Please wait a minute...
Journal of Integrative Agriculture  2013, Vol. 12 Issue (12): 2217-2228    DOI: 10.1016/S2095-3119(13)60661-9
Plant Protection Advanced Online Publication | Current Issue | Archive | Adv Search |
Resistance to the Whitefly Aleurotrachelus socialis (Hemiptera: Aleyrodidae) and SSR Marker Identifi cation in Advanced Populations of the Hybrid Manihot esculenta subsp. Manihot fl abellifolia
 Arturo Carabalí,  James Montoya-Lerma, Anthony C Belloti, Martin Fregene , Gerardo
1.Deparment of Biology, Universidad del Valle, AA 25360, Cali-Valle, Colombia
2.International Center of Tropical Agriculture (CIAT), AA 6713, Cali-Valle, Colombia
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  Genes resistant to Aleurotrachelus socialis were transferred to the F1 from the interspecifi c hybrid wild species of Manihot fl abellifolia to M. esculenta and two advanced generations of backcrosses (BC1 and BC2). We characterized the resistance of A. socialis transferred to BC2 parents (CW67-160, CW67-130, CW67-44), MTAI-8 (BC1), resistant (CMB9B-73) and susceptible (CMB9B-104) genotypes from contrasting pools, and resistant (MEcu-72) and susceptible (CMC-40) genotypes. Whitefl y demography and biology were evaluated. SSR molecular markers associated with a phenotypic response of plant resistance were detected in segregating populations (BC2). Results showed that although female survival time was similar on all hosts, the lowest averages of longevity, fecundity and oviposition rate were observed in the resistant control MEcu- 72, only being signifi cantly similar to the parent CW67-130. When the BC1 and BC2 populations were compared, it was found that A. socialis fecundity was eight times lower on CMB9B-73 progeny than on CW67-130, expressing the highest levels of resistance to the whitefl y. Ten genotypes of CMB9A and CMB9B family had the best segregation. A total of 486 microsatellite primers were evaluated using bulked segregant analysis (BSA), 11 showed polymorphism between the contrasting pools and only one showed signifi cant differences between resistant and susceptible individuals. In conclusion, fecundity was the parameter that impacted most on the intrinsic rate of A. socialis population growth.

Abstract  Genes resistant to Aleurotrachelus socialis were transferred to the F1 from the interspecifi c hybrid wild species of Manihot fl abellifolia to M. esculenta and two advanced generations of backcrosses (BC1 and BC2). We characterized the resistance of A. socialis transferred to BC2 parents (CW67-160, CW67-130, CW67-44), MTAI-8 (BC1), resistant (CMB9B-73) and susceptible (CMB9B-104) genotypes from contrasting pools, and resistant (MEcu-72) and susceptible (CMC-40) genotypes. Whitefl y demography and biology were evaluated. SSR molecular markers associated with a phenotypic response of plant resistance were detected in segregating populations (BC2). Results showed that although female survival time was similar on all hosts, the lowest averages of longevity, fecundity and oviposition rate were observed in the resistant control MEcu- 72, only being signifi cantly similar to the parent CW67-130. When the BC1 and BC2 populations were compared, it was found that A. socialis fecundity was eight times lower on CMB9B-73 progeny than on CW67-130, expressing the highest levels of resistance to the whitefl y. Ten genotypes of CMB9A and CMB9B family had the best segregation. A total of 486 microsatellite primers were evaluated using bulked segregant analysis (BSA), 11 showed polymorphism between the contrasting pools and only one showed signifi cant differences between resistant and susceptible individuals. In conclusion, fecundity was the parameter that impacted most on the intrinsic rate of A. socialis population growth.
Keywords:  cassava       wild parents       interspecifi c hybrids       whitefl y resistance       BSA  
Received: 19 November 2012   Accepted:
Fund: 

To reviewers and editors, who, with their comments and suggestions, improved the paper. This paper is dedicated to the memory of Dr. A Bellotti, a great scientist, mentor and a trusted friend.

Corresponding Authors:  Arturo Carabali, Tel: +57-23-212100, E-mail: arturo.carabali@gmail.com     E-mail:  arturo.carabali@gmail.com

Cite this article: 

Arturo Carabalí, James Montoya-Lerma, Anthony C Belloti, Martin Fregene , Gerardo . 2013. Resistance to the Whitefly Aleurotrachelus socialis (Hemiptera: Aleyrodidae) and SSR Marker Identifi cation in Advanced Populations of the Hybrid Manihot esculenta subsp. Manihot fl abellifolia. Journal of Integrative Agriculture, 12(12): 2217-2228.

[1]Arias B. 1995. Estudio sobre el comportamiento de la “moscablanca” Aleurotrachelus socialis Bondar (Homoptera:Aleyrodidae) en diferentes genotipos de yuca, Manihotesculenta Crantz. MSc thesis, Universidad Nacional deColombia, Palmira. p. 181. (in Spanish)

[2]Bellotti A C. 2002. Arthropod pests. In: Hillocks J M,Thresh J M, Bellotti A C, eds., Cassava: Biology,Production and Utilization. CABI Publishing, Oxon,UK. pp. 209-235

[3]Bellotti A C, Arias B 2001. Host plant resistance towhiteflies with emphasis on cassava as a case study.Crop Protection, 20, 813-823

[4]Bellotti A C, Braun A R, Arias B, Castillo J A, Guerrero JM. 1994. Origin and management of neotropical cassavaarthropod pests. African Crop Science Journal, 2, 407-417

[5]Bellotti A C, Smith L, Lapointe S L. 1999. Recent advancesin cassava pest management. Annual Review ofEntomology, 44, 343-370

[6]Brown J K, Frohlinch D R, Rossell R C. 1995. Thesweetpotato or silverleaf whitefl ies: Biotypes of Bemisiatabaci or two species complex. Annual Review ofEntomology, 40, 511-534

[7]Burbano M, Carabalí A, Montoya-Lerma J, Bellotti AC. 2003. Resistencia natural de especies silvestres deManihot (Euphorbiaceae) a Mononychellus tanajoa(Acariformes), Aleurotrachelus socialis y Phenacoccusherreni (Hemiptera). Revista Colombiana deEntomología, 33, 110-115 (in Spanish)

[8]Carey J R. 1993. Applied Demography for Biologists.Oxford University Press, New York.Cave R D. 1996. Parasitoides y depredadores. In: Hilje L,ed., Metodologías Para el Estudio y Manejo de MoscasBlancas y Geminivirus. Editorial Turrialba, Costa Rica.pp. 69-76 (in Spanish)

[9]CIAT 2003. Annual report project IP3. In: ImprovedCassava for the Developing World. Centro Internacionalde Agricultura Tropical, Cali, Colombia. pp. 8-65 to8-68

[10]Dellaporta S L, Wood J, Hicks J B. 1983. A plant DNA minipreparation: version II. Plant Molecular Biology Report,1, 19-21

[11]Faria M R, Wraight S P. 2007. Mycoinsecticides andmycoacaricides: a comprehensive list with worldwidecoverage and international classifi cation of formulationtypes. Biological Control, 43, 237-256

[12]Farias A R N, Sousa J D S, Silveira J R S. 1991. Flutuaçãopopulacional de Bemisia tuberculata em Maragogipe,Bahia. Revista Brasileira da Mandioca, 10, 103-107 (inPortuguese)

[13]Fernandez P, Diaz P. 2003. Pruebas diagnósticas. Unidadde Epidemiología Clínica y Bioestadística. ComplexoHospitalario-Universitario Juan Canalejo. La Coruña(España).[2011-11-22] http://www.fisterra.com/material/investiga/pruebas_diagnosticas/pruebas_diagnosticas (in Spanish)

[14]Frisch M, Bohn N, Melchinger A E. 1999. Comparison ofselection strategies for marker-assisted backcrossing of agene. Crop Science, 39, 1295-1301

[15]Gerling D, Alomar O, Arno J. 2001. Biological control ofBemisia tabaci using predators and parasitoids. CropProtection, 20, 779-799

[16]Gómez M J. 2004. Caracterización de la resistencia ala mosca blanca Aleurotrachelus socialis Bondar(Homoptera: Aleyrodidae) genotipos de yuca (Manihotesculenta Crantz). Trabajo de grado en Agronomía,Universidad Nacional de Colombia, Palmira. p. 103.

[17]Henry G, Hershey C. 2002. Cassava in South America andthe Caribbean. In: Hillocks J M, Thresh J M, Bellotti AC, eds., Cassava: Biology, Production and Utilization.CABI Publishing, Oxon, UK. pp. 17-40

[18]Holguín C M, Carabalí A, Bellotti A C. 2006. Tasa intrínsecade crecimiento de la población de Aleurotrachelussocialis Bondar en yuca Manihot esculenta Crantz.Revista Colombiana de Entomología, 32, 140-144 (inSpanish)

[19]Lee E T. 1992. Statistical Methods for Survival DataAnalysis. 2nd ed. Wiley & Sons, New York.

[20]López-Ávila A, Cardona M C García G J, Rendón F,Hernández P. 2001. Reconocimiento e identifi cación deenemigos naturales de las moscas blancas (Homoptera:Aleyrodidae) en Colombia y Ecuador. RevistaColombiana de Entomología, 27, 137-141 (in Spanish)

[21]Maia H M, Luiz A J B, Campanhola C. 2000. Statisticalinference on associated fertility life table parametersusing jackknife technique: computational aspects.Journal of Economic Entomology, 93, 511-518

[22]Mba R E C, Stephenson P, Edwards K, Mezer S, NkumbiraJ, Gulberg U, Apel K, Gale M, Tohme J, Fregene MA. 2001. Simple sequence repeat (SSR) marker surveyof the cassava (Manihot esculenta Crantz) genome:toward a SSR-based molecular genetic map of cassava.Theoretical and Applied Genetics, 102, 21-31

[23]Michelmore R, Paran I, Kesseli R. 1991. Identification ofmarkers linked to disease-resistance genes by bulkedsegregant analysis: a rapid method to detect markersin specific genomic regions by using segregatingpopulations. Proceedings of the National Academy ofSciences of the United States of America, 88, 9828-9832

[24]Oliveira M R V, Henneberry T J, Anderson P. 2001. History,current status, and collaborative research projects forBemisia tabaci. Crop Protection, 20, 709-723

[25]Price P. 1975. Insect Ecology. John Wiley & Sons, NewYork.SAS Institute. 1989. SAS/STAT User’s Guide version 6. 4thed. vol. 2. SAS Institute, Cary, NC. p. 846.
[1] MA Xiao-wen, MA Qiu-xiang, MA Mu-qing, CHEN Yan-hang, GU Jin-bao, LI Yang, HU Qing, LUO Qing-wen, WEN Ming-fu, ZHANG Peng, LI Cong, WANG Zhen-yu.

Cassava MeRS40 is required for the regulation of plant salt tolerance [J]. >Journal of Integrative Agriculture, 2023, 22(5): 1396-1411.

[2] DONG Shi-man, XIAO Liang, LI Zhi-bo, SHEN Jie, YAN Hua-bing, LI Shu-xia, LIAO Wen-bin, PENG Ming. A novel long non-coding RNA, DIR, increases drought tolerance in cassava by modifying stress-related gene expression[J]. >Journal of Integrative Agriculture, 2022, 21(9): 2588-2602.
[3] OCHAR Kingsley, SU Bo-hong, ZHOU Ming-ming, LIU Zhang-xiong, GAO Hua-wei, SOBHI F. Lamlom, QIU Li-juan. Identification of the genetic locus associated with the crinkled leaf phenotype in a soybean (Glycine max L.) mutant by BSA-Seq technology[J]. >Journal of Integrative Agriculture, 2022, 21(12): 3524-3539.
[4] ZHOU Chun-yun, XIONG Hong-chun, LI Yu-ting, GUO Hui-jun, XIE Yong-dun, ZHAO Lin-shu, GU Jiayu, ZHAO Shi-rong, DING Yu-ping, SONG Xi-yun, LIU Lu-xiang. Genetic analysis and QTL mapping of a novel reduced height gene in common wheat (Triticum aestivum L.)[J]. >Journal of Integrative Agriculture, 2020, 19(7): 1721-1730.
[5] KANG Liang, LIANG Qiong-yue, JIANG Qiang, YAO Yi-hua, DONG Meng-meng, HE Bing, GU Ming-hua. Screening of diverse cassava genotypes based on nitrogen uptake efficiency and yield[J]. >Journal of Integrative Agriculture, 2020, 19(4): 965-974.
[6] WANG Yu-sheng, TIAN Hu, WAN Fang-hao, ZHANG Gui-fen. Species-specific COI primers for rapid identification of a globally significant invasive pest, the cassava mealybug Phenacoccus manihoti Matile-Ferrero[J]. >Journal of Integrative Agriculture, 2019, 18(5): 1042-1049.
[7] CHEN Chen, ZHUANG Mu, FANG Zhi-yuan, WANG Qing-biao, ZHANG Yang-yong, LIU Yu-mei. A Co-Dominant Marker BoE332 Applied to Marker-Assisted Selection of Homozygous Male-Sterile Plants in Cabbage (Brassica oleracea var. capitata L.)[J]. >Journal of Integrative Agriculture, 2013, 12(4): 596-602.
[8] Christopher AOmongo, Robert Kawuki, Antony C Bellotti, Titus Alicai, Yona Baguma, M N Maruthi, Anton Bua , John Colvin . African Cassava Whitefly, Bemisia tabaci, Resistance in African and South American Cassava Genotypes [J]. >Journal of Integrative Agriculture, 2012, 11(2): 327-336.
No Suggested Reading articles found!