Please wait a minute...
Journal of Integrative Agriculture  2022, Vol. 21 Issue (7): 2019-2030    DOI: 10.1016/S2095-3119(21)63855-8
Plant Protection Advanced Online Publication | Current Issue | Archive | Adv Search |
Characterization of laccase gene StLAC6 involved in the pathogenicity and peroxisome function in Setosphaeria turcica

LIU Ning1 ,2*, ZHANG Qian-qian3*, JIA Hui1, ZHAO Bin1,2ZHU Zi-ping4 , CAO Zhi-yan1, 2, DONG Jin-gao1, 2

1 State Key Laboratory of North China Crop Improvement and Regulation / Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology, Baoding 071001, P.R.China

2 College of Plant Protection, Hebei Agricultural University, Baoding 071001, P.R.China

3 College of Life Sciences, Hebei Agriculture University, Baoding 071001, P.R.China

4 Langfang Academy of Agriculture and Forestry Science, Langfang 065000, P.R.China

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

前期研究表明,在玉米大斑病菌中存在9个漆酶样多铜氧化酶,其中漆酶基因StLAC2敲除导致黑色素含量降低,不能产生分生孢子,直接影响侵染能力。为进一步研究漆酶基因家族基因在生物学功能上的差异,本文利用同源重组技术创制StLAC6基因敲除突变体并对其对玉米大斑病菌生长发育、致病、杀菌剂抗性等方面的作用进行研究。结果表明通过同源重组技术成功创制了2株StLAC6基因敲除突变体,分析发现StLAC6基因缺失后对玉米大斑病菌的生长、菌丝形态和侵染能力没有显著影响,而且突变体细胞壁及细胞膜功能均正常。进一步对其超微结构进行分析发现,StLAC6基因敲除突变体菌丝中的过氧化物酶体形态异常,影响了菌丝内脂滴合成,同时敲除突变体中的酚类化合物和黑色素的合成增加。通过比较野生型和突变体的EC50值,发现StLAC6敲除导致病菌对嘧菌环胺、三环唑、吡唑醚菌酯等多种常见杀菌剂的敏感性增加,表明漆酶参与了玉米大斑病菌对杀菌剂的抗性。为了明确漆酶基因家族成员的关系,对StLAC6敲除突变体中其他漆酶基因的表达进行分析,发现StLAC1等多个玉米大斑病菌漆酶基因的表达水平发生了显着变化,说明漆酶基因家族成员间存在功能互补。本文为研究植物病原真菌中漆酶基因家族的功能和相互关系提供了新的见解




Abstract  

Laccases, as a kind of multicopper oxidase, play an important role in pigment synthesis and growth in fungi and are involved in their interactions with host plants.  In Setosphaeria turcica, 9 laccase-like multicopper oxidases have been identified, and StLAC2 is involved in the synthesis of the melanin that accumulates in the cell wall.  The function of another major laccase gene, StLAC6, was studied here.  The knockout of StLAC6 had no effect on the growth, morphology or invasion ability of S. turcica, but the morphology and function of peroxisomes of knockout mutants were abnormal.  The knockout of the StLAC6 gene resulted in increased contents of phenolic compounds and melanin and the sensitivity to fungicides increased compared with wild type strains.  In the mutants of StLAC6, there is a significant change of the expression levels of other laccase genes.  This study provides a new insight into laccase functions and the relationship of the laccase gene family in plant pathogenic fungi.   

Keywords:  Setosphaeria turcica        Laccase       StLAC6       peroxisome       fungicides  
Received: 21 June 2021   Accepted: 29 October 2021
Fund: This work was supported by the grants from the National Natural Science Foundation of China (31901827), the China Agriculture Research System (CARS-02), the Natural Science Foundation of Hebei Province, China (C2020204039), the Key Research and Development Projects of Hebei Province (20326510D), and the Hebei Province Projects of Overseas Foundation (C20190508).
About author:  LIU Ning, E-mail: lning121@126.com; Correspondence CAO Zhi-yan, Tel: +86-312-7528142, E-mail: caoyan208@126.com; DONG Jin-gao, Tel: +86-312-7528166, E-mail: dongjingao@126.com * These authors contributed equally to this study.

Cite this article: 

LIU Ning, ZHANG Qian-qian, JIA Hui, ZHAO Bin, ZHU Zi-ping , CAO Zhi-yan, DONG Jin-gao. 2022. Characterization of laccase gene StLAC6 involved in the pathogenicity and peroxisome function in Setosphaeria turcica. Journal of Integrative Agriculture, 21(7): 2019-2030.

Almeida F, Wolf J M, Casadevall A. 2015. Virulence-associated enzymes of Cryptococcus neoformans. Eukaryot Cell, 14, 1173–1185.
Ao J, Bandyopadhyay S, Free S J. 2019. Characterization of the Neurospora crassa DHN melanin biosynthetic pathway in developing ascospores and peridium cells. Fungal Biology, 123, 1–9.
Assadi G, Vesterlund L, Bonfiglio F, Mazzurana L, Cordeddu L, Schepis D, Mjösberg J, Ruhrmann S, Fabbri A, Vukojevic V, Percipalle P, Salomons F A, Laurencikiene J, Törkvist L, Halfvarson J, D’Amato M. 2016. Functional analyses of the crohn’s disease risk gene LACC1. PLoS ONE, 11, e0168276.
Binns D, Januszewski T, Chen Y, Hill J, Markin V S, Zhao Y, Gilpin C, Chapman K D, Anderson R G, Goodman J M. 2006. An intimate collaboration between peroxisomes and lipid bodies. The Journal of Cell Biology, 173, 719–731.
Cai X, Davis E J, Ballif J, Liang M, Wu Y. 2006. Mutant identification and characterization of the laccase gene family in Arabidopsis. Journal of Experimental Botany, 57, 2563–2569.
Chen X, Zhu C, Na Y, Ren D, Zhang C, He Y, Wang Y, Xiang S, Ren W, Jiang Y, Xu L, Zhu P. 2021. Compartmentalization of melanin biosynthetic enzymes contributes to self-defense against intermediate compound scytalone in Botrytis cinerea. mBio, 12, e00007–e000028.
Doddapaneni H, Subramanian V, Fu B, Cullen D. 2013. A comparative genomic analysis of the oxidative enzymes potentially involved in lignin degradation by Agaricus bisporus. Fungal Genetics & Biology, 55, 22–31. 
Fan X, Zhou Y, Xiao Y, Xu Z, Bian Y. 2014. Cloning, expression and phylogenetic analysis of a divergent laccase multigene family in Auricularia auricula-judae. Microbiological Research, 169, 453–462.
Feng B, Li P. 2012. Genome-wide identification of laccase gene family in three Phytophthora species. Genetica, 140, 477–484.
Giardina P, Faraco V, Pezzella C, Piscitelli A, Vanhulle S, Sannia G. 2010. Laccases: A never-ending story. Cellular & Molecular Life Sciences, 67, 369–385. 
Gong X D, Liu Y W, Bi H H, Yang X R, Gu S Q. 2021. StKU80, a component in the NHEJ repair pathway, is involved in mycelial morphogenesis, conidiation, appressorium development, and oxidative stress reactions in Exserohilum turcicum. Journal of Integrative Agriculture, 20, 147–158.
Gu S Q, Li P, Wu M, Hao Z M, Gong X D, Zhang X Y, Tian L, Zhang P, Wang Y, Cao Z Y, Fan Y S, Han J M, Dong J G. 2014. StSTE12 is required for the pathogenicity of Setosphaeria turcica by regulating appressorium development and penetration. Microbiological Research, 169, 817–823. 
Guetsky R, Kobiler I, Wang X, Perlman N, Prusky D. 2005. Metabolism of the flavonoid epicatechin by laccase of Colletotrichum gloeosporioides and its effect on pathogenicity on avocado fruits. Phytopathology, 95, 1341–1348.
Jain K K, Kumar A, Shankar A, Pandey D, Chaudhary B, Sharma K K. 2020. De novo transcriptome assembly and protein profiling of copper-induced lignocellulolytic fungus Ganoderma lucidum MDU-7 reveals genes involved in lignocellulose degradation and terpenoid biosynthetic pathways. Genomics, 112, 184–198.
Jin W, Li J, Feng H, You S, Zhang L, Norvienyeku J, Hu K, Sun S, Wang Z. 2018. Importance of a laccase gene (Lcc1) in the development of Ganoderma tsugae. International Journal of Molecular Sciences, 19, 471.
Lin S Y, Okuda S, Ikeda K, Okuno T, Takano Y. 2012. LAC2 encoding a secreted laccase is involved in appressorial melanization and conidial pigmentation in Colletotrichum orbiculare. Molecular Plant–Microbe Interactions, 25, 1552–1561.
Liu N, Cao Z, Cao K, Ma S X, Gong X D, Jia H, Dai D Q, Dong J G. 2018. Identification of laccase-like multicopper oxidases from the pathogenic fungus Setosphaeria turcica and their expression pattern during growth and infection. European Journal of Plant Pathology, 153, 1149–1163. 
Liu N, Qu Q, Li L N, Pang X, Liu J H, Zhang Y, Cao Z Y, Dong J G. 2019a. Identification of laccase-like multicopper oxidases in Fusarium graminearum and expression profiling during maize stalk infection. Acta Phytopathologica Sinica, 49, 763–772. (in Chinease)
Liu N, Shen S, Jia H, Yang B B, Dong J G. 2019b. Heterologous expression of Stlac2, a laccase isozyme of Setosphearia turcica, and the ability of decolorization of malachite green. International Journal of Biological Macromolecules, 138, 21–28.
Ma S X, Cao K K, Liu N, Meng C, Cao Z Y, Dai D Q, Jia H, Zang J P, Li Z Y, Hao Z M, Gu S Q, Dong J G. 2017. The StLAC2 gene is required for cell wall integrity, DHN-melanin synthesis and the pathogenicity of Setosphaeria turcica. Fungal Biology, 121, 589–601. 
Morsi R, Bilal M, Iqbal H M N, Ashraf S S. 2020. Laccases and peroxidases: The smart, greener and futuristic biocatalytic tools to mitigate recalcitrant emerging pollutants. Science of the Total Environment, 714, 136572. 
Nakade K, Watanabe H, Sakamoto Y, Sato T. 2011. Gene silencing of the Lentinula edodes lcc1 gene by expression of a homologous inverted repeat sequence. Microbiological Research, 166, 484–493.
Paray B A, Rather I A, Al-Sadoon M K, Fanar Hamad A S. 2018. Pharmaceutical significance of Leuconostoc mesenteroides KS-TN11 isolated from Nile Tilapia, Oreochromis niloticus. Saudi Pharmaceutical Journal, 26, 509–514.
Piekarska K, Hardy G, Mol E, van den Burg J, Strijbis K, van Roermund C, van den Berg M, Distel B. 2008. The activity of the glyoxylate cycle in peroxisomes of Candida albicans depends on a functional β-oxidation pathway: Evidence for reduced metabolite transport across the peroxisomal membrane. Microbiology, 154, 3061–3072.
Piscitelli A, Vecchio C D, Faraco V, Giardina P, Macellaro G, Miele A, Pezzella C, Sannia G. 2011. Fungal laccases: Versatile tools for lignocellulose transformation. Comptes Rendus Biologies, 334, 789–794.
Sakamoto Y, Nakade K, Sato S, Yoshimi A, Sasaki K, Konno N, Abe K. 2018. Cell wall structure of secreted laccase-silenced strain in Lentinula edodes. Fungal Biology, 122, 1192–1200.
Sapmak A, Kaewmalakul J, Nosanchuk J D, Vanittanakom N, Andrianopoulos A, Pruksaphon K, Youngchim S. 2016. Talaromyces marneffei Laccase modifies THP-1 macrophage responses. Virulence, 7, 702–717.
Singh J P, Singh A P, Bhatti R. 2014. Explicit role of peroxisome proliferator-activated receptor gamma in gallic acid-mediated protection against ischemia-reperfusion-induced acute kidney injury in rats. Journal of Surgical Research, 187, 631–639.
Sugareva V, Hartl A, Brock M, Hübner K, Rohde M, Heinekamp T. 2006. Characterisation of the laccase-encoding gene abr2 of the dihydroxynaphthalene-like melanin gene cluster of Aspergillus fumigatus. Archives of Microbiology, 186, 345–355.
Surendran A, Siddiqui Y, Saud H M, Ali N S, Manickam S. 2018. Inhibition and kinetic studies of lignin degrading enzymes of Ganoderma boninense by naturally occurring phenolic compounds. Journal of Applied Microbiology, 125, 876–887. 
Van K, Stassen J H, Mosbach A, Van D, Faino L, Farmer A D, Papasotiriou D G, Zhou S, Seidl M F, Cottam E, Edel D, Hahn M, Schwartz D C, Dietrich R A, Widdison S, Scalliet G. 2017. A gapless genome sequence of the fungus Botrytis cinerea. Molecular Plant Pathology, 18, 75–89. 
Vandenbosch D, De Canck E, Dhondt I, Rigole P, Nelis H J, Coenye T. 2013. Genomewide screening for genes involved in biofilm formation and miconazole susceptibility in Saccharomyces cerevisiae. FEMS Yeast Research, 13, 720–730.
Wahleithner J A, Xu F, Brown K M, Brown S H, Golightly E J, Halkier T, Kauppinen S, Pederson A, Schneider P. 1996. The identification and characterization of four laccases from the plant pathogenic fungus Rhizoctonia solani. Current Genetics, 29, 395–403. 
Wang W, Liu X, Han T, Li K, Qu Y, Gao Z. 2020. Differential potential of Phytophthora capsici resistance mechanisms to the fungicide metalaxyl in peppers. Microorganisms, 8, 278.
Wu Q, Zhao B, Fan Z, Guo X, Yang D, Zhang N, Yu B, Zhou S, Zhao J, Chen F. 2019. Discovery of novel piperidinylthiazole derivatives as broad-spectrum fungicidal candidates. Journal of Agricultural and Food Chemistry, 67, 1360–1370.
Yan L, Xu R, Bian Y, Li H, Zhou Y. 2019. Expression profile of laccase gene family in white-rot basidiomycete Lentinula edodes under different environmental stresses. Genes (Basel), 10, 1045. 
Zhang J, Chen H, Chen M, Ren A, Huang J, Wang H, Zhao M, Feng Z. 2015. Cloning and functional analysis of a laccase gene during fruiting body formation in Hypsizygus marmoreus. Microbiological Research, 179, 54–63.

[1] MENG Ya-nan, ZHANG Xin-jie, ZENG Fan-li, ZHAI Wei-bo, LI Pan, HU Jing-jing, XIAO Sheng-lin, HAO Zhi-min, CAO Zhi-yan, CHEN Chuan, DONG Jin-gao.

Transcriptional regulation of secondary metabolism and autophagy genes in response to DNA replication stress in Setosphaeria turcica [J]. >Journal of Integrative Agriculture, 2023, 22(4): 1068-1081.

[2] KANG Jin-bo, ZHANG Jie, LIU Yin-kai, SONG Ji-chang, OU Jian-lin, TAO Xian, ZHOU Ming-guo, DUAN Ya-bing. Mitochondrial dynamics caused by QoIs and SDHIs fungicides depended on FgDnm1 in Fusarium graminearum[J]. >Journal of Integrative Agriculture, 2023, 22(2): 481-494.
[3] PAN Shuai-qun, QIAO Jing-fen, WANG Rui, YU Hui-lin, WANG Cheng, Kerry TAYLOR, PAN Hong-yu. Intelligent diagnosis of northern corn leaf blight with deep learning model[J]. >Journal of Integrative Agriculture, 2022, 21(4): 1094-1105.
[4] Lise Nistrup J?rgensen, Mogens St?vring Hovm?ller, Jens Gr?nb?k Hansen, Poul Lassen, Bill Clark, Rosemary Bayles, Bernd Rodemann, Kerstin Flath, Margot Jahn, Tomas Goral, Jerzy Czembor J, Philip Cheyr. IPM Strategies and Their Dilemmas Including an Introduction to www. eurowheat.org[J]. >Journal of Integrative Agriculture, 2014, 13(2): 265-281.
No Suggested Reading articles found!