Please wait a minute...
Journal of Integrative Agriculture  2022, Vol. 21 Issue (5): 1243-1252    DOI: 10.1016/S2095-3119(20)63480-3
Special Issue: 麦类遗传育种合辑Triticeae Crops Genetics · Breeding · Germplasm Resources
Crop Science Advanced Online Publication | Current Issue | Archive | Adv Search |
TaIAA15 genes regulate plant architecture in wheat
LI Fu1*, YAN Dong2*, GAO Li-feng2, LIU Pan2, ZHAO Guang-yao2, JIA Ji-zeng2, REN Zheng-long1
1 Key Laboratory for Plant Genetics and Breeding, Sichuan Agricultural University, Ya’an 625014, P.R.China
2 National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, P.R.China
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

小麦(Triticum aestivum L.)是世界上最重要的粮食作物之一。生长素在调节植物生长发育中起关键作用。迄今为止,在小麦中几乎没有生长素相关基因被遗传证明参与小麦株型的调控。在这项研究中,我们克隆了小麦中生长素相关基因TaIAA15s,水稻中的异位表达TaIAA15-3B基因降低了水稻的株高,增加了叶夹角。小麦多样性群体相关性分析表明,TaIAA15-3B基因与小麦的株高(Ph),穗长(SL)和千粒重(TGW)相关;TaIAA15-3B的Hap-II单倍型是优异等位基因,在现代育种TaIAA15-3B的Hap-II单倍型被选择。这项研究揭示了生长素信号传导在小麦植物结构以及产量相关性状上的作用。




Abstract  Bread wheat (Triticum aestivum L.) is one of the most important staple crops worldwide.  The phytohormone auxin plays critical roles in the regulation of plant growth and development.  However, only a few auxin-related genes have been genetically demonstrated to be involved in the control of plant architecture in wheat thus far.  In this study, we characterized an auxin-related gene in wheat, TaIAA15, and found that its ectopic expression in rice decreased the plant height and increased the leaf angle.  Correlation analysis indicated that TaIAA15-3B was associated with plant height (Ph), spike length (SL) and 1 000-grain weight (TGW) in wheat, and Hap-II of TaIAA15-3B was the most favored allele and selected by modern breeding in China.  This study sheds light on the role of auxin signaling on wheat plant architecture as well as yield related traits.
Keywords:  wheat       auxin       plant architecture       TaIAA15       haplotypes  
Received: 14 August 2020   Accepted: 22 October 2020
Fund: This study was supported by the National Basic Research Program of China (2016YFD0100102 and 2016YFD0100302).
About author:  Correspondence REN Zheng-long, E-mail: renzllab@sicau.edu.cn; JIA Ji-zeng, E-mail: jiajizeng@caas.cn * These authors contributed equally to this study.

Cite this article: 

LI Fu, YAN Dong, GAO Li-feng, LIU Pan, ZHAO Guang-yao, JIA Ji-zeng, REN Zheng-long. 2022. TaIAA15 genes regulate plant architecture in wheat. Journal of Integrative Agriculture, 21(5): 1243-1252.

Bailey T L, Mikael B, Buske F A, Martin F, Grant C E, Luca C, Ren J Y, Li W W, William S. 2009. Noble, MEME SUITE: Tools for motif discovery and searching. Nucleic Acids Research, 37, 202–208.
Chen Y, Fan X, Song W, Zhang Y, Xu G. 2012. Over-expression of OsPIN2 leads to increased tiller numbers, angle and shorter plant height through suppression of OsLAZY1. Plant Biotechnology Journal, 10, 139–149.
Dharmasiri N, Dharmasiri S, Estelle M. 2005. The F-box protein TIR1 is an auxin receptor. Nature, 435, 441–445.
Du H, Wu N, Fu J, Wang S P, Li X H, Xiao J H, Xiong L Z. 2012. A GH3 family member, OsGH3-2, modulates auxin and abscisic acid levels and differentially affects drought and cold tolerance in rice. Journal of Experimental Botany, 63, 6467–6480.
Flister L, Galushko V. 2016. The impact of wheat market liberalization on the seed industry’s innovative capacity: An assessment of Brazil’s experience. Agricultural and Food Economics, 4, 11.
Guo T, Chen K, Dong N Q, Ye W W, Shan J X, Lin H X. 2020. Tillering and small grain 1 dominates the tryptophan aminotransferase family required for local auxin biosynthesis in rice. Journal of Integrative Plant Biology, 62, 581–600. 
IWGSC (International Wheat Genome Sequencing Consortium), IWGSC RefSeq Principal Investigators, Appels R, Eversole K, Feuillet C, Keller B, Rogers J, Stein N, IWGSC whole-genome assembly principal investigators, Pozniak C J, Stein N, Choulet F, Distelfeld A, Eversole K, Poland J, Rogers J, Ronen G, Sharpe A G, Pozniak C, Ronen G, et al. 2018. Shifting the limits in wheat research and breeding using a fully annotated reference genome. Science, 361, eaar7191.
Jiang M, Hu H, Kai J, Traw M B, Yang S, Zhang X. 2019. Different knockout genotypes of OsIAA23 in rice using CRISPR/Cas9 generating different phenotypes. Plant Molecular Biology, 100, 467–479.
Lee J, Park J J, Kim S L, Yim J, An G. 2007. Mutations in the rice liguleless gene result in a complete loss of the auricle, ligule, and laminar joint. Plant Molecular Biology, 65, 487–499.
Ling H Q, Ma B, Shi X, Liu H, Dong L, Sun H, Cao Y, Gao Q, Zheng S, Li Y, Yu Y, Du H, Qi M, Li Y, Lu H, Yu H, Cui Y, Wang N, Chen C, Wu H, et al. 2018. Genome sequence of the progenitor of wheat A subgenome Triticum urartu. Nature, 557, 424–428.
Liu K Y, Cao J, Yu K H, Liu X Y, Gao Y J, Chen Q, Zhang W J, Peng H R, Du J K, Xin M M, Hu Z R, Guo W L, Rossi V, Ni Z F, Sun Q X, Yao Y Y. 2019. Wheat TaSPL8 modulates leaf angle through auxin and brassinosteroid signaling. Plant Physiology, 181, 179–194.
Liu X, Yang C Y, Miao R, Zhou C L, Cao P H, Lan J, Zhu X J, Mou C L, Huang Y S, Liu S J, Tian Y L, Nguyen T L, Jiang L, Wan J M. 2018. DS1/OsEMF1 interacts with OsARF11 to control rice architecture by regulation of brassinosteroid signaling. Rice, 11, 46.
Luo J, Zhou J J, Zhang J Z. 2018. Aux/IAA gene family in plants: Molecular structure, regulation, and function. International Journal of Molecular Sciences, 19, 259. 
Luo M C, Gu Y Q, Puiu D, Wang H, Twardziok S O, Deal K R, Huo N, Zhu T, Wang L, Wang Y, McGuire P E, Liu S, Long H, Ramasamy R K, Rodriguez J C, Van S L, Yuan L, Wang Z, Xia Z, Xiao L, et al. 2017. Genome sequence of the progenitor of the wheat D genome Aegilops tauschii. Nature, 551, 498–502.
Luo X Y, Zheng J S, Huang R Y, Huang Y M, Wang H C, Jiang L R, Fang X J. 2016. Phytohormones signaling and crosstalk regulating leaf angle in rice. Plant Cell Reports, 35, 2423–2433.
Moreno M A, Harper L C, Krueger R W, Dellaporta S L, Freeling M. 1997. liguleless1 encodes a nuclear-localized protein required for induction of ligules and auricles during maize leaf organogenesis. Genes & Development, 11, 616–628.
Ramírez-González R H, Cory A T, Florio T, Concia L, Juery C, Schoonbeek H, Steuernagel B, Xiang D, Ridout C J, Chalhoub B, Mayer K F X, Benhamed M, Latrasse D, Bendahmane A, IWGSC (International Wheat Genome Sequencing Consortium), Wulff B B H, Appels R, Tiwari V, Datla R, Choulet F, et al. 2018. The transcriptional landscape of polyploid wheat. Science, 361, eaar6089.
Salehin M, Bagchi R, Estelle M. 2015. SCFTIR1/AFB-based auxin perception: Mechanism and role in plant growth and development. The Plant Cell, 27, 9–19.
Singh K, Singh J, Jindal S, Sidhu G, Dhaliwal A, Gill K. 2019. Structural and functional evolution of an auxin efflux carrier PIN1 and its functional characterization in common wheat. Functional & Integrative Genomics, 19, 29–41.
Song Y, Xu Z F. 2013. Ectopic overexpression of an AUXIN/INDOLE-3-ACETIC ACID (Aux/IAA) gene OsIAA4 in rice induces morphological changes and reduces responsiveness to auxin. International Journal of Molecular Sciences, 14, 13645–13656.
Wang R, Estelle M. 2014. Diversity and specificity: Auxin perception and signaling through the TIR1/AFB pathway. Current Opinion in Plant Biology, 21, 51–58.
Winkler M, Niemeyer M, Hellmuth A, Janitza P, Christ G, Samodelov S L, Wilde V, Majovsky P, Trujillo M, Zurbriggen M D, Hoehenwarter W, Quint M, Villalobos L I A C. 2017. Variation in auxin sensing guides AUX/IAA transcriptional repressor ubiquitylation and destruction. Nature Communications, 8, 15706.
Wu J, Zhang Z, Zhang Q, Liu Y, Zhu B, Cao J, Li Z, Han L, Jia J, Zhao G, Sun X. 2015. Generation of wheat transcription factor FOX rice lines and systematic screening for salt and osmotic stress tolerance. PLoS ONE, 10, e0132314.
Zhang S, Wang S, Xu Y, Yu C, Shen C, Qian Q, Geisler M, Jiang D A, Qi Y. 2015. The auxin response factor, OsARF19, controls rice leaf angles through positively regulating OsGH3-5 and OsBRI1. Plant Cell Environment, 38, 638–654.
Zhao G, Zou C, Li K, Wang K, Li T, Gao L, Zhang X, Wang H, Yang Z, Liu X, Jiang W, Mao L, Kong X, Jiao Y, Jia J. 2017. The Aegilops tauschii genome reveals multiple impacts of transposons. Nature Plants, 3, 946–955.
Zhao S Q, Xiang J J, Xue H W. 2013. Studies on the rice LEAF INCLINATION1 (LC1), an IAA-amido synthetase, reveal the effects of auxin in leaf inclination control. Molecular Plant, 6, 174–187.

[1] CHU Jin-peng, GUO Xin-hu, ZHENG Fei-na, ZHANG Xiu, DAI Xing-long, HE Ming-rong. Effect of delayed sowing on grain number, grain weight, and protein concentration of wheat grains at specific positions within spikes[J]. >Journal of Integrative Agriculture, 2023, 22(8): 2359-2369.
[2] FAN Ting-lu, LI Shang-zhong, ZHAO Gang, WANG Shu-ying, ZHANG Jian-jun, WANG Lei, DANG Yi, CHENG Wan-li. Response of dryland crops to climate change and drought-resistant and water-suitable planting technology: A case of spring maize[J]. >Journal of Integrative Agriculture, 2023, 22(7): 2067-2079.
[3] LIU Yan, WANG Wei-ping, ZHANG Lin, ZHU Long-fu, ZHANG Xian-long, HE Xin. The HD-Zip transcription factor GhHB12 represses plant height by regulating the auxin signaling in cotton[J]. >Journal of Integrative Agriculture, 2023, 22(7): 2015-2024.
[4] ZHANG Chong, WANG Dan-dan, ZHAO Yong-jian, XIAO Yu-lin, CHEN Huan-xuan, LIU He-pu, FENG Li-yuan, YU Chang-hao, JU Xiao-tang. Significant reduction of ammonia emissions while increasing crop yields using the 4R nutrient stewardship in an intensive cropping system[J]. >Journal of Integrative Agriculture, 2023, 22(6): 1883-1895.
[5] WU Xian-xin, ZANG Chao-qun, ZHANG Ya-zhao, XU Yi-wei, WANG Shu, LI Tian-ya, GAO Li.

Characterization of wheat monogenic lines with known Sr genes and wheat cultivars for resistance to three new races of Puccinia graminis f. sp. tritici in China [J]. >Journal of Integrative Agriculture, 2023, 22(6): 1740-1749.

[6] DU Xiang-bei, XI Min, WEI Zhi, CHEN Xiao-fei, WU Wen-ge, KONG Ling-cong. Raised bed planting promotes grain number per spike in wheat grown after rice by improving spike differentiation and enhancing photosynthetic capacity[J]. >Journal of Integrative Agriculture, 2023, 22(6): 1631-1644.
[7] HOU Qian-dong, HONG Yi, WEN Zhuang, SHANG Chun-qiong, LI Zheng-chun, CAI Xiao-wei, QIAO Guang, WEN Xiao-peng. Molecular characterization of the SAUR gene family in sweet cherry and functional analysis of PavSAUR55 in the process of abscission[J]. >Journal of Integrative Agriculture, 2023, 22(6): 1720-1739.
[8] ZHAO Xiao-dong, QIN Xiao-rui, LI Ting-liang, CAO Han-bing, XIE Ying-he. Effects of planting patterns plastic film mulching on soil temperature, moisture, functional bacteria and yield of winter wheat in the Loess Plateau of China[J]. >Journal of Integrative Agriculture, 2023, 22(5): 1560-1573.
[9] ZHANG Zhen-zhen, CHENG Shuang, FAN Peng, ZHOU Nian-bing, XING Zhi-peng, HU Ya-jie, XU Fang-fu, GUO Bao-wei, WEI Hai-yan, ZHANG Hong-cheng. Effects of sowing date and ecological points on yield and the temperature and radiation resources of semi-winter wheat[J]. >Journal of Integrative Agriculture, 2023, 22(5): 1366-1380.
[10] LI Jiao-jiao, ZHAO Li, LÜ Bo-ya, FU Yu, ZHANG Shu-fa, LIU Shu-hui, YANG Qun-hui, WU Jun, LI Jia-chuang, CHEN Xin-hong. Development and characterization of a novel common wheat–Mexico Rye T1DL·1RS translocation line with stripe rust and powdery mildew resistance[J]. >Journal of Integrative Agriculture, 2023, 22(5): 1291-1307.
[11] DONG Xiu-chun, QIAN Tai-feng, CHU Jin-peng, ZHANG Xiu, LIU Yun-jing, DAI Xing-long, HE Ming-rong. Late sowing enhances lodging resistance of wheat plants by improving the biosynthesis and accumulation of lignin and cellulose[J]. >Journal of Integrative Agriculture, 2023, 22(5): 1351-1365.
[12] JIANG Yun, WANG De-li, HAO Ming, ZHANG Jie, LIU Deng-cai.

Development and characterization of wheat–Aegilops kotschyi 1Uk(1A) substitution line with positive dough quality parameters [J]. >Journal of Integrative Agriculture, 2023, 22(4): 999-1008.

[13] Sunusi Amin ABUBAKAR, Abdoul Kader Mounkaila HAMANI, WANG Guang-shuai, LIU Hao, Faisal MEHMOOD, Abubakar Sadiq ABDULLAHI, GAO Yang, DUAN Ai-wang. Growth and nitrogen productivity of drip-irrigated winter wheat under different nitrogen fertigation strategies in the North China Plain[J]. >Journal of Integrative Agriculture, 2023, 22(3): 908-922.
[14] TU Ke-ling, YIN Yu-lin, YANG Li-ming, WANG Jian-hua, SUN Qun. Discrimination of individual seed viability by using the oxygen consumption technique and headspace-gas chromatography-ion mobility spectrometry[J]. >Journal of Integrative Agriculture, 2023, 22(3): 727-737.
[15] TIAN Jin-yu, LI Shao-ping, CHENG Shuang, LIU Qiu-yuan, ZHOU Lei, TAO Yu, XING Zhi-peng, HU Ya-jie, GUO Bao-wei, WEI Hai-yan, ZHANG Hong-cheng. Increasing the appropriate seedling density for higher yield in dry direct-seeded rice sown by a multifunctional seeder after wheat-straw return[J]. >Journal of Integrative Agriculture, 2023, 22(2): 400-416.
No Suggested Reading articles found!