Please wait a minute...
Journal of Integrative Agriculture  2016, Vol. 15 Issue (2): 475-491    DOI: 10.1016/S2095-3119(15)61073-5
Soil & Fertilization﹒Irrigation﹒Plant Nutrition﹒ Agro-Ecology & Environment Advanced Online Publication | Current Issue | Archive | Adv Search |
Estimating the crop leaf area index using hyperspectral remote sensing
 LIU Ke, ZHOU Qing-bo, WU Wen-bin, XIA Tian, TANG Hua-jun
1、Key Laboratory of Agri-Informatics, Ministry of Agriculture, Beijing 100081, P.R.China
2、Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, P.R.China
3、College of Urban & Environmental Sciences, Central China Normal University, Wuhan 430079, P.R.China
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  The leaf area index (LAI) is an important vegetation parameter, which is used widely in many applications. Remote sensing techniques are known to be effective but inexpensive methods for estimating the LAI of crop canopies. During the last two decades, hyperspectral remote sensing has been employed increasingly for crop LAI estimation, which requires unique technical procedures compared with conventional multispectral data, such as denoising and dimension reduction. Thus, we provide a comprehensive and intensive overview of crop LAI estimation based on hyperspectral remote sensing techniques. First, we compare hyperspectral data and multispectral data by highlighting their potential and limitations in LAI estimation. Second, we categorize the approaches used for crop LAI estimation based on hyperspectral data into three types: approaches based on statistical models, physical models (i.e., canopy reflectance models), and hybrid inversions. We summarize and evaluate the theoretical basis and different methods employed by these approaches (e.g., the characteristic parameters of LAI, regression methods for constructing statistical predictive models, commonly applied physical models, and inversion strategies for physical models). Thus, numerous models and inversion strategies are organized in a clear conceptual framework. Moreover, we highlight the technical difficulties that may hinder crop LAI estimation, such as the “curse of dimensionality” and the ill-posed problem. Finally, we discuss the prospects for future research based on the previous studies described in this review.

Abstract  The leaf area index (LAI) is an important vegetation parameter, which is used widely in many applications. Remote sensing techniques are known to be effective but inexpensive methods for estimating the LAI of crop canopies. During the last two decades, hyperspectral remote sensing has been employed increasingly for crop LAI estimation, which requires unique technical procedures compared with conventional multispectral data, such as denoising and dimension reduction. Thus, we provide a comprehensive and intensive overview of crop LAI estimation based on hyperspectral remote sensing techniques. First, we compare hyperspectral data and multispectral data by highlighting their potential and limitations in LAI estimation. Second, we categorize the approaches used for crop LAI estimation based on hyperspectral data into three types: approaches based on statistical models, physical models (i.e., canopy reflectance models), and hybrid inversions. We summarize and evaluate the theoretical basis and different methods employed by these approaches (e.g., the characteristic parameters of LAI, regression methods for constructing statistical predictive models, commonly applied physical models, and inversion strategies for physical models). Thus, numerous models and inversion strategies are organized in a clear conceptual framework. Moreover, we highlight the technical difficulties that may hinder crop LAI estimation, such as the “curse of dimensionality” and the ill-posed problem. Finally, we discuss the prospects for future research based on the previous studies described in this review.
Keywords:  hyperspectral       inversion       leaf area index       LAI       retrieval  
Received: 27 November 2014   Accepted:
Fund: 

This work is partially financed by the National High-Tech R&D Program of China (2012AA12A304) and the National Natural Science Foundation of China (41271112 and 41201089).

Corresponding Authors:  ZHOU Qing-bo, Tel: +86-10-82106237,E-mail: zhouqingbo@caas.cn; TANG Hua-jun, Tel: +86-10-82105070, E-mail: tanghuajun@caas.cn     E-mail:  zhouqingbo@caas.cn;tanghuajun@caas.cn
About author:  LIU Ke, Tel: +86-17780637083, E-mail: billc_st@163.com;

Cite this article: 

LIU Ke, ZHOU Qing-bo, WU Wen-bin, XIA Tian, TANG Hua-jun. 2016. Estimating the crop leaf area index using hyperspectral remote sensing. Journal of Integrative Agriculture, 15(2): 475-491.

Atzberger C. 2004. Object-based retrieval of biophysical canopyvariables using artificial neural nets and radiative transfermodels. Remote Sensing of Environment, 93, 53-67

Atzberger C, Richter K. 2012. Spatially constrained inversionof radiative transfer models for improved LAI mapping fromfuture Sentinel-2 imagery. Remote Sensing of Environment,120, 208-218

Bacour C, Baret F, Béal D, Weiss M, Pavageau K. 2006. Neuralnetwork estimation of LAI, fAPAR, fCover and LAI×Cab,from top of canopy MERIS reflectance data: Principles andvalidation. Remote Sensing of Environment, 105, 313-325

Baret F, Clevers J, Steven M. 1995. The robustness ofcanopy gap fraction estimates from red and near-infraredreflectances: A comparison of approaches. Remote Sensingof Environment, 54, 141-151

Ben-Dor E, Patkin K, Banin A, Karnieli A. 2002. Mapping ofseveral soil properties using DAIS-7915 hyperspectralscanner data - a case study over clayey soils in Israel.International Journal of Remote Sensing, 23, 1043-1062

Broge N H, Leblanc E. 2000. Comparing prediction powerand stability of broadband and hyperspectral vegetationindices for estimation of green leaf area index and canopychlorophyll density. Remote Sensing of Environment, 76,156-172

Chen J M, Black T. 1992. Defining leaf area index for non-flatleaves. Plant, Cell & Environment, 15, 421-429

Chen J M, Cihlar J. 1996. Retrieving leaf area index of borealconifer forests using Landsat TM images. Remote Sensingof Environment, 55, 153-162

Chen J M, Menges C H, Leblanc S G. 2005. Global mappingof foliage clumping index using multi-angular satellite data.Remote Sensing of Environment, 97, 447-457

Cohen W B, Maiersperger T K, Gower S T, Turner D P. 2003.An improved strategy for regression of biophysical variablesand Landsat ETM+ data. Remote Sensing of Environment,84, 561-571

Combal B, Baret F, Weiss M. 2002. Improving canopyvariables estimation from remote sensing data by exploitingancillary information. Case study on sugar beet canopies.Agronomie, 22, 205-215

Darvishzadeh R, Skidmore A, Schlerf M, Atzberger C. 2008.Inversion of a radiative transfer model for estimatingvegetation LAI and chlorophyll in a heterogeneousgrassland. Remote Sensing of Environment, 112, 2592-2604

Dorigo W, Richter R, Baret F, Bamler R, Wagner W. 2009.Enhanced automated canopy characterization fromhyperspectral data by a novel two step radiative transfermodel inversion approach. Remote Sensing, 1, 1139-1170

Duan S B, Li Z L, Wu H, Tang B H, Ma L, Zhao E, Li C. 2014.Inversion of the PROSAIL model to estimate leaf area indexof maize, potato, and sunflower fields from unmanned aerialvehicle hyperspectral data. International Journal of AppliedEarth Observation and Geoinformation, 26, 12-20

Durbha S S, King R L, Younan N H. 2007. Support vectormachines regression for retrieval of leaf area index frommultiangle imaging spectroradiometer. Remote Sensing ofEnvironment, 107, 348-361

Duveiller G, Weiss M, Baret F, Defourny P. 2011. Retrievingwheat Green Area Index during the growing seasonfrom optical time series measurements based on neuralnetwork radiative transfer inversion. Remote Sensing ofEnvironment, 115, 887-896

Eklundh L, Hall K, Eriksson H, Ardö J, Pilesjö P. 2003.Investigating the use of Landsat thematic mapper data forestimation of forest leaf area index in southern Sweden.Canadian Journal of Remote Sensing, 29, 349-362

Eklundh L, Harrie L, Kuusk A. 2001. Investigating relationshipsbetween Landsat ETM+ sensor data and leaf area index ina boreal conifer forest. Remote Sensing of Environment,78, 239-251

Eriksson H M, Eklundh L, Kuusk A, Nilson T. 2006. Impactof understory vegetation on forest canopy reflectanceand remotely sensed LAI estimates. Remote Sensing ofEnvironment, 103, 408-418

Fang H, Liang S. 2005. A hybrid inversion method for mappingleaf area index from MODIS data: Experiments andapplication to broadleaf and needleleaf canopies. RemoteSensing of Environment, 94, 405-424

Fang H, Liang S, Hoogenboom G. 2011. Integration of MODISLAI and vegetation index products with the CSM-CERESMaizemodel for corn yield estimation. International Journalof Remote Sensing, 32, 1039-1065

Fang H, Liang S, Kuusk A. 2003. Retrieving leaf area indexusing a genetic algorithm with a canopy radiative transfermodel. Remote Sensing of Environment, 85, 257-270

Fan W J, Gai Y Y, Xu X R, Yan B Y. 2012. The spatialscaling effect of the discrete-canopy effective leaf areaindex retrieved by remote sensing. Science China (EarthSciences), 43, 280-286 (in Chinese)

Fan W J, Xu X R, Liu X C, Yan B Y, Cui Y K. 2010a. Accurate LAIretrieval method based on PROBA/CHRIS data. Hydrologyand Earth System Sciences, 14, 1499-1507

Fan W J, Yan B, Xu X. 2010b. Crop area and leaf areaindex simultaneous retrieval based on spatial scalingtransformation. Science China Earth Sciences, 53,1709-1716

Feng R, Zhang Y, Yu W. 2013. Analysis of the relationshipbetween the spectral characteristics of maize canopy andleaf area index under drought stress. Acta Ecologica Sinica,33, 301-307

Fernandes R, Miller J R, Hu B, Rubinstein I G. 2002. A multiscaleapproach to mapping effective Leaf Area Index inBoreal Picea mariana stands using high spatial resolutionCASI imagery. International Journal of Remote Sensing,23, 3547-3568

Filella I, Penuelas J. 1994. The red edge position and shapeas indicators of plant chlorophyll content, biomass andhydric status. International Journal of Remote Sensing,15, 1459-1470

Franke J, Roberts D A, Halligan K, Menz G. 2009. Hierarchicalmultiple endmember spectral mixture analysis (MESMA)of hyperspectral imagery for urban environments. RemoteSensing of Environment, 113, 1712-1723

Gao B C. 1993. An operational method for estimating signal tonoise ratios from data acquired with imaging spectrometers.Remote Sensing of Environment, 43, 23-33

Gao B C, Montes M J, Davis C O, Goetz A F. 2009. Atmosphericcorrection algorithms for hyperspectral remote sensingdata of land and ocean. Remote Sensing of Environment,113, S17-S24.

Garrigues S, Allard D, Baret F, Weiss M. 2006. Influence oflandscape spatial heterogeneity on the non-linear estimationof leaf area index from moderate spatial resolution remotesensing data. Remote Sensing of Environment, 105,286-298

Gastellu-Etchegorry J P, Martin E, Gascon F. 2004. DART:A 3D model for simulating satellite images and studyingsurface radiation budget. International Journal of RemoteSensing, 25, 73-96

Gonsamo A, Pellikka P. 2012. The sensitivity based estimationof leaf area index from spectral vegetation indices. ISPRSJournal of Photogrammetry and Remote Sensing, 70,15-25

Guillen-Climent M L, Zarco-Tejada P J, Berni J A J, North PR J, Villalobos F J. 2012. Mapping radiation interceptionin row-structured orchards using 3D simulation and highresolutionairborne imagery acquired from a UAV. PrecisionAgriculture, 13, 473-500

Haboudane D. 2004. Hyperspectral vegetation indices andnovel algorithms for predicting green LAI of crop canopies:Modeling and validation in the context of precisionagriculture. Remote Sensing of Environment, 90, 337-352

Hernández-Clemente R, Navarro-Cerrillo R M, Zarco-TejadaP J. 2014. Deriving predictive relationships of carotenoidcontent at the canopy level in a conifer forest usinghyperspectral imagery and model simulation. IEEETransactions on Geoscience and Remote Sensing, 52, 5206-5217

Herrmann I, Pimstein A, Karnieli A, Cohen Y, Alchanatis V,Bonfil D J. 2011. LAI assessment of wheat and potatocrops by VENμS and Sentinel-2 bands. Remote Sensingof Environment, 115, 2141-2151

Houborg R, Anderson M, Daughtry C. 2009. Utility of animage-based canopy reflectance modeling tool for remoteestimation of LAI and leaf chlorophyll content at the fieldscale. Remote Sensing of Environment, 113, 259-274

Houborg R, Boegh E. 2008. Mapping leaf chlorophyll and leafarea index using inverse and forward canopy reflectancemodeling and SPOT reflectance data. Remote Sensing ofEnvironment, 112, 186-202

Houborg R, Soegaard H, Boegh E. 2007. Combining vegetationindex and model inversion methods for the extraction of keyvegetation biophysical parameters using Terra and AquaMODIS reflectance data. Remote Sensing of Environment,106, 39-58

Huang J, Zeng Y, Kuusk A, Wu B, Dong L, Mao K, Chen J.2011a. Inverting a forest canopy reflectance model toretrieve the overstorey and understorey leaf area index forforest stands. International Journal of Remote Sensing,32, 7591-7611

Huang J, Zeng Y, Wu W, Mao K, Xu J, Su W. 2011b. Estimationof overstory and understory leaf area index by combininghyperion and panchromatic QuickBird data using NeuralNetwork method. Sensor Letters, 9, 946-973

Huemmrich K F. 2001. The GeoSail model: a simple additionto the SAIL model to describe discontinuous canopyreflectance. Remote Sensing of Environment, 75, 423-431

Jacquemoud S, Baret F, Andrieu B, Danson F, Jaggard K.1995. Extraction of vegetation biophysical parameters byinversion of the PROSPECT+SAIL models on sugar beetcanopy reflectance data. Application to TM and AVIRISsensors. Remote Sensing of Environment, 52, 163-172

Jacquemoud S, Verhoef W, Baret F, Bacour C, Zarco-Tejada P J, Asner G P, François C, Ustin S L. 2009.PROSPECT+SAIL models: A review of use for vegetationcharacterization. Remote Sensing of Environment, 113,S56-S66.

Jensen J R. 2009. Remote Sensing of the Environment: AnEarth Resource Perspective. Pearson Education India,India.

Johnson L F, Billow C R. 1996. Spectrometry estimation of totalnitrogen concentration in Douglas-fir foliage. InternationalJournal of Remote Sensing, 17, 489–500.

Kimes D, Knyazikhin Y, Privette J, Abuelgasim A, Gao F. 2000.Inversion methods for physically-based models. RemoteSensing Reviews, 18, 381-439

Kuusk A. 1991. The hotspot effect in plant canopy reflectance.In: Photon-vegetation Interactions: Applications in OpticalRemote Sensing and Plant Physiology. Springer-Verlag,New York, USA.

Kuusk A. 1994. A multispectral canopy reflectance model.Remote Sensing of Environment, 50, 75-82

Kuusk A. 1995a. A fast, invertible canopy reflectance model.Remote Sensing of Environment, 51, 342-350

Kuusk A. 1995b. A Markov chain model of canopy reflectance.Agricultural and Forest Meteorology, 76, 221-263

Kuusk A. 2001. A two-layer canopy reflectance model. Journalof Quantitative Spectroscopy and Radiative Transfer, 71,1-9

Laurent V C E, Schaepman M E, Verhoef W, WeyermannJ, Chávez R O. 2014. Bayesian object-based estimationof LAI and chlorophyll from a simulated Sentinel-2 topof-atmosphere radiance image Remote Sensing ofEnvironment, 140, 318-329

Lee K S, Cohen W B, Kennedy R E, Maiersperger T K, GowerS T. 2004. Hyperspectral versus multispectral data forestimating leaf area index in four different biomes. RemoteSensing of Environment, 91, 508-520

Li X, Gao F, Wang J, Strahler A. 2001. A priori knowledgeaccumulation and its application to linear BRDF modelinversion. Journal of Geophysical Research, 106, 11925-11935

Li X, Gao F, Wang J, Zhu Q. 1997. Uncertainty and sensitivitymatrix of parameters in inversion of physical BRDF model.Journal of Remote Sensing, 1, 5-14 (in Chinese)

Li X, Strahler A H. 1986. Geometric-optical bidirectionalreflectance modeling of a conifer forest canopy. IEEETransactions on Geoscience and Remote Sensing, 6,906-919

Li X H, Song X N, Leng P. 2011. A quantitative method forgrassland LAI inversion based on CHIRS/PROBA data.Remote Sensing for Land & Resources, 3, 60-66

Lu D, Song K, Wang Z, Du J, Zeng L, Lei X. 2010. Application ofwavelet transform on hyperspectral reflectance for soybeanlai estimation in the songnen plain, China. In: Proceedings of2010 IEEE International Geoscience and Remote SensingSymposium. Honolulu, USA. pp. 2139-2142

Myneni R B, Maggion S, Iaquinta J, Privette J L, Gobron N, PintyB, Kimes D S, Verstraete M M, Williams D L. 1995. Opticalremote sensing of vegetation: Modeling, caveats, andalgorithms. Remote Sensing of Environment, 51, 169-188

Nilson T, Kuusk A. 1989. Reflectance model for thehomogeneous plant canopy and its inversion. RemoteSensing of Environment, 27, 157-167

Othman H, Qian S E. 2006. Noise reduction of hyperspectralimagery using hybrid spatial-spectral derivative-domainwavelet shrinkage. IEEE Transactions on Geoscience andRemote Sensing, 44, 397-408

Perkins T, Adler-Golden S, Matthew M W, Berk A, Bernstein L S,Lee J, Fox M. 2012. Speed and accuracy improvements inFLAASH atmospheric correction of hyperspectral imagery.Optical Engineering, 51, 1371-1379

Pinty B, Lavergne T, Voßbeck M, Kaminski T, Aussedat O,Giering R, Gobron N, Taberner M, Verstraete M M, WidlowskiJ L. 2007. Retrieving surface parameters for climate modelsfrom Moderate Resolution Imaging Spectroradiometer(MODIS)-Multiangle Imaging Spectroradiometer (MISR)albedo products. Journal of Geophysical Research(Atmospheres (1984-2012)), 112, 185–194

Pu R, Gong P. 2004. Wavelet transform applied to EO-1hyperspectral data for forest LAI and crown closuremapping. Remote Sensing of Environment, 91, 212-224

Pu R, Gong P, Biging G S, Larrieu M R. 2003. Extraction of rededge optical parameters from Hyperion data for estimationof forest leaf area index. IEEE Transactions on Geoscienceand Remote Sensing, 41, 916-921

Pu R, Gong P, Yu Q. 2008. Comparative analysis of EO-1 ALIand hyperion, and landsat ETM+ Data for mapping forestcrown closure and leaf area index. Sensors, 8, 3744-3766

Qin W, Gerstl S AW. 2000. 3-D scene modeling of semidesertvegetation cover and its radiation regime. Remote Sensingof Environment, 74, 145-162

Qu Y, Wang J, Wan H, Li X, Zhou G. 2008. A Bayesian networkalgorithm for retrieving the characterization of land surfacevegetation. Remote Sensing of Environment, 112, 613-622

Richter K, Atzberger C, Vuolo F, Weihs P, D’Urso G. 2009.Experimental assessment of the Sentinel-2 band setting forRTM-based LAI retrieval of sugar beet and maize. CanadianJournal of Remote Sensing, 35, 230-247

Ross J. 1981. The Radiation Regime and Architecture of PlantStands. Springer, New York, USA.Saltelli A, Tarantola S, Chan K P S. 1999. A quantitative modelindependentmethod for global sensitivity analysis of modeloutput. Technmetrics, 41, 39-56Schlerf M, Atzberger C

 2006. Inversion of a forest reflectancemodel to estimate structural canopy variables fromhyperspectral remote sensing data. Remote Sensing ofEnvironment, 100, 281-294

Schlerf M, Atzberger C, Hill J. 2005. Remote sensing of forestbiophysical variables using HyMap imaging spectrometerdata. Remote Sensing of Environment, 95, 177-194

Si Y, Schlerf M, Zurita-Milla R, Skidmore A, Wang T. 2012.Mapping spatio-temporal variation of grassland quantityand quality using MERIS data and the PROSAIL model.Remote Sensing of Environment, 121, 415-425

Spanner M, Lee J, Miller J, McCreight R, Freemantle J, RunyonJ, Gong P. 1994. Remote sensing of seasonal leaf areaindex across the Oregon transect. Ecological Applications,4, 258-271

Tillack A, Clasen A, Kleinschmit B, Förster M. 2014. Estimationof the seasonal leaf area index in an alluvial forest usinghigh-resolution satellite-based vegetation indices. RemoteSensing of Environment, 141, 52-63

Trombetti M, Riano D, Rubio M, Cheng Y, Ustin S. 2008.Multi-temporal vegetation canopy water content retrievaland interpretation using artificial neural networks for thecontinental USA. Remote Sensing of Environment, 112,203-215

Verhoef W. 1984. Light scattering by leaf layers with applicationto canopy reflectance modeling: The SAIL model. RemoteSensing of Environment, 16, 125-141

Verhoef W, Bach H. 2007. Coupled soil-leaf-canopy andatmosphere radiative transfer modeling to simulatehyperspectral multi-angular surface reflectance and TOAradiance data. Remote Sensing of Environment, 109,166−182.

Verrelst J, Romijn E, Kooistra L. 2012. Mapping vegetationdensity in a heterogeneous river floodplain ecosystemusing pointable CHRIS/PROBA data. Remote Sensing, 4,2866-2889

Vohland M, Jarmer T. 2008. Estimating structural and biochemicalparameters for grassland from spectroradiometer databy radiative transfer modelling (PROSPECT+SAIL).International Journal of Remote Sensing, 29, 191-209

Vohland M, Mader S, Dorigo W. 2010. Applying differentinversion techniques to retrieve stand variables of summerbarley with PROSPECT+SAIL. International Journal ofApplied Earth Observation and Geoinformation, 12, 71-80

Wang D, Wang J, Liang S. 2010. Retrieving crop leaf area indexby assimilation of MODIS data into a crop growth model.Science China Earth Sciences, 53, 721-730

Weiss M, Baret F, Leroy M, Hautecoeur O, Bacour C, PrevotL. 2002. Validation of neural net techniques to estimatecanopy biophysical variables from remote sensing data.Agronomie, 22, 547-553

Weiss M, Baret F, Myneni R, Pragnère A, Knyazikhin Y. 2000.Investigation of a model inversion technique to estimatecanopy biophysical variables from spectral and directionalreflectance data. Agronomie, 20, 3-22

Widlowski J L, Taberner M, Pinty B, Bruniquel-Pinel V, DisneyM, Fernandes R, Gastellu-Etchegorry J P, Gobron N, KuuskA, Lavergne T, Leblanc S, Lewis P E, Martin E, MõttusM, North P R J, Qin W, Robustelli M, Rochdi N, RuilobaR, Soler C, et al. 2007. Third radiation transfer modelintercomparison (RAMI) exercise: Documenting progressin canopy reflectance models. Journal of GeophysicalResearch (Atmospheres (1984-2012)), 112, 139–155

Winter E M, Winter M E. 1999. Autonomous hyperspectralendmember determination methods. In: Proceedings ofthe International Society for Optical Engineering, 3870,Florence, Italy. pp. 150-158

Wu W, Yang P, Meng C, Shibasaki R, Tang H, 2008. Anintegrated model to simulating sown area changes for majorcrops at a global scale. Science in China (Series D: EarthSciences), 51, 370-379

Wu W B, Yang P, Tang H J, Zhou Q B, Shibasaki R. 2010.Characterizing spatial patterns of phenology in cropland ofChina based on remotely sensed data. Agricultural Sciencesin China, 9, 101-112

Xia T, Wu W B, Zhou Q B, Zhou Y. 2013. Comparison of twoinversion methods for winter wheat leaf area index basedon hyperspectral remote sensing. Transactions of theChinese Society of Agricultural Engineering, 29, 139-147(in Chinese)

Xiao Y, Zhao W, Zhou D, Gong H. 2013. Sensitivity analysisof vegetation reflectance to biochemical and biophysicalvariables at leaf, canopy, and regional scales. IEEETransactions on Geoscience and Remote Sensing, 52,4014-4024

Yan G, Jiang L, Wang J, Chen L, Li X. 2003. Thermalbidirectional gap probability model for row crop canopies and validation. Science in China (Series D: Earth Sciences),46, 1241-1249

Yang P, Shibasaki R, Wu W, Zhou Q, Chen Z, Zha Y, Shi Y,Tang H. 2007a. Evaluation of MODIS land cover and LAIproducts in cropland of North China Plain using in situmeasurements and Landsat TM images. IEEE Transactionson Geoscience and Remote Sensing, 45, 3087-3097

Yang P, Wu W B, Tang H J, Zhou Q B, Zou J Q, Zhang L. 2007b.Mapping spatial and temporal variations of leaf area indexfor winter wheat in North China. Agricultural Sciences inChina, 6, 1437-1443

Yang X, Huang J, Wu Y, Wang J, Wang P, Wang X, Huete A R.2011. Estimating biophysical parameters of rice with remotesensing data using support vector machines. Science China(Life Sciences), 54, 272-281

Yao Y, Liu Q, Liu Q, Li X. 2008. LAI retrieval and uncertaintyevaluations for typical row-planted crops at different growthstages. Remote Sensing of Environment, 112, 94-106

Zarco-tejada P J, Miller J R, Noland T L, Mohammed G H. 2001.Scaling-up and model inversion methods with narrowbandoptical indices for chlorophyll content estimation in closedforest canopies with hyperspectral data. IEEE Transactionson Geoscience and Remote Sensing, 39, 1491-1507

Zhao C J, Huang W J, Wang J H, Yang M H, Xue X Z. 2002.The red edge parameters of different wheat varieties underdifferent fertilization and irrigation treatments. AgriculturalSciences in China, 1, 745-751

Zhao F, Gu X, Verhoef W, Wang Q, Yu T, Liu Q, Huang H, QinW, Chen L, Zhao H. 2010. A spectral directional reflectancemodel of row crops. Remote Sensing of Environment, 114,265-285

Zhu X H, Feng X M, Zhao Y S. 2011. Multi-scale MSDT inversionbased on LAI spatial knowledge. Science China (EarthSciences), 42, 246-255 (in Chinese)

Zortea M, Plaza A. 2009. Spatial preprocessing for endmemberextraction. Geoscience and Remote Sensing, IEEETransactions on Geoscience and Remote Sensing, 47,2679-2693
[1] YU Feng-hua, BAI Ju-chi, JIN Zhong-yu, GUO Zhong-hui, YANG Jia-xin, CHEN Chun-ling. Combining the critical nitrogen concentration and machine learning algorithms to estimate nitrogen deficiency in rice from UAV hyperspectral data[J]. >Journal of Integrative Agriculture, 2023, 22(4): 1216-1229.
[2] CHU Xiao-lei, LU Zhong, WEI Dan, LEI Guo-ping . Effects of land use/cover change (LUCC) on the spatiotemporal variability of precipitation and temperature in the Songnen Plain, China[J]. >Journal of Integrative Agriculture, 2022, 21(1): 235-248.
[3] ZHAO Yu, WANG Jian-wen, CHEN Li-ping, FU Yuan-yuan, ZHU Hong-chun, FENG Hai-kuan, XU Xin-gang, LI Zhen-hai. An entirely new approach based on remote sensing data to calculate the nitrogen nutrition index of winter wheat[J]. >Journal of Integrative Agriculture, 2021, 20(9): 2535-2551.
[4] SHAO Rui-xin, YU Kang-ke, LI Hong-wei, JIA Shuang-jie, YANG Qing-hua, ZHAO Xia, ZHAO Ya-li, LIU Tian-xu. The effect of elevating temperature on the growth and development of reproductive organs and yield of summer maize[J]. >Journal of Integrative Agriculture, 2021, 20(7): 1783-1795.
[5] GUO Xiao-hong*, LAN Yu-chen*, XU Ling-qi, YIN Da-wei, LI Hong-yu, QIAN Yong-de, ZHENG Gui-ping, LÜ Yan-dong. Effects of nitrogen application rate and hill density on rice yield and nitrogen utilization in sodic saline–alkaline paddy fields[J]. >Journal of Integrative Agriculture, 2021, 20(2): 540-553.
[6] YANG Fei-fei, LIU Tao, WANG Qi-yuan, DU Ming-zhu, YANG Tian-le, LIU Da-zhong, LI Shi-juan, LIU Sheng-ping. Rapid determination of leaf water content for monitoring waterlogging in winter wheat based on hyperspectral parameters[J]. >Journal of Integrative Agriculture, 2021, 20(10): 2613-2626.
[7] ZHANG Yuan-meng, XUE Jun, ZHAI Juan, ZHANG Guo-qiang, ZHANG Wan-xu, WANG Ke-ru, MING Bo, HOU Peng, XIE Rui-zhi, LIU Chao-wei, LI Shao-kun. Does nitrogen application rate affect the moisture content of corn grains?[J]. >Journal of Integrative Agriculture, 2021, 20(10): 2627-2638.
[8] CHEN Ying, LIU Feng-shan, TAO Fu-lu, GE Quan-sheng, JIANG Min, WANG Meng, ZHAO Feng-hua. Calibration and validation of SiBcrop Model for simulating LAI and surface heat fluxes of winter wheat in the North China Plain[J]. >Journal of Integrative Agriculture, 2020, 19(9): 2206-2215.
[9] LUO Chong, LIU Huan-jun, FU Qiang, GUAN Hai-xiang, YE Qiang, ZHANG Xin-le, KONG Fan-chang. Mapping the fallowed area of paddy fields on Sanjiang Plain of Northeast China to assist water security assessments[J]. >Journal of Integrative Agriculture, 2020, 19(7): 1885-1896.
[10] WANG Yun-xia, CHEN Shu-ping, ZHANG Dong-xing, YANG Li, CUI Tao, JING Hui-rong, LI Yu-huan. Effects of subsoiling depth, period interval and combined tillage practice on soil properties and yield in the Huang-Huai-Hai Plain, China[J]. >Journal of Integrative Agriculture, 2020, 19(6): 1596-1608.
[11] WANG Dan, LI Guo-rui, ZHOU Bao-yuan, ZHAN Ming, CAO Cou-gui, MENG Qing-feng, XIA Fei, MA Wei, ZHAO Ming. Innovation of the double-maize cropping system based on cultivar growing degree days for adapting to changing weather conditions in the North China Plain[J]. >Journal of Integrative Agriculture, 2020, 19(12): 2997-3012.
[12] QI Dong-liang, HU Tian-tian, SONG Xue. Effects of nitrogen application rates and irrigation regimes on grain yield and water use efficiency of maize under alternate partial rootzone irrigation[J]. >Journal of Integrative Agriculture, 2020, 19(11): 2792-2806.
[13] CHEN Guang-feng, CAO Hong-zhu, CHEN Dong-dong, ZHANG Ling-bo, ZHAO Wei-li, ZHANG Yu, MA Wen-qi, JIANG Rong-feng, ZHANG Hong-yan, ZHANG Fu-suo. Developing sustainable summer maize production for smallholder farmers in the North China Plain: An agronomic diagnosis method[J]. >Journal of Integrative Agriculture, 2019, 18(8): 1667-1679.
[14] DUAN Dan-dan, ZHAO Chun-jiang, LI Zhen-hai, YANG Gui-jun, ZHAO Yu, QIAO Xiao-jun, ZHANG Yun-he, ZHANG Lai-xi, YANG Wu-de. Estimating total leaf nitrogen concentration in winter wheat by canopy hyperspectral data and nitrogen vertical distribution[J]. >Journal of Integrative Agriculture, 2019, 18(7): 1562-1570.
[15] QU Chun-hong, LI Xiang-xiang, JU Hui, LIU Qin. The impacts of climate change on wheat yield in the Huang-Huai- Hai Plain of China using DSSAT-CERES-Wheat model under different climate scenarios[J]. >Journal of Integrative Agriculture, 2019, 18(6): 1379-1391.
No Suggested Reading articles found!