Please wait a minute...
Journal of Integrative Agriculture  2014, Vol. 13 Issue (2): 316-325    DOI: 10.1016/S2095-3119(13)60498-0
Physiology·Biochemistry·Cultivation·Tillage Advanced Online Publication | Current Issue | Archive | Adv Search |
Natural Variation of Leaf Thickness and Its Association to Yield Traits in indica Rice
 LIU Chuan-guang, ZHOU Xin-qiao, CHEN Da-gang, LI Li-jun, LI Ju-chang and CHEN You-ding
Rice Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou 510640, P.R.China
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  Leaf thickness is an important morphological trait in rice. Its association to the yield potential, as of now has not been documented because of the shortage of the equipment which could conveniently measure the leaf thickness in rice. In this study, the thickness of top three leaves of 208 cultivars had been determined by a nondestructive rice leaf thickness instrument for the research of the natural variation of leaves thickness and its association to yield traits in indica rice. The results showed that the flag leaf was the thickest, and the 2nd leaf was thicker than the 3rd leaf. Analysis of variance indicated the existence of wide genetic diversity of leaf thickness among the investigated indica rice genotypes. The tight correlation among the thicknesses of the top three leaves means that the leaf thickness traits share one genetic control system. Leaf thickness had a significant positive correlation with leaf length and a positive correlation with leaf width, indicated that thicker leaf was beneficial to increasing the single leaf area. The results of correlation analysis revealed that thicker leaf should be profitable to the leaf erection, higher numbers of grains per panicle and higher grains weight per panicle. However, the significantly negative correlation between leaf thickness and number of panicles per plant counteracted the profitability from increased grains weight per panicle, so that the correlations of the thicknesses of the top three leaves to yield and biomass were positive but not significantly. It has made great progress in the genetic improvement of leaves thickness in inbred indica rice breeding in Guangdong Province, China, since the 1990s.

Abstract  Leaf thickness is an important morphological trait in rice. Its association to the yield potential, as of now has not been documented because of the shortage of the equipment which could conveniently measure the leaf thickness in rice. In this study, the thickness of top three leaves of 208 cultivars had been determined by a nondestructive rice leaf thickness instrument for the research of the natural variation of leaves thickness and its association to yield traits in indica rice. The results showed that the flag leaf was the thickest, and the 2nd leaf was thicker than the 3rd leaf. Analysis of variance indicated the existence of wide genetic diversity of leaf thickness among the investigated indica rice genotypes. The tight correlation among the thicknesses of the top three leaves means that the leaf thickness traits share one genetic control system. Leaf thickness had a significant positive correlation with leaf length and a positive correlation with leaf width, indicated that thicker leaf was beneficial to increasing the single leaf area. The results of correlation analysis revealed that thicker leaf should be profitable to the leaf erection, higher numbers of grains per panicle and higher grains weight per panicle. However, the significantly negative correlation between leaf thickness and number of panicles per plant counteracted the profitability from increased grains weight per panicle, so that the correlations of the thicknesses of the top three leaves to yield and biomass were positive but not significantly. It has made great progress in the genetic improvement of leaves thickness in inbred indica rice breeding in Guangdong Province, China, since the 1990s.
Keywords:  indica rice       leaf thickness       variation       yield  
Received: 17 November 2012   Accepted:
Fund: 

This study was supported by the Natural Science Foundation of Guangdong Province, China (6025378, S2011010000983).

Corresponding Authors:  CHEN You-ding, Tel: +86-20-87596287, E-mail: chenyoud@21cn.com     E-mail:  chenyoud@21cn.com
About author:  LIU Chuan-guang, Tel: +86-20-87596275, E-mail: guyliu@tom.com

Cite this article: 

LIU Chuan-guang, ZHOU Xin-qiao, CHEN Da-gang, LI Li-jun, LI Ju-chang and CHEN You-ding. 2014. Natural Variation of Leaf Thickness and Its Association to Yield Traits in indica Rice. Journal of Integrative Agriculture, 13(2): 316-325.

Chen W F, Xu Z J, Zhang L B, Yang S R. 2001. Creation of new plant type and breeding rice for super high yield. Acta Agronomica Sinica, 27, 665-672. (in Chinese)

Chen W F, Xu Z J, Zhang W Z. 2007a. Advances and prospects in breeding japonica rice for super high yield in the Northern China. Agricultural Sciences in China, 6, 1157-1165

 Chen Y D, Zhang X, Zhou X Q, Chen G H. 2007b. Preliminary studies on thickness of nondestructive rice (Oryza sativa L.) leaf blade. Agricultural Sciences in China, 6, 802-807

 Chen Y D, Zhou X Q, Chen D G, Li L J, Li J C, Zhang X. 2011. Studies on the differences of morphological characteristics for different high-yielding rice types in the late crop environmental condition. In: Chen Y D, Zhang X, eds., Researches on Dynamic Plant Type in Indica Rice. Shanghai Scientific & Technical Publishers, Shanghai, China. pp. 28-38 (in Chinese)

Cheng S H, Cao L Y, Chen S G, Zhu D F, Wang X, Min S K, Zhai H Q. 2005. Conception of late-stage vigor super hybrid rice and its biological significance. Chinese Journal of Rice Science, 19, 280-284 (in Chinese)

Cook M G, Evans L T. 1983. Some physiological aspects of the domestication and improvement of rice (Oryza spp.). Field Crops Research, 6, 219-238

 Huang M, Zou Y B, Jiang P, Xia B, Ibrahim M, Ao H J. 2011. Relationship between grain yield and yield components in super hybrid Rice. Agricultural Sciences in China, 10, 1537-1544

 Kanbe T, Sasaki H, Aoki N, Yamagishi T, Ebitani T, Yano M, Ohsugi R. 2008. Identification of QTLs for improvement of plant type in rice (Oryza sativa L.) using Koshihikari/ Kasalath chromosome segment substitution lines and backcross progeny F2 population. Plant Production Science, 11, 447-456

 Khush G S. 1995. Breaking the yield frontier of rice. Geo Journal, 35, 329-332

 Li J, Yang J, Li D, Fei P, Guo T, Ge C, Chen W. 2011. Chlorophyll meter’s estimate of weight-based nitrogen concentration in rice leaf is influenced by leaf thickness. Plant Production Science, 14, 177-183

 Liu C, Zhang G, Zhou H, Feng D, Zhong H. 2010. Genetic improvement of yield and plant-type traits of inbred. indica rice cultivars in South China. Scientia Agricultura Sinica, 43, 3901-3911 (in Chinese)

Liu Z Q. 1980. A study on the photosynthetic characters of different plant types of rice. Scientia Agricultura Sinica, 13, 6-10 (in Chinese)

Lü C G, Gu F L, Zou J S, Lu M L. 1991. Studies on yielding potential and related characteristics of rice ideotype. Scientia Agricultura Sinica, 24, 15-22. (in Chinese)

Matsushima S. 1976. High-Yielding Rice Cultivation. University of Tokyo Press, Tokyo.

Murata Y. 1961. Studies on the photosynthesis of rice plants and its cultural significance. Bulletin of the National Institute of Agricultural Sciences (Japan, Series D), 9, 1-169

 Murchie E H, Hubbart S, Chen Y, Peng S, Horton P. 2002. Acclimation of rice photosynthesis to irradiance under field conditions. Plant Physiology, 130, 1999-2010

 Peng S. 2000. Single-leaf and canopy photosynthesis of rice. In: Sheehy J E, Mitchell P L, Hardy B, eds., Redesigning Rice Photosynthesis to Increase Yield. IRRI, Los Bannos, Philipines. pp. 213-228

 Peng S, Khush G S, Cassman K G. 1994. Evolution of the new plant ideotype for increased yield potential. In: Cassman K G, eds., Breaking the Yield Barrier. IRRI, Manila, Philippines. pp. 5-20

 Peng S, Khush G S, Virk P, Tang Q, Zou Y. 2008. Progress in ideotype breeding to increase rice yield potential. Field Crops Research, 108, 32-38

 Shen F C. 1983. Heritability of flag leaf length, width, angel and specific leaf weight in rice. Guizhou Agricultural Sciences, 6, 18-25. (in Chinese)

Sinclair T R, Sheehy J E. 1999. Erect leaves and photosynthesis in rice. Science, 283, 1456-1457

 Sun X C. 1985. Studies on classification of leaf types of rice and its relation with photosynthesis. Scientia Agricultura Sinica, 18, 49-55 (in Chinese)

Takai T, Kondo M, Yano M, Yamamoto T. 2010. A Quantitative trait locus for chlorophyll content and its association with leaf photosynthesis in rice. Rice, 3, 172- 180.

 Tsunoda S. 1962. A developmental analysis of yielding ability in varieties of field crops. IV. Quantitative and spatial development of the stem-system. Japanese Journal of Breeding, 12, 49-55

 Wu Z H, Zhao G C, Xu K Z, Di Y T, Jiang N, Ling F L, Zhao Y J. 2009. Changes in photosynthetic indexes of rice varieties during forty-seven years of genetic improvement in Jilin Province, China. Chinese Journal of Rice Science, 23, 165-171 (in Chinese)

Xia Z S. 1983. Studies on inheritance and selection of the leaf shape in Keng rice. Acta Agronomic Sinica, 9, 275- 282. (in Chinese)

Yang J C, Zhu Q S, Cao X Z. 1992. Effects of the structure and photosynthetic characters of the canopy on the yield formation in rice plants. Scientia Agricultura Sinica, 25, 7-14. (in Chinese)

Yang S R, Zhang L B, Wang J M. 1984. The theory and method of ideal plant morphology in rice breeding. Scientia Agricultura Sinica, 17, 6-13. (in Chinese)

Yuan L P. 1997. Hybrid rice breeding for super high yield. Hybrid Rice, 12, 1-6. (in Chinese)

Yoshida H, Horie T. 2009. A process model for explaining genotypic and environmental variation in growth and yield of rice based on measured plant N accumulation. Field Crops Research, 113, 227-237

 Yoshida S. 1972. Physiological aspects of grain yield. Annual Review of Plant Physiology, 23, 437-464

 Zhang X. 1991. Ecological Breeding of Rice. China Agriculture Press, Beijing, China. (in Chinese)

Zou J S, Yao K M, Lü C G, Hu X Q. 2003. Study on individual plant type character of Liangyoupeijiu rice. Acta Agronomic Sinica, 29, 652-657. (in Chinese)
[1] WEI Huan-he, GE Jia-lin, ZHANG Xu-bin, ZHU Wang, DENG Fei, REN Wan-jun, CHEN Ying-long, MENG Tian-yao, DAI Qi-gen. Decreased panicle N application alleviates the negative effects of shading on rice grain yield and grain quality[J]. >Journal of Integrative Agriculture, 2023, 22(7): 2041-2053.
[2] DING Yong-gang, ZHANG Xin-bo, MA Quan, LI Fu-jian, TAO Rong-rong, ZHU Min, Li Chun-yan, ZHU Xin-kai, GUO Wen-shan, DING Jin-feng. Tiller fertility is critical for improving grain yield, photosynthesis and nitrogen efficiency in wheat[J]. >Journal of Integrative Agriculture, 2023, 22(7): 2054-2066.
[3] LIU Dan, ZHAO De-hui, ZENG Jian-qi, Rabiu Sani SHAWAI, TONG Jing-yang, LI Ming, LI Fa-ji, ZHOU Shuo, HU Wen-li, XIA Xian-chun, TIAN Yu-bing, ZHU Qian, WANG Chun-ping, WANG De-sen, HE Zhong-hu, LIU Jin-dong, ZHANG Yong. Identification of genetic loci for grain yield‑related traits in the wheat population Zhongmai 578/Jimai 22[J]. >Journal of Integrative Agriculture, 2023, 22(7): 1985-1999.
[4] GAO Peng, ZHANG Tuo, LEI Xing-yu, CUI Xin-wei, LU Yao-xiong, FAN Peng-fei, LONG Shi-ping, HUANG Jing, GAO Ju-sheng, ZHANG Zhen-hua, ZHANG Hui-min. Improvement of soil fertility and rice yield after long-term application of cow manure combined with inorganic fertilizers[J]. >Journal of Integrative Agriculture, 2023, 22(7): 2221-2232.
[5] LI Qian-chuan, XU Shi-wei, ZHUANG Jia-yu, LIU Jia-jia, ZHOU Yi, ZHANG Ze-xi. Ensemble learning prediction of soybean yields in China based on meteorological data[J]. >Journal of Integrative Agriculture, 2023, 22(6): 1909-1927.
[6] ZHANG Chong, WANG Dan-dan, ZHAO Yong-jian, XIAO Yu-lin, CHEN Huan-xuan, LIU He-pu, FENG Li-yuan, YU Chang-hao, JU Xiao-tang. Significant reduction of ammonia emissions while increasing crop yields using the 4R nutrient stewardship in an intensive cropping system[J]. >Journal of Integrative Agriculture, 2023, 22(6): 1883-1895.
[7] TANG Chan-juan, LUO Ming-zhao, ZHANG Shuo, JIA Guan-qing, TANG Sha, JIA Yan-chao, ZHI Hui, DIAO Xian-min. Variations in chlorophyll content, stomatal conductance and photosynthesis in Setaria EMS mutants[J]. >Journal of Integrative Agriculture, 2023, 22(6): 1618-1630.
[8] ZHANG Zhen-zhen, CHENG Shuang, FAN Peng, ZHOU Nian-bing, XING Zhi-peng, HU Ya-jie, XU Fang-fu, GUO Bao-wei, WEI Hai-yan, ZHANG Hong-cheng. Effects of sowing date and ecological points on yield and the temperature and radiation resources of semi-winter wheat[J]. >Journal of Integrative Agriculture, 2023, 22(5): 1366-1380.
[9] LI Min, ZHU Da-wei, JIANG Ming-jin, LUO De-qiang, JIANG Xue-hai, JI Guang-mei, LI Li-jiang, ZHOU Wei-jia. Dry matter production and panicle characteristics of high yield and good taste indica hybrid rice varieties[J]. >Journal of Integrative Agriculture, 2023, 22(5): 1338-1350.
[10] ZHAO Xiao-dong, QIN Xiao-rui, LI Ting-liang, CAO Han-bing, XIE Ying-he. Effects of planting patterns plastic film mulching on soil temperature, moisture, functional bacteria and yield of winter wheat in the Loess Plateau of China[J]. >Journal of Integrative Agriculture, 2023, 22(5): 1560-1573.
[11] ZHAO Shu-ping, DENG Kang-ming, ZHU Ya-mei, JIANG Tao, WU Peng, FENG Kai, LI Liang-jun.

Optimization of slow-release fertilizer application improves lotus rhizome quality by affecting the physicochemical properties of starch [J]. >Journal of Integrative Agriculture, 2023, 22(4): 1045-1057.

[12] SONG Zhong-ping, ZUO Yuan-yuan, XIANG Qin, LI Wen-jia, LI Jian, LIU Gang, DAI Shou-fen, YAN Ze-hong.

Investigation of Aegilops umbellulata for stripe rust resistance, heading date, and the contents of iron, zinc, and gluten protein [J]. >Journal of Integrative Agriculture, 2023, 22(4): 1258-1265.

[13] ZHANG Bing-chao, HU Han, GUO Zheng-yu, GONG Shuai, SHEN Si, LIAO Shu-hua, WANG Xin, ZHOU Shun-li, ZHANG Zhong-dong. Plastic-film-side seeding, as an alternative to traditional film mulching, improves yield stability and income in maize production in semi-arid regions[J]. >Journal of Integrative Agriculture, 2023, 22(4): 1021-1034.
[14] SHI Wen-xuan, ZHANG Qian, LI Lan-tao, TAN Jin-fang, XIE Ruo-han, WANG Yi-lun. Hole fertilization in the root zone facilitates maize yield and nitrogen utilization by mitigating potential N loss and improving mineral N accumulation[J]. >Journal of Integrative Agriculture, 2023, 22(4): 1184-1198.
[15] DENG Jian-yu, LAN Chen-yi-hang, ZHOU Jun-xiang, YAO Yu-bo, YIN Xiao-hui, FU Kai-yun, DING Xin-hua, GUO Wen-chao, LIU Wen, WANG Na, Fumin WANG.

Analysis of sex pheromone production and field trapping of the Asian corn borer (Ostrinia furnacalis Guenée) in Xinjiang, China [J]. >Journal of Integrative Agriculture, 2023, 22(4): 1093-1103.

No Suggested Reading articles found!