020. Variation in mutations providing resistance to acetohydroxyacid synthase inhibitors in Cyperus difformis in China. Pesticide Biochemistry and Physiology, 166, 104571.

Liu W, Bai S, Jia S, Guo W, Zhang L, Li W, Wang J. 2017. Comparison of ALS functionality and plant growth in ALS-inhibitor susceptible and resistant Myosoton aquaticum L. Pesticide Biochemistry and Physiology, 142, 111–116.

Mccourt J A, Pang S S, King-Scott J, Guddat L W, Duggleby R G. 2006. Herbicide-binding sites revealed in the structure of plant acetohydroxyacid synthase. Proceedings of the National Academy of Sciences of the United States of America, 103, 569–573.

Menegat A, Bailly G C, Aponte R, Heinrich G M T, Sievernich B, Gerhards R. 2016. Acetohydroxyacid synthase (AHAS) amino acid substitution Asp376Glu in Lolium perenne: Effect on herbicide efficacy and plant growth. Journal of Plant Diseases and Protection, 123, 145–153.

Mourad G, Williams D, King J. 1995. A double mutant allele, csr1-4, of Arabidopsis thaliana encodes an acetolactate synthase with altered kinetics. Planta, 196, 64–68.

Ntoanidou S, Kaloumenos N, Diamantidis G, Madesis P, Eleftherohorinos I. 2016. Molecular basis of Cyperus difformis cross-resistance to ALS-inhibiting herbicides. Pesticide Biochemistry and Physiology, 127, 38–45.

Ntoanidou S, Madesis P, Eleftherohorinos I. 2018. Resistance of Rapistrum rugosum to tribenuron and imazamox due to Trp574 or Pro197 substitution in the acetolactate synthase. Pesticide Biochemistry and Physiology, 154, 1–6.

Powles S B, Yu Q. 2010. Evolution in action: Plants resistant to herbicides further. Annual Review of Plant Biology, 61, 317–347.

Preston C, Stone L M, Rieger M A, Baker J. 2006. Multiple effects of a naturally occurring proline to threonine substitution within acetolactate synthase in two herbicide-resistant populations of Lactuca serriola. Pesticide Biochemistry and Physiology, 84, 227–235.

Purrington C B, Bergelson J. 1999. Exploring the physiological basis of costs of herbicide resistance in Arabidopsis thaliana. American Naturalist, 154, S82–S91.

Ray T B. 1984. Site of action of chlorsulfuron: Inhibition of valine and isoleucine biosynthesis in plants. Plant Physiology, 75, 827–831.

Seefeldt S S. Jensen J E, Fuerst E P. 1995. Log-logistic analysis of herbicide dose-response relationships. Weed Technology, 9, 218–227.

Shao S, Li B, Sun Q, Guo P, Du Y, Huang J. 2022. Acetolactate synthases regulatory subunit and catalytic subunitgenes VdILVs are involved in BCAA biosynthesis, microscletotial and conidial formation and virulence in Verticillium dahliae. Fungal Genetics and Biology, 159, 103667.

Tardif F J, Rajcan I, Costea M. 2006. A mutation in the herbicide target site acetohydroxyacid synthase produces morphological and structural alterations and reduces fitness in Amaranthus powellii. New Phytologist, 169, 251–264.

Tehranchian P, Riar D S, Norsworthy J K, Nandula V, Mcelroy S, Chen S, Scott R C. 2015. ALS-resistant smallflower umbrella sedge (Cyperus difformis) in arkansas rice: Physiological and molecular basis of resistance. Weed Science, 63, 561–568.

Tranel P J, Wright T R. 2002. Resistance of weeds to ALS-inhibiting herbicides: What have we learned? Weed Science, 50, 700–712.

Vila-Aiub M M, Neve P, Powles S B. 2009. Fitness costs associated with evolved herbicide resistance alleles in plants. New Phytologist, 184, 751–767.

Vila-Aiub M M, Yu Q, Han H, Powles S B. 2015. Effect of herbicide resistance endowing Ile-1781-Leu and Asp-2078-Gly ACCase gene mutations on ACCase kinetics and growth traits in Lolium rigidum. Journal of Experimental Botany, 66, 4711–4718.

Whaley C M, Wilson H P, Westwood J H. 2007. A new mutation in plant ALS confers resistance to five classes of ALS-inhibiting herbicides. Weed Science, 55, 83–90.

Whitcomb C E. 1999. An introduction to ALS-inhibiting herbicides. Toxicology and Industrial Health, 15, 231–239.

Yang Q, Deng W, Wang S P, Liu H J, Li X F, Zheng M Q. 2018. Effects of resistance mutations of Pro197, Asp376 and Trp574 on the characteristics of acetohydroxyacid synthase (AHAS) isozymes. Pest Management Science, 74, 1870–1879.

Yong I K, Kim K H, Kwon O D, Lee D J, Burgos N R, Jung S, Guh J O. 2010. Cross-resistance pattern and alternative herbicides for Cyperus difformis resistant to sulfonylurea herbicides in Korea. Pest Management Science, 60, 85–94.

Yu Q, Han H, Li M, Purba E, Powles S B. 2012. Resistance evaluation for herbicide resistance-endowing acetolactate synthase (ALS) gene mutations using Raphanus raphanistrum populations homozygous for specific ALS mutations. Weed Research, 52, 178–186.

Yu Q, Han H, Vila-Aiub M M, Powles S B. 2010. AHAS herbicide resistance endowing mutations: Effect on AHAS functionality and plant growth. Journal of Experimental Botany, 61, 3925–3934.

Yu Q, Han H P, Powles S B. 2008. Mutations of the ALS gene endowing resistance to ALS-inhibiting herbicides in Lolium rigidum populations. Pest Management Science, 64, 1229–1236.

Yu Q, Powles S B. 2014. Resistance to AHAS inhibitor herbicides: Current understanding. Pest Management Science, 70, 1340–1350.

Yu Q, Zhang X Q, Hashem A, Walsh M J, Powles S B. 2003. ALS gene proline (197) mutations confer ALS herbicide resistance in eight separated wild radish (Raphanus raphanistrum) populations. Weed Science, 51, 831–838.

Zhang Y, Xu Y, Wang S, Li X, Zheng M. 2017. Resistance mutations of Pro197, Asp376 and Trp574 in the acetohydroxyacid synthase (AHAS) affect pigments, growths, and competitiveness of Descurainia sophia L. Scientific Reports, 7, 16380.

Zhao N, Guo W, Wei L, Lingling L, Liu W, Wang J. 2017. Mutations in the acetyl-CoA carboxylase and acetolactate synthase confer resistance to fenoxaprop-P-ethyl and mesosulfuron-methyl in Alopecurus aequalis populations. Journal of Plant Protection, 44, 833–840.

Zhao N, Yan Y Y, Du L, Zhang X L, Liu W T, Wang J X. 2020. Unravelling the effect of two herbicide resistance mutations on acetolactate synthase kinetics and growth traits. Journal of Experimental Botany, 71, 3535–3542.

Zheng D, Kruger G R, Singh S, Davis V M, Tranel P J, Weller S C, Johnson W G. 2011. Cross-resistance of horseweed (Conyza canadensis) populations with three different ALS mutations. Pest Management Science, 67, 1486–1492.

No related articles found!
No Suggested Reading articles found!