Please wait a minute...
Journal of Integrative Agriculture  2023, Vol. 22 Issue (2): 642-649    DOI: 10.1016/j.jia.2022.08.068
Short Communication Advanced Online Publication | Current Issue | Archive | Adv Search |

Characterization of subunits encoded by SnRK1 and dissection of combinations among these subunits in sorghum (Sorghum bicolor L.)

XIAO Qian-lin*, HUANG Tian-hui*, ZHOU Chang, CHEN Wei-xi, CHA Jian-kui, WEI Xi-mei, XING Fang-yu, QIAN Meng-ya, MA Qian-nan, DUAN Hong, LIU Zhi-zhai

College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, P.R.China

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

蔗糖非发酵相关蛋白激酶1SnRK1)是一类重要的丝氨酸/苏氨酸蛋白激酶,广泛参与了植物的生长发育,并通过代谢及生理过程参与植物对生物与非生物胁迫的应答,同时在植物的碳水化合物分布及糖信号转导中也发挥着重要作用。本研究通过序列比对,从高粱基因组中鉴定到8SnRK1亚基编码基因,其中3个编码α亚基(SnRK1α1 - SnRK1α3)、3个编码β亚基(SnRK1β1 - SnRK1β3),以及编码γ (SnRK1γ)和βγ(SnRK1βγ)亚基的编码基因各1个。这8个高粱SnRK1基因分布于第1-3、第7、第95条染色体,与来自玉米、水稻的SnRK1基因存在共线性,并且这些基因的编码产物在相同亚基上表现出了高度的同源性。基于qRT-PCR的分析结果显示,在8个高粱SnRK1基因中,除SnRK1α3在籽粒中低表达以及SnRK1β2在穗中高表达外,其他基因在其他组织中均表现出相似的表达特性。基于高粱叶片原生质体的亚细胞定位结果表明,α1、α2、α3、γ4个亚基主要定位于细胞器,而在细胞膜和部分细胞器上则可以检测到β1、β2、β3、及βγ4个亚基的定位信号。此外,酵母双杂交分析发现,8个高粱SnRK1亚基存在α1-β2-βγ、α2-β3-γ、α3-β3-γ等3种不同的组合模式。这些研究结果,为后续高粱SnRK1亚基的功能解析等研究奠定了良好基础。



Abstract  

Sucrose nonfermenting-related protein kinase 1 (SnRK1) is one of the critical serine/threonine protein kinases.  It commonly mediates plant growth and development, cross-talks with metabolism processes and physiological responses to biotic or abiotic stresses.  It plays a key role in distributing carbohydrates and sugar signal transporting.  In the present study, eight SnRK1 coding genes were identified in sorghum (Sorghum bicolor L.) via sequences alignment, with three for α subunits (SnRK1α1 to SnRK1α3), three for β (SnRK1β1 to SnRK1β3), and one for both γ (SnRK1γ) and βγ (SnRK1βγ).  These eight corresponding genes located on five chromosomes (Chr) of Chr1–3, Chr7, and Chr9 and presented collinearities to SnRK1s from maize and rice, exhibiting highly conserved domains within the same subunits from the three kinds of cereals.  Expression results via qRT-PCR showed that different coding genes of SnRK1s in sorghum possessed similar expression patterns except for SnRK1α3 with a low expression level in grains and SnRK1β2 with a relatively high expression level in inflorescences.  Results of subcellular localization in sorghum leaf protoplast showed that SnRK1α1/α2/α3/γ mainly located on organelles, while the rest four of SnRK1β1/β2/β3/βγ located on both membranes and some organelles.  Besides, three combinations were discovered among eight SnRK1 subunits in sorghum through yeast two hybrid, including α1-β2-βγ, α2-β3-γ, and α3-β3-γ.  These results provide informative references for the following functional dissection of SnRK1 subunits in sorghum.

Keywords:  sorghum (Sorghum bicolor L.)       SnRK1       expression analysis       combination pattern  
Received: 12 October 2021   Accepted: 27 January 2022
Fund: 

This work was supported by the National Natural Science Foundation of China (32001607) and the Fundamental Research Funds for the Central Universities of Southwest University, China (SWU118087).  

About author:  XIAO Qian-lin, Tel: +86-23-68251410, E-mail: xiaoql1853@swu.edu.cn; HUANG Tian-hui, E-mail: 1772599750@qq.com; Correspondence LIU Zhi-zhai, Tel: +86-23-68251410, E-mail: liu003@swu.edu.cn * These authors contributed equally to this study.

Cite this article: 

XIAO Qian-lin, HUANG Tian-hui, ZHOU Chang, CHEN Wei-xi, CHA Jian-kui, WEI Xi-mei, XING Fang-yu, QIAN Meng-ya, MA Qian-nan, DUAN Hong, LIU Zhi-zhai. 2023.

Characterization of subunits encoded by SnRK1 and dissection of combinations among these subunits in sorghum (Sorghum bicolor L.) . Journal of Integrative Agriculture, 22(2): 642-649.

Alderson A, Sabelli P A, Dickinson J R, Cole D, Richardson M, Kreis M, Shewry P R, Halford N G. 1991. Complementation of snf1, a mutation affecting global regulation of carbon metabolism in yeast, by a plant protein kinase cDNA. Proceedings of the National Academy of Sciences of the United States of America, 88, 8602–8605.
Avila-Castañeda A, Gutiérrez-Granados N, Ruiz-Gayosso A, Sosa-Peinado A, Martinez-Barajas E, Coello P. 2014. Structural and functional basis for starch binding in the SnRK1 subunits AKINβ2 and AKINβγ. Frontiers in Plant Science, 5, 199.
Baena-González E, Lunn J E. 2020. SnRK1 and trehalose 6-phosphate - two ancient pathways convege to regulate plant metablism and growth. Current Opinion in Plant Biology, 55, 52–59.
Baena-González E, Rolland F, Thevelein J M, Sheen J. 2007. A central integrator of transcription networks in plant stress and energy signalling. Nature, 448, 938–942.
Baena-González E, Sheen J. 2008. Convergent energy and stress signaling. Trends in Plant Science, 13, 474–482.
Bouly J P, Gissot L, Lessard P, Kreis M, Thomas M. 1999. Arabidopsis thaliana proteins related to the yeast SIP and SNF4 interact with AKINalpha1, an SNF1-like protein kinase. Plant Journal, 18, 541–550.
Crozet P, Margalha L, Confraria A, Rodrigues A, Martinho C, Adamo M, Elias C A, Baena-Gonzalez E. 2014. Mechanisms of regulation of SNF1/AMPK/SnRK1 protein kinases. Frontiers in Plant Science, 5, 190.
Dalal M, Inupakutika M. 2014. Transcriptional regulation of ABA core signaling component gnes in forghum (Sorghum bicolor L. Moench). Molecular Breeding, 34, 1517–1525.
Emanuelle S, Doblin M S, Stapleton D I, Bacic A, Gooley P R. 2016. Molecular insights into the enigmatic metabolic regulator, SnRK1. Trends in Plant Science, 21, 341–353.
Emanuelle S, Hossain M I, Moller I E, Pedersen H L, van de Meene A M, Doblin M S, Koay A, Oakhill J S, Scott J W, Willats W G T, Kemp B E, Bacic A, Gooley P R, Stapleton D I. 2015. SnRK1 from Arabidopsis thaliana is an atypical AMPK. Plant Journal, 82, 183–192.
Filipe O, Vleesschauwer D D, Haeck A, Demeestere K, Hofte M. 2018. The energy sensor OsSnRK1a confers broad-spectrum disease resistance in rice. Scientific Reports, 8, 3864.
Fragoso S, Espindola L, Paez-Valencia J, Gamboa A, Camacho Y, Martinez-Barajas E, Coello P. 2009. SnRK1 isoforms AKIN10 and AKIN11 are differentially regulated in Arabidopsis plants under phosphate starvation. Plant Physiology, 149, 1906–1916.
Hulsmans S, Rodriguez M, Coninck B D, Rolland F. 2016. The SnRK1 energy sensor in plant biotic interactions. Trends in Plant Science, 21, 648–661.
Jain M, Li Q B, Chourey P S. 2010. Cloning and expression analyses of sucrose non-fermenting-1-related kinase 1 (SnRK1b) gene during development of sorghum and maize endosperm and its implicated role in sugar-to-starch metabolic transition. Physiologia Plantarum, 134, 161–173.
López-Paz C, Vilela B, Riera M, Pages M, Lumbreras V. 2009. Maize AKINβγ dimerizes through the KIS/CBM domain and assembles into SnRK1 complexes. FEBS Letters, 583, 1887–1894.
Li L B, Zhang Y R, Liu K C, Ni Z F, Fang Z J, Sun Q X, Gao J W. 2010. Identification and bioinformatics analysis of SnRK2 and CIPF family genes in sorghum. Agricultural Sciences in China, 9, 19–30.
Lionel G, Cécile P, Jean-Pierre B, Lemaitre T, Kreis M, Thomas M. 2004. AKINbeta3, a plant specific SnRK1 protein, is lacking domains present in yeast and mammals non-catalytic beta-subunits. Plant Molecular Biology, 56, 747–759.
Lu C A, Lin C C, Lee K W, Chen J L, Huang L F, Ho S L, Liu H J, Ssing Y I, Yu S M. 2007. The SnRK1A protein kinase plays a key role in sugar signaling during germination and seedling growth of rice. Plant Cell, 19, 2484–2499.
Margalha L, Confraria A, Baena-González E. 2019. SnRK1 and TOR: Modulating growth-defense trade-offs in plant stress responses. Jornal of Experimental Botany, 70, 2261–2274.
McKibbin R S, Muttucumaru N, Paul M J, Power S J, Burrell M M, Coates S, Purcell P C, Tiessen A, Geigenberger P, Halford N G. 2010. Production of high-starch, low-glucose potatoes through over-expression of the metabolic regulator SnRK1. Plant Biotechnology Journal, 4, 409–418.
Muralidhara P, Weiste C, Collani S, Krischke M, Kreisz P, Draken J, Feil R, Mair A, Teige M, Muller M J, Schmid M, Becker D, Lunn J E, Rolland F, Hanson J, Droge-Laser W. 2021. Perturbations in plant energy homeostasis prime lateral root initiation via SnRK1-bZIP63-ARF19 signaling. Procedings of National Academy of Sciences of the United States of America, 118, e2106961118.
Nietzsche M, Landgraf R, Tohge T, Bornke F. 2016. A protein–protein interaction network linking the energy-sensor kinase SnRK1 to multiple signaling pathways in Arabidopsis thaliana. Current Plant Biology, 5, 36–44.
Perochon A, Vary Z, Malla K B, Halford N G, Paul M J, Doohan F M. 2019. The wheat SnRK1α family and its contribution to Fusarium toxin tolerance. Plant Science, 288, 110217.
Ren Z, He S, Zhao N, Zhai H, Liu Q C. 2019. A sucrose non-fermenting-1-related protein kinase-1 gene, IbSnRK1, improves starch content, composition, granule size, degree of crystallinity and gelatinization in transgenic sweet potato. Plant Biotechnology Journal, 17, 21–32.
Ren Z T, Zhao H Y, He S Z, Zhai H, Zhao N, Liu Q C. 2018. Overexpression of IbSnRK1 enhances nitrogen uptake and carbon assimilation in transgenic sweetpotato. Journal of Integrative Agriculture, 17, 296–305.
Ruiz-Gayosso A, Rodríguez-Sotres R, Martínez-Barajas E, Coello P. 2018. A role for the carbohydrate-binding module (CBM) in regulatory SnRK1 subunits: The effect of maltose on SnRK1 activity. Plant Journal, 96, 163–175.
Sakschewski B, Von Bloh W, Huber V, Muller C, Bondeau A. 2014. Feeding 10 billin people under climate change: How large is the production gap of current agricultural systems? Ecological Modelling, 288, 103–111.
Schnable P S, Ware D, Fulton R S, Stein J C, Wei F, Pasternak S, Liang C, Zhang J, Fulton L, Graves T A, Minx P, Reily A D, Courtney L, Kruchowski S S, Tomlinson C, Strong C, Delehaunty K, Fronick C, Courtney B, Rock S M, et al. 2009. The B73 maize genome: Complexity, diversity, and dynamics. Science, 326, 1112–1115.
Smeekens S, Ma J, Hanson J, Rolland F. 2010. Sugar signals and molecular networks controlling plant growth. Current Opinion in Plant Biology, 13, 274–279.
Takano M, Kajiyakanegae H, Funatsuki H, Kikuchi S. 1998. Rice has two distinct classes of protein kinase genes related to SNF1 of Saccharomyces cerevisiae, which are differently regulated in early seed development. Molecular & General Genetics, 260, 388–394.
Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. 2011. MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology & Evolution, 28, 2731–2739.
Tao Y, Luo H, Xu J, Cruickshank A, Zhao X, Teng F, Hathorn A, Wu X, Liu Y, Shatte T, Jordan D, Jing H, Mace E. 2021. Extensive variation within the pan-genome of cultivated and wild sorghum. Nature Plants, 7, 766–773.
Wang J, Guan H, Dong R, Liu C, Liu Q, Liu T, Wang L, He C. 2019. Overexpression of maize sucrose non-fermenting-1-related protein kinase 1 genes, ZmSnRK1s, causes alteration in carbon metabolism and leaf senescence in Arabdopisis thaliana. Gene, 691, 34–44.
Wang Y, Tang H, Debarry J D, Tan X, Li J, Wang X, Lee T H, Jin H, Marler B, Guo H, Kissinger J C, Paterson A H. 2012. MCScanX: A toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucleic Acids Research, 40, e49.
Xiao Q, Wang Y, Li H, Zhang C, Wei B, Wang Y, Huang H, Li Y, Yu G, Liu H, Zhang J, Liu Y, Hu Y, Huang Y. 2021. Transcription factor ZmNAC126 plays an important role in transcriptional regulation of maize starch synthesis-related genes. Crop Journal, 9, 192–203.
Zhang Y H, Shewry P R, Jones H, Barcelo P, Lazzeri P A, Halford N G. 2001. Expression of antisense SnRK1 protein kinase sequence causes abnormalpollen development and male sterility in transgenic barley. Plant Journal, 28, 431–441.
[1] RONG Hao, YANG Wen-jing, XIE Tao, WANG Yue, WANG Xia-qin, JIANG Jin-jin, WANG You-ping. Transcriptional profiling between yellow- and black-seeded Brassica napus reveals molecular modulations on flavonoid and fatty acid content[J]. >Journal of Integrative Agriculture, 2022, 21(8): 2211-2226.
[2] REN Zhi-tong, ZHAO Hong-yuan, HE Shao-zhen, ZHAI Hong, ZHAO Ning, LIU Qing-chang. Overexpression of IbSnRK1 enhances nitrogen uptake and carbon assimilation in transgenic sweetpotato[J]. >Journal of Integrative Agriculture, 2018, 17(2): 296-305.
[3] LI Rui, AN Jian-ping, YOU Chun-xiang, SHU Jing, WANG Xiao-fei, HAO Yu-jin . Identification and expression of the CEP gene family in apple (Malus×domestica)[J]. >Journal of Integrative Agriculture, 2018, 17(2): 348-358.
[4] ZHANG Lei, ZHENG Xing-wei, QIAO Lin-yi, QIAO Ling, ZHAO Jia-jia, WANG Jian-ming, ZHENG Jun. Analysis of three types of resistance gene analogs in PmU region from Triticum urartu[J]. >Journal of Integrative Agriculture, 2018, 17(12): 2601-2611.
[5] TANG Yu-jin, WANG Qian, XUE Jing-yi, LI Yan, LI Rui-min, Steve Van Nocker, WANG Yue-jin, ZHANG Chao-hong. Gene cloning and expression analyses of WBC genes in the developing grapevine seeds[J]. >Journal of Integrative Agriculture, 2018, 17(06): 1348-1359.
[6] YU Tong-ying, LU Ming-xing, CUI Ya-dong. Characterization of T-complex polypeptide 1 (TCP-1) from the Chilo suppressalis HSP60 family and its expression in response to temperature stress[J]. >Journal of Integrative Agriculture, 2018, 17(05): 1032-1039.
[7] DOU Ling-ling, GUO Ya-ning, Ondati Evans, PANG Chao-you, WEI Heng-ling, SONG Mei-zhen, FAN Shu-li, YU Shu-xun. Identification and expression analysis of group III WRKY transcription factors in cotton[J]. >Journal of Integrative Agriculture, 2016, 15(11): 2469-2480.
[8] DONG Jia, WEI Li-bin, HU Yan , GUO Wang-zhen. Molecular Cloning and Characterization of Three Novel Genes Related to Fatty Acid Degradation and Their Responses to Abiotic Stresses in Gossypium hirsutum L.[J]. >Journal of Integrative Agriculture, 2013, 12(4): 582-588.
No Suggested Reading articles found!