Please wait a minute...
Journal of Integrative Agriculture  2015, Vol. 14 Issue (8): 1581-1587    DOI: 10.1016/S2095-3119(15)61077-2
Special Focus: Systems Research Helping toMeet the Needs and Managing the Trade-offs of a Changing W Advanced Online Publication | Current Issue | Archive | Adv Search |
Yield and quality of maize stover: Variation among cultivars and effects of N fertilization
 LIANG Ming-yuan, WANG Gui-yan, LIANG Wei-li, SHI Peng-fei, DANG Jing, SUI Peng, HU Chun-sheng
1、Faculty of Agronomy, Agricultural University of Hebei, Baoding 071001, P.R.China
2、School of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, P.R.China
3、Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences,Shijiazhuang 050021, P.R.China
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  Biomass yields and concentrations of crude protein (CP), ether extract (EE), neutral detergent fiber (NDF), acid detergent fiber (ADF), and crude fiber (CF) were analyzed for five cultivars of summer-sown maize (Zea mays L.) stover grown in field trials at three rates of N fertilization, and sampled immediately after grain harvest. The results revealed differences in yields and concentrations of nutrients according to stalk height and hence harvest portion among the cultivars. N application greatly increased biomass yield and CP, especially in upper stalks and to a lesser extent, EE. Concentrations of NDF and ADF decreased as N rate increased. The results show that stovers from all local popular maize cultivars are suitable as animal fodder and that moderate N application improves feed quality of stover.

Abstract  Biomass yields and concentrations of crude protein (CP), ether extract (EE), neutral detergent fiber (NDF), acid detergent fiber (ADF), and crude fiber (CF) were analyzed for five cultivars of summer-sown maize (Zea mays L.) stover grown in field trials at three rates of N fertilization, and sampled immediately after grain harvest. The results revealed differences in yields and concentrations of nutrients according to stalk height and hence harvest portion among the cultivars. N application greatly increased biomass yield and CP, especially in upper stalks and to a lesser extent, EE. Concentrations of NDF and ADF decreased as N rate increased. The results show that stovers from all local popular maize cultivars are suitable as animal fodder and that moderate N application improves feed quality of stover.
Keywords:  maize       stover       fodder       quality       yield       cultivar       nitrogen  
Received: 10 March 2015   Accepted:
Fund: 

The study presented in this paper was financially supported by the Key Technologies R&D Program of China during the 12th Five-Year Plan period (2012BAD14B07-01 and 2012BAD14B07-02).

Corresponding Authors:  LIANG Wei-li, Tel: +86-312-7528111,E-mail: lwl@hebau.edu.cn     E-mail:  lwl@hebau.edu.cn
About author:  LIANG Ming-yuan, E-mail: 196497765@qq.com;

Cite this article: 

LIANG Ming-yuan, WANG Gui-yan, LIANG Wei-li, SHI Peng-fei, DANG Jing, SUI Peng, HU Chun-sheng. 2015. Yield and quality of maize stover: Variation among cultivars and effects of N fertilization. Journal of Integrative Agriculture, 14(8): 1581-1587.

Adams R S. 2015. Corn stover as feed for cattle, penn statewebpage. [2015-02-16]. http://extension.psu.edu/prepare/emergencyready/drought/dairylivestock/cornstover

Bai Q L, Chen S J, Dai J R. 2007. Stalk quality traits and theircorrelations of maize inbred lines in china. Acta AgronomicaSinica, 33, 1777-1781 (in Chinese)

Burkart M R, Kolpin D W. 1993. Hydrologic and land-use factorsassociated with herbicides and nitrate in near-surfaceaquifers. Journal of Environmental Quality, 22, 646-656

Chaudhary D P, Jat S L, Kumar R, Kumar A, Kumar B. 2014.Fodder quality of maize: Its preservation. In: Chaudhary DP, Kumar S, Singh S, eds., Maize: Nutrition Dynamics andNovel Uses. Springer, India. pp. 153-160

Chen B F, Sun J M, Luan M B, Zhang D. 2008. Differenceanalysis of nitrogen content among different maize varietiesin growth period. Journal of Anhui Agricultural Sciences, 36,27-29 (in Chinese)

Chen Y X, Zhou D W, Zhang Y F. 2004. Temporal and spatialvariations of chemical constituents in maize. ChineseJournal of Applied Ecology, 15, 1589-1593 (in Chinese)

Connor D J, Loomis R S, Cassman K G. 2011. Crop Ecology:Productivity and Management in Agricultural Systems.Cambridge University Press, UK. pp. 24-27

Ding W M, Du X, Liu M X, Zhang J H, Cui Y H. 2010. Effectsof nitrogen management modes on yield formation andnitrogen utilization efficiency of summer maize. PlantNutrition and Fertilizer Science, 16, 1100-1107 (in Chinese)

Ertiro B T, Twumasi-Afriyie S, Blümmel M, Friesen D, NegeraD, Worku M, Abakemal D, Kitenge K. 2013. Geneticvariability of maize stover quality and the potential forgenetic improvement of fodder value. Field Crops Research,153, 79-85

Gao L J, Wang X F, Yang H Y, Li X M, Cui Z J. 2007.Construction and composition diversity of a lactic acidbacterial community SFC-2. Environmental Science, 28,1088-1094 (in Chinese)

Gao L W, Ma L, Zhang W F, Wang F H, Ma W Q, Zhang F X.2009. Estimation of nutrient resource quantity of crop strawand its utilization situation in China. Transactions of theChinese Society of Agricultural Engineering, 25, 173-179(in Chinese)

Han Y W. 1998. Feed and Feeding Science. China AgriculturePress, Beijing. (in Chinese)

Jia W F. 1996. Processing and utilization of crop straw foranimal feed. Journal of Animal Husbandry in China, 1,43-44 (in Chinese)

Lauer J G, Coors J G, Flannery P J. 2001. Forage yield andquality of corn cultivars developed in different eras. CropScience, 41, 1449-1455

Li W, Lin S S, Tan Y Z. 2000. Innovated techniques oncomprehensive utilization of crop straw. Transactions ofthe Chinese Society of Agricultural Engineering, 16, 14-17(in Chinese)

Liang W L, Caberry P, Wang G Y, Lü R H, Lü H Z, Xia A P.2011. Quantifying the yield gap in wheat-maize croppingsystems of the Hebei Plain, China. Field Crops Research,2011, 180-185

Liu X H, Wang A L, Gao W S. 1998. Promoting crop returninginto the soil for sustainable agricultural development. TheCrop Journal, 5, 1-5 (in Chinese)

Lv L H, Wang H J, Wang P. 2010. The relationship of source andsink for yield form in summer maize under different nitrogenfertilizer application rate. Acta Agriculturae Boreali-Sinica,25, 194-199 (in Chinese)

Ning T Y, Zheng Y H, Han H F, Jiang G M, Li Z J. 2012. Nitrogenuptake, biomass yield and quality of intercropped springandsummer-sown maize at different nitrogen levels in theNorth China Plain. Biomass and Bioenergy, 47, 91-98

Shi H T, Yang J X, Tian Y J, Huang W M, Bi Y L, Cao Z J, Li SL. 2012. Discussion of the development and utilization ofthe nutrition value of corn stover-rich and low-cost resourcesbut haven’t been fully exploited. China Dairy Cattle, 17,3-11 (in Chinese)

Song H X, Li S X. 2002. Dynamics of nutrient accumulationin maize plants under different water and nitrogen supplyconditions. Plant Nutrition and Fertilizer Science, 8, 399-403 (in Chinese)

Tai S J, Zhang R H, Shi J T, Xue J Q. 2009. Forage quality ofmaize (Zea mays) stover among different varieties. ActaPrataculturae Sinica, 18, 80-85 (in Chinese)

Tolera A, Berg T, Sundstùl F. 1999. The effect of variety onmaize grain and crop residue yield and nutritive value of thestove. Animal Feed Science and Technology, 79, 165-177

Wang M L. 2009. The nutrient dynamics and feeding value ofcorn as forage. MSc thesis, Northeast Normal University,China. (in Chinese)

Wang M L, Zhong R Z, Zhou D W. 2012. Research onappropriate harvesting time of corn and utilization mode of straw forage. Agricultural Research in the Arid Areas, 30,18-25 (in Chinese)

Wang S, Zhang J X, Wang J L, An S Z, Yang Y. 2007. Effectof different nitrogen on yield and quality of forage maize.Journal of Xinjiang Agricultural University, 30, 17-20 (inChinese)

Wang Y. 2005. The Regulation of Nutritional Value on DifferentBreeds of Corn, Corn-Stalk and Corn Silage. ChinaAgricultural University, Beijing. (in Chinese)

Wang Y H, Xu H T, Xu B, Zhang H S, Feng X X. 2010. Effect ofN fertilizer application on yield components and root systemgrowth of maize. Soil and Fertilizer Sciences in China, 3,55-57 (in Chinese)

Yan G L, Lu L, Meng Q X, Zhu H Y. 2006. Effect of applicationlevel of N fertilizer on nutritional values of corn stalks.Chinese Journal of Animal and Veterinary Sciences, 37,785-792 (in Chinese)

Yang F. 1991. Animalnutrition. China Agriculture Press, Beijing.(in Chinese)

Yang S. 1993. Feed Stuff Analysis and Identification andDetermination of Feedstuff Quality. China AgriculturalUniversity Press, Beijing. (in Chinese)

Zhang J X, Wang S. 2008. The cutting height effect foragequality and yield on different types of maize. Journal ofMaize Sciences, 16, 104-106 (in Chinese)

Zhao H X, Ning Y T, Nie Y T, Wang B W, Tian S Z, Li Z J. 2013.Comparison of yields and nutrient compositions betweendifferent harvesting heights of maize stover. ScientiaAgricultura Sinica, 46, 4354-4361 (in Chinese)

Zhao L H, Mo F, Yu R H, Zhang X M, Huang M J. 2007. Effectsof the harvesting time on nutrient sand degradabilities oforganic matter in corn stalk. China Cattle Science, 33,33-35 (in Chinese)
[1] WANG Xing-long, ZHU Yu-peng, YAN Ye, HOU Jia-min, WANG Hai-jiang, LUO Ning, WEI Dan, MENG Qing-feng, WANG Pu. Irrigation mitigates the heat impacts on photosynthesis during grain filling in maize [J]. >Journal of Integrative Agriculture, 2023, 22(8): 2370-2383.
[2] PEI Sheng-zhao, ZENG Hua-liang, DAI Yu-long, BAI Wen-qiang, FAN Jun-liang. Nitrogen nutrition diagnosis for cotton under mulched drip irrigation using unmanned aerial vehicle multispectral images[J]. >Journal of Integrative Agriculture, 2023, 22(8): 2536-2552.
[3] LI Dong-qing, ZHANG Ming-xue, LÜ Xin-xin, HOU Ling-ling. Does nature-based solution sustain grassland quality? Evidence from rotational grazing practice in China[J]. >Journal of Integrative Agriculture, 2023, 22(8): 2567-2576.
[4] SHI Shi-jie, ZHANG Gao-yu, CAO Cou-gui, JIANG Yang . Untargeted UHPLC–Q-Exactive-MS-based metabolomics reveals associations between pre- and post-cooked metabolites and the taste quality of geographical indication rice and regular rice[J]. >Journal of Integrative Agriculture, 2023, 22(7): 2271-2281.
[5] GAO Peng, ZHANG Tuo, LEI Xing-yu, CUI Xin-wei, LU Yao-xiong, FAN Peng-fei, LONG Shi-ping, HUANG Jing, GAO Ju-sheng, ZHANG Zhen-hua, ZHANG Hui-min. Improvement of soil fertility and rice yield after long-term application of cow manure combined with inorganic fertilizers[J]. >Journal of Integrative Agriculture, 2023, 22(7): 2221-2232.
[6] LIAO Zhen-qi, DAI Yu-long, WANG Han, Quirine M. KETTERINGS, LU Jun-sheng, ZHANG Fu-cang, LI Zhi-jun, FAN Jun-liang. A double-layer model for improving the estimation of wheat canopy nitrogen content from unmanned aerial vehicle multispectral imagery[J]. >Journal of Integrative Agriculture, 2023, 22(7): 2248-2270.
[7] LIU Dan, ZHAO De-hui, ZENG Jian-qi, Rabiu Sani SHAWAI, TONG Jing-yang, LI Ming, LI Fa-ji, ZHOU Shuo, HU Wen-li, XIA Xian-chun, TIAN Yu-bing, ZHU Qian, WANG Chun-ping, WANG De-sen, HE Zhong-hu, LIU Jin-dong, ZHANG Yong. Identification of genetic loci for grain yield‑related traits in the wheat population Zhongmai 578/Jimai 22[J]. >Journal of Integrative Agriculture, 2023, 22(7): 1985-1999.
[8] FAN Ting-lu, LI Shang-zhong, ZHAO Gang, WANG Shu-ying, ZHANG Jian-jun, WANG Lei, DANG Yi, CHENG Wan-li. Response of dryland crops to climate change and drought-resistant and water-suitable planting technology: A case of spring maize[J]. >Journal of Integrative Agriculture, 2023, 22(7): 2067-2079.
[9] WEI Huan-he, GE Jia-lin, ZHANG Xu-bin, ZHU Wang, DENG Fei, REN Wan-jun, CHEN Ying-long, MENG Tian-yao, DAI Qi-gen. Decreased panicle N application alleviates the negative effects of shading on rice grain yield and grain quality[J]. >Journal of Integrative Agriculture, 2023, 22(7): 2041-2053.
[10] CHEN Guang-yi, PENG Li-gong, LI Cong-mei, TU Yun-biao, LAN Yan, WU Chao-yue, DUAN Qiang, ZHANG Qiu-qiu, YANG Hong, LI Tian. Effects of the potassium application rate on lipid synthesis and eating quality of two rice cultivars[J]. >Journal of Integrative Agriculture, 2023, 22(7): 2025-2040.
[11] Tiago SILVA, Ying NIU, Tyler TOWLES, Sebe BROWN, Graham P. HEAD, Wade WALKER, Fangneng HUANG. Selection, effective dominance, and completeness of Cry1A.105/Cry2Ab2 dual-protein resistance in Helicoverpa zea (Boddie) (Lepidoptera: Noctuidae)[J]. >Journal of Integrative Agriculture, 2023, 22(7): 2151-2161.
[12] DING Yong-gang, ZHANG Xin-bo, MA Quan, LI Fu-jian, TAO Rong-rong, ZHU Min, Li Chun-yan, ZHU Xin-kai, GUO Wen-shan, DING Jin-feng. Tiller fertility is critical for improving grain yield, photosynthesis and nitrogen efficiency in wheat[J]. >Journal of Integrative Agriculture, 2023, 22(7): 2054-2066.
[13] ZHANG Chong, WANG Dan-dan, ZHAO Yong-jian, XIAO Yu-lin, CHEN Huan-xuan, LIU He-pu, FENG Li-yuan, YU Chang-hao, JU Xiao-tang. Significant reduction of ammonia emissions while increasing crop yields using the 4R nutrient stewardship in an intensive cropping system[J]. >Journal of Integrative Agriculture, 2023, 22(6): 1883-1895.
[14] WU Xian-xin, ZANG Chao-qun, ZHANG Ya-zhao, XU Yi-wei, WANG Shu, LI Tian-ya, GAO Li.

Characterization of wheat monogenic lines with known Sr genes and wheat cultivars for resistance to three new races of Puccinia graminis f. sp. tritici in China [J]. >Journal of Integrative Agriculture, 2023, 22(6): 1740-1749.

[15] ZHANG Miao-miao, DANG Peng-fei, LI Yü-ze, QIN Xiao-liang, Kadambot-H. M. SIDDIQUE. Better tillage selection before ridge–furrow film mulching can facilitate root proliferation, increase nitrogen accumulation, translocation, grain yield of maize in a semiarid area[J]. >Journal of Integrative Agriculture, 2023, 22(6): 1658-1670.
No Suggested Reading articles found!