Scientia Agricultura Sinica ›› 2024, Vol. 57 ›› Issue (23): 4632-4643.doi: 10.3864/j.issn.0578-1752.2024.23.005

• SPECIAL FOCUS: MINING AND UTILIZATION OF CROP DISEASE RESISTANCE AND INSECT-RELATED GENES • Previous Articles     Next Articles

Cloning and Functional Analysis of GmRHF1 Gene Against Soybean Mosaic Virus

FENG WenMi(), ZHOU FangXue, YU Zhe, MOU KeXin, JING Yan(), LI HaiYan()   

  1. College of Tropical Agriculture and Forestry, Hainan University/School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Sanya 572025, Hainan
  • Received:2024-03-05 Accepted:2024-04-18 Online:2024-12-01 Published:2024-12-07

Abstract:

【Objective】 Soybean mosaic virus (SMV) disease causes by SMV seriously restricts soybean yields and qualities. In this study, we cloned GmRHF1, which encodes a Ring-H2 type zinc finger protein (RHF), and identified its function in SMV resistance through the sequence variation analysis and the virus induced gene silencing (VIGS) assay. Yeast two-hybrid and luciferase complementation assay (LCA) were used to screen and verify the interacting proteins of GmRHF1. The research lay a foundation for further exploring the mechanism of GmRHF1 in soybean resistance to SMV.【Method】 Firstly, GmRHF1 was cloned from soybean varieties of Xudou 14 (highly resistant to SMV) and Shishanheidou (highly susceptible to SMV), and the consistency of sequence variation was then analyzed in representative resistant and susceptible soybean resources, so as to excavate the excellent alleles with SMV resistance. Secondly, the expression abundance of GmRHF1 in different soybean tissues and under SMV treatment were analyzed by real-time quantitative PCR (RT-qPCR), respectively. At the same time, the function of GmRHF1 in SMV resistance was identified by the VIGS assay. The interacting proteins of GmRHF1 were screened and verified by yeast cDNA library screening, point to point verification and LCA experiments. Finally, the function of GmClpP6 on SMV resistance was verified, and the biological significance based on the interaction of GmRHF1 and GmClpP6 for soybean resistance to SMV was clarified.【Result】 GmRHF1 contained a conserved RING-H2 domain of the E3 ubiquitin protein ligase, and belongs to the typical RING-H2 finger family. The results of sequence variation analysis showed that a natural non-synonymous mutation existed in the CDS region of GmRHF1 among various soybean varieties, providing a probable relevance to the SMV resistance or sensibility. After SMV inoculations, the expression level of GmRHF1 in resistant soybean was significantly higher than that in susceptible material by RT-qPCR assay. Through the VIGS experiments, GmRHF1 was effectively silenced and the soybean leaves showed a weakened SMV resistance than the normal plants, indicating that GmRHF1 could enhance soybean resistance to SMV. Based on the yeast cDNA library, 30 potential interacting proteins of GmRHF1 were screened. The interaction between GmRHF1 and GmClpP6 was confirmed by the two-hybrid and LCA experiments. Furthermore, the soybean resistance to SMV was also reduced in soybean leaves with the silenced GmClpP6 by the VIGS experiments.【Conclusion】 The non-synonymous mutation identified in the coding sequence of GmRHF1 may be a key SNP variation related to the SMV resistance and sensibility; and GmRHF1 can interact with GmClpP6. GmRHF1 plays an important role in SMV resistance.

Key words: soybean mosaic virus, zinc finger protein, expression profile analysis, screening of yeast library, luciferase complementary assay

Fig. 1

Amino acid sequence analysis of GmRHF1"

Table 1

Physicochemical properties of GmRHF1"

大豆品种
Soybean varieties
Williams 82 徐豆14
Xudou 14
石山黑豆
Shishanheidou
CDS区序列全长 CDS region region sequence (bp) 1044 1035 1038
氨基酸数量 Number of amino acids 347 344 345
编码蛋白的相对分子质量 Molecular weight (kDa) 38.46 38.15 38.25
理论等电点 Theoretical pI 6.27 6.34 6.17
氨基酸组成 Amino acid composition 20 20 20
含量最高氨基酸 Maximum content amino acids 丝氨酸 Ser, S 丝氨酸 Ser, S 丝氨酸 Ser, S
含量最高氨基酸个数 Maximum content amino acids number 38 40 38
含量最高氨基酸占比 Maximum content amino acids proportion (%) 11.00 11.60 11.00

Fig. 2

Sequence variation analysis of GmRHF1"

Fig. 3

Expression pattern analysis of GmRHF1 A: Expression of GmRHF1 in different tissues; B: Expression of GmRHF1 in different resistant and susceptible materials. RC: Resistant soybean control group; RT: Resistant soybean treatment group; SC: Susceptible soybean control group; ST: Susceptible soybean treatment group. * indicates significant differences (P<0.05); ** indicates significant differences (P<0.01). The same as below"

Fig. 4

Functional analysis of GmRHF1 gene against SMV disease A: Expression of GmRHF1 in silenced soybean leaves; B: SMV phenotype of soybean leaves; C: Expression level of CP gene in soybean plant leaves"

Table 2

Candidate interacting protein information of GmRHF1"

编号
Number
基因号
Gene identifier
克隆数量
No. of clones
基因描述
Gene description
1 Glyma.11G117100 2 固醇调节元件结合蛋白Sterol regulatory element-binding protein
2 Glyma.18G036400 3 26S蛋白酶体调节复合体,ATP酶RPT4 26S Proteasome regulatory complex, ATPase RPT4
3 Glyma.11G119300 6 酪蛋白酶蛋白水解亚基6 Clp protease proteolytic subunit 6
4 Glyma.03G116600 3 DNA同源物亚家族C成员DNAJ Homolog subfamily C member
5 Glyma.04G017500 4 过氧化氢酶Catalase
6 Glyma.05G048000 1 F型H+转运三磷酸腺苷酶亚基DeltaF-type H+-transporting ATPase subunit delta
7 Glyma.07G115900 1 核苷二磷酸激酶/核苷二磷酸激酶Nucleoside-diphosphate kinase/Nucleoside diphosphokinase
8 Glyma.08G235000 2 G蛋白偶联受体G-protein coupled receptor
9 Glyma.10G222100 1 叶绿素a/b结合蛋白结构域 Chlorophyll a/b binding protein domain
10 Glyma.12G037400 3 果糖二磷酸醛缩酶1,叶绿体相关Fructose-bisphosphate aldolase 1, chloroplastic-related
11 Glyma.19G046600 1 核酮糖二磷酸羧化酶小链1A,叶绿体相关
Ribulose bisphosphate carboxylase small chain 1A, chloroplastic-related
12 Glyma.04G003700 2 重金属相关异戊二烯化植物蛋白26 Heavy Metal-associated isoprenylated plant protein 26
13 Glyma.08G158600 1 主要促进因子超家族蛋白Major facilitator superfamily protein
14 Glyma.05G007100 1 碳酸酐酶2,叶绿体相关Carbonic anhydrase 2, chloroplastic-related
15 Glyma.09G148100 1 L-艾杜糖醇-2-脱氢酶/山梨醇脱氢酶L-iditol 2-dehydrogenase/Sorbitol dehydrogenase
16 Glyma.06G157500 1 真核天冬氨酸蛋白酶家族蛋白Eukaryotic aspartyl protease family protein
17 Glyma.08G152500 2 碱性螺旋-环-螺旋DNA结合超家族蛋白Basic helix-loop-helix DNA-binding superfamily protein
18 Glyma.15G107900 2 ATP合成酶-γ链,叶绿体相关 ATP Synthase gamma chain 1, chloroplastic-related
19 Glyma.19G215800 1 包含蛋白的干旱响应ATP结合基序Drought responsive ATP-binding motif containing protein
20 Glyma.20G160900 1 U-BOX结构域蛋白32 U-BOX Domain-containing protein 32
21 Glyma.01G010400 1 DEA (D/H)-box RNA解旋酶家族蛋白DEA(D/H)-box RNA helicase family protein
22 Glyma.01G011300 1 四肽重复(TPR)样超家族蛋白Tetratricopeptide repeat (TPR)-like superfamily protein
23 Glyma.02G228200 1 蛋白磷酸酶2C家族蛋白Protein phosphatase 2C family protein
24 Glyma.13G241000 2 乙酰乳酸合成酶/α-乙酰乳酸合成酶Acetolactate synthase/Alpha-acetolactate synthetase
25 Glyma.19G220400 2 核苷酸-糖转运蛋白家族蛋白Nucleotide-sugar transporter family protein
26 Glyma.14G130100 1 泛素羧基末端水解酶家族蛋白Ubiquitin carboxyl-terminal hydrolase family protein
27 Glyma.16G068700 1 GDSL-like脂肪酶/酰基水解酶超家族蛋白GDSL-like Lipase/Acylhydrolase superfamily protein
28 Glyma.16G098100 1 细胞溶质氨基肽酶家族蛋白Cytosol aminopeptidase family protein
29 Glyma.10G209800 2 组氨酸氨裂合酶Histidine ammonia-lyase
30 Glyma.10G213400 1 线粒体F1F0-ATP合酶,亚基d/ATP7 Mitochondrial F1F0-ATP synthase, subunit d/ATP7

Fig. 5

Verification of the interaction between GmRHF1 and GmClpP6 A: Identification of interactions between GmRHF1 and GmClpP6 by yeast two-hybrid; B: Identification of interactions between GmRHF1 and GmClpP6 by LCA"

Fig. 6

Functional analysis of GmClpP6 gene against SMV disease A: Expression of GmClpP6 in silenced soybean leaves; B: SMV phenotype of soybean leaves; C: Expression level of CP gene in soybean plant leaves"

[1]
闫强, 薛冬, 胡亚群, 周琰琰, 韦雅雯, 袁星星, 陈新. 大豆根特异性GmPR1-9启动子的鉴定及其在根腐病抗性中的应用. 中国农业科学, 2022, 55(20): 3885-3896. doi: 10.3864/j.issn.0578-1752.2022.20.002.
YAN Q, XUE D, HU Y Q, ZHOU Y Y, WEI Y W, YUAN X X, CHEN X. Identification of the root-specific soybean GmPR1-9 promoter and its application in Phytophora root-rot resistance. Scientia Agricultura Sinica, 2022, 55(20): 3885-3896. doi: 10.3864/j.issn.0578-1752.2022.20.002. (in Chinese)
[2]
YIN J L, WANG L Q, JIN T T, NIE Y, LIU H, QIU Y L, YANG Y H, LI B W, ZHANG J J, WANG D G, LI K, XU K, ZHI H J. A cell wall-localized NLR confers resistance to Soybean mosaic virus by recognizing viral-encoded cylindrical inclusion protein. Molecular Plant, 2021, 14(11): 1881-1900.

doi: 10.1016/j.molp.2021.07.013 pmid: 34303025
[3]
赵玎玲, 王梦璇, 孙天杰, 苏伟华, 赵志华, 肖付明, 赵青松, 闫龙, 张洁, 王冬梅. 大豆单锌指蛋白基因GmSZFP的克隆及其在SMV与寄主互作中的功能. 中国农业科学, 2022, 55(14): 2685-2695. doi: 10.3864/j.issn.0578-1752.2022.14.001.
ZHAO D L, WANG M X, SUN T J, SU W H, ZHAO Z H, XIAO F M, ZHAO Q S, YAN L, ZHANG J, WANG D M. Cloning of the soybean single zinc finger protein gene GmSZFP and its functional analysis in SMV-host interactions. Scientia Agricultura Sinica, 2022, 55(14): 2685-2695. doi: 10.3864/j.issn.0578-1752.2022.14.001. (in Chinese)
[4]
MALAPI-NELSON M, WEN R H, OWNLEY B H, HAJIMORAD M R. Co-infection of soybean with soybean mosaic virus and alfalfa mosaic virus results in disease synergism and alteration in accumulation level of both viruses. Plant Disease, 2009, 93(12): 1259-1264.
[5]
JIN T T, KARTHIKEYAN A, WANG L Q, ZONG T X, WANG T, YIN J L, HU T, YANG Y H, LIU H, CUI Y C, ZHAO T J, ZHI H J. Digs out and characterization of the resistance gene accountable to soybean mosaic virus in soybean (Glycine max (L.) Merrill). Theoretical and Applied Genetics, 2022, 135(12): 4217-4232.
[6]
JIN T T, YIN J L, WANG T, XUE S, LI B W, ZONG T X, YANG Y H, LIU H, LIU M Z, XU K, WANG L Q, XING G N, ZHI H J, LI K. RSC3K of soybean cv. Kefeng No. 1 confers resistance to soybean mosaic virus by interacting with the viral protein P3. Journal of Integrative Plant Biology, 2023, 65(3): 838-853.
[7]
LI K, YANG Q H, ZHI H J, GAI J Y. Identification and distribution of soybean mosaic virus strains in southern China. Plant Disease, 2010, 94(3): 351-357.

doi: 10.1094/PDIS-94-3-0351 pmid: 30754253
[8]
CHE Z J, ZHANG S Y, PU Y X, YANG Y M, LIU H L, YANG H, WANG L, ZHANG Y H, LIU B H, ZHANG H Y, WANG H, CHENG H, YU D Y. A novel soybean malectin-like receptor kinase-encoding gene, GmMLRK1, provides resistance to soybean mosaic virus. Journal of Experimental Botany, 2023, 74(8): 2692-2706.
[9]
WIDYASARI K, TRAN P T, SHIN J, SON H, KIM K H. Overexpression of purple acid phosphatase GmPAP2.1 confers resistance to soybean mosaic virus in a susceptible soybean cultivar. Journal of Experimental Botany, 2022, 73(5): 1623-1642.
[10]
COLLINS G A, GOLDBERG A L. The logic of the 26S proteasome. Cell, 2017, 169(5): 792-806.

doi: S0092-8674(17)30474-9 pmid: 28525752
[11]
MENG X B, ZHAO W S, LIN R M, WANG M, PENG Y L. Molecular cloning and characterization of a rice blast-inducible RING-H2 type zinc finger gene. DNA Sequence, 2006, 17(1): 41-48.
[12]
金晓琴, 康振, 刘伟娜, 潘永娟, 王梨嬛, 郭卫东, 杨莉. 蜜柚泛素蛋白连接酶RING-H2finger基因的克隆与表达分析. 园艺学报, 2014, 41(8): 1689-1698.
JIN X Q, KANG Z, LIU W N, PAN Y J, WANG L H, GUO W D, YANG L. Isolation and expression analysis of two ubiquitin-protein ligase RING-H2 finger genes from pommelos [Citrus grandis (L.) osbeck. Acta Horticulturae Sinica, 2014, 41(8): 1689-1698. (in Chinese)
[13]
李彦泽. 拟南芥F-box基因AtPP2-B11的功能分析及苹果RING finger型泛素连接酶E3的家族分析[D]. 泰安: 山东农业大学, 2011.
LI Y Z. Functional characterization of F-box-containing gene AtPP2-B11 and genome-wide anaysis of the RING finger proteins in apple[D]. Taian: Shandong Agricultural University, 2011. (in Chinese)
[14]
HONG J K, CHOI H W, HWANG I S, HWANG B K. Role of a novel pathogen-induced pepper C3-H-C4 type RING-finger protein gene, CaRFPI, in disease susceptibility and osmotic stress tolerance. Plant Molecular Biology, 2007, 63(4): 571-588.

pmid: 17149652
[15]
吴学闯, 曹新有, 陈明, 张晓科, 刘阳娜, 徐兆师, 李连城, 马有志. 大豆C3HC4型RING锌指蛋白基因GmRZFP1克隆与表达分析. 植物遗传资源学报, 2010, 11(3): 343-348, 359.

doi: 10.13430/j.cnki.jpgr.2010.03.016
WU X C, CAO X Y, CHEN M, ZHANG X K, LIU Y N, XU Z S, LI L C, MA Y Z. Isolation and expression pattern assay of C3HC4-type RING zinc finger protein gene GmRZFP1 in Glycine max (L.). Journal of Plant Genetic Resources, 2010, 11(3): 343-348, 359. (in Chinese)
[16]
LIU H Z, ZHANG H J, YANG Y Y, LI G J, YANG Y X, WANG X E, LI D Y, SONG F M. Functional analysis reveals pleiotropic effects of rice RING-H2 finger protein gene OsBIRF1 on regulation of growth and defense responses against abiotic and biotic stresses. Plant Molecular Biology, 2008, 68(1/2): 17-30.
[17]
NI X M, TIAN Z D, LIU J, SONG B T, XIE C H. Cloning and molecular characterization of the potato RING finger protein gene StRFP1 and its function in potato broad-spectrum resistance against Phytophthora infestans. Journal of Plant Physiology, 2010, 167(6): 488-496.
[18]
LAITY J H, LEE B M, WRIGHT P E. Zinc finger proteins: new insights into structural and functional diversity. Current Opinion in Structural Biology, 2001, 11(1): 39-46.

doi: 10.1016/s0959-440x(00)00167-6 pmid: 11179890
[19]
BERROCAL-LOBO M, STONE S, YANG X, ANTICO J, CALLIS J, RAMONELL K M, SOMERVILLE S. ATL9, a RING zinc finger protein with E3 ubiquitin ligase activity implicated in chitin- and NADPH oxidase-mediated defense responses. PLoS ONE, 2010, 5(12): e14426.
[20]
HONDO D, SHU H S, KANAYAMA Y, YOSHIKAWA N, TAKENAKA S, TAKAHASHI H. The LeATL6-associated ubiquitin/proteasome system may contribute to fungal elicitor-activated defense response via the jasmonic acid-dependent signaling pathway in tomato. Molecular Plant-Microbe Interactions, 2007, 20(1): 72-81.

doi: 10.1094/MPMI-20-0072 pmid: 17249424
[21]
SERRANO M, GUZMÁN P. Isolation and gene expression analysis of Arabidopsis thaliana mutants with constitutive expression of ATL2, an early elicitor-response RING-H2 zinc-finger gene. Genetics, 2004, 167(2): 919-929.
[22]
ZHOU L X, TIAN Y P, REN L L, YAN Z Y, JIANG J, SHI Q H, GENG C, LI X D. A natural substitution of a conserved amino acid in eIF4E confers resistance against multiple potyviruses. Molecular Plant Pathology, 2024, 25(1): e13418.
[23]
LI G L, QIAN W, ZHANG S J, ZHANG S F, LI F, ZHANG H, FANG Z Y, WU J, WANG X W, SUN R F. Variability in eukaryotic initiation factor iso4E in Brassica rapa influences interactions with the viral protein linked to the genome of Turnip mosaic virus. Scientific Reports, 2018, 8(1): 13588.
[24]
AGAOUA A, RITTENER V, TROADEC C, DESBIEZ C, BENDAHMANE A, MOQUET F, DOGIMONT C. A single substitution in Vacuolar protein sorting 4 is responsible for resistance to Watermelon mosaic virus in melon. Journal of Experimental Botany, 2022, 73(12): 4008-4021.

doi: 10.1093/jxb/erac135 pmid: 35394500
[25]
SHOPAN J, MOU H P, ZHANG L L, ZHANG C T, MA W W, WALSH J A, HU Z Y, YANG J H, ZHANG M F. Eukaryotic translation initiation factor 2B-beta (eIF2B-β), a new class of plant virus resistance gene. The Plant Journal, 2017, 90(5): 929-940.
[26]
黄仁良. OsCERK1的自然变异调控水稻与丛枝菌根真菌共生[D]. 武汉: 华中农业大学, 2019.
HUANG R L. Natural variation at OsCERK1 regulates arbuscular mycorrhizal symbiosis in rice[D]. Wuhan: Huazhong Agricultural University, 2019. (in Chinese)
[27]
车志军. 大豆对大豆花叶病毒SC7抗性的关联分析及候选基因Rsc7-1的功能研究[D]. 南京: 南京农业大学, 2021.
CHE Z J. Genome-wide association study reavels novel loci for soybean mosaic virus SC7 resistance and functional study of Rsc7-1[D]. Nanjing: Nanjing Agricultural University, 2021. (in Chinese)
[28]
DONG H, FEI G L, WU C Y, WU F Q, SUN Y Y, CHEN M J, REN Y L, ZHOU K N, CHENG Z J, WANG J L, JIANG L, ZHANG X, GUO X P, LEI C L, SU N, WANG H Y, WAN J M. A rice virescent-yellow leaf mutant reveals new insights into the role and assembly of plastid caseinolytic protease in higher plants. Plant Physiology, 2013, 162(4): 1867-1880.

doi: 10.1104/pp.113.217604 pmid: 23803583
[29]
LIU X, XU Z Y, YANG Y R, CAO P H, CHENG H, ZHOU H Y. Plastid caseinolytic protease OsClpR1 regulates chloroplast development and chloroplast RNA editing in rice. Rice, 2021, 14(1): 45.

doi: 10.1186/s12284-021-00489-6 pmid: 34018050
[30]
YANG Q, ISLAM M A, CAI K Y, TIAN S X, LIU Y, KANG Z S, GUO J. TaClpS1, negatively regulates wheat resistance against Puccinia striiformis f. sp. tritici. BMC Plant Biology, 2020, 20(1): 555.
[31]
LUO X Y, ZHANG M X, XU P, LIU G F, WEI S. The intron retention variant CsClpP3m is involved in leaf chlorosis in some tea cultivars. Frontiers in Plant Science, 2022, 12: 804428.
[32]
SHEN G X, YAN J Q, PASAPULA V, LUO J H, HE C X, CLARKE A K, ZHANG H. The chloroplast protease subunit ClpP4 is a substrate of the E3 ligase AtCHIP and plays an important role in chloroplast function. The Plant Journal, 2007, 49(2): 228-237.
[33]
WEI J, QIU X Y, CHEN L, HU W J, HU R B, CHEN J, SUN L, LI L, ZHANG H, LV Z Q, SHEN G X. The E3 ligase AtCHIP positively regulates Clp proteolytic subunit homeostasis. Journal of Experimental Botany, 2015, 66(19): 5809-5820.

doi: 10.1093/jxb/erv286 pmid: 26085677
[1] MO WenJing,ZHU JiaWei,HE XinHua,YU HaiXia,JIANG HaiLing,QIN LiuFei,ZHANG YiLi,LI YuZe,LUO Cong. Functional Analysis of MiZAT10A and MiZAT10B Genes in Mango [J]. Scientia Agricultura Sinica, 2023, 56(1): 193-202.
[2] ZHAO DingLing,WANG MengXuan,SUN TianJie,SU WeiHua,ZHAO ZhiHua,XIAO FuMing,ZHAO QingSong,YAN Long,ZHANG Jie,WANG DongMei. Cloning of the Soybean Single Zinc Finger Protein Gene GmSZFP and Its Functional Analysis in SMV-Host Interactions [J]. Scientia Agricultura Sinica, 2022, 55(14): 2685-2695.
[3] NIU Lu, ZHAO QianQian, YANG Jing, XING GuoJie, ZHANG Wei, HE HongLi, YANG XiangDong. Over-Expression of Yeast PAC1 Confers Enhanced Resistance to Soybean mosaic virus in Transgenic Soybean [J]. Scientia Agricultura Sinica, 2018, 51(2): 217-225.
[4] WANG DaGang, LI Kai, ZHI HaiJian. Progresses of Resistance on Soybean Mosaic Virus in Soybean [J]. Scientia Agricultura Sinica, 2018, 51(16): 3040-3059.
[5] ZHAO JuanYing, LIU JiaMing, FENG ZhiJuan, CHEN Ming, ZHOU YongBin, CHEN Jun, XU ZhaoShi, GUO ChangHong. The Response to Heat and Screening of the Interacting Proteins of Zinc Finger Protein GmDi19-5 in Soybean [J]. Scientia Agricultura Sinica, 2017, 50(12): 2389-2398.
[6] SHEN Jian-guo, GAO Fang-luan, CAI Wei, JIN Jing, LIAO Fu-rong, WU Zu-jian. Multiplex RT-PCR for Simultaneous Detection of Bean pod mottle virus and Soybean mosaic virus in Imported Soybean Seeds [J]. Scientia Agricultura Sinica, 2016, 49(4): 667-676.
[7] XUAN Ning, LIU Xu, ZHANG Hua, CHEN Gao, LIU Guo-xia, BIAN Fei, YAO Fang-yin. The Response of a Putative Maize Zinc-Finger Protein Gene ZmAN14 in Transgenic Tabacco to Abiotic Stress [J]. Scientia Agricultura Sinica, 2015, 48(5): 841-850.
[8] LIU Xiao-bin, LIU Na, LI Fu-kuan, WU Li-zhu, ZHANG Jie, WANG Dong-mei. Establishment of TRV-mediated Transient Gene-Silencing System in Soybean [J]. Scientia Agricultura Sinica, 2015, 48(12): 2479-2486.
[9] LI Chun-Yan, YANG Yong-Qing, WANG Da-Gang, LI Hua-Wei, ZHENG Gui-Jie, WANG Tao, ZHI Hai-Jian. Studies on Mapping and Inheritance of Resistance Genes to SMV Strain SC10 in Soybean [J]. Scientia Agricultura Sinica, 2012, 45(21): 4335-4342.
[10] . Identification and Distribution of SMV Strains in Huang-Huai Valleys [J]. Scientia Agricultura Sinica, 2006, 39(10): 2009-2015 .
[11] ,. Studies on Inheritance of Symptom Reaction to Soybean Mosaic Virus in Soybean [J]. Scientia Agricultura Sinica, 2005, 38(05): 944-949 .
[12] ,. Performances and Germplasm Evaluation of Quantitative Resistance to Soybean Mosaic Virus in Soybeans [J]. Scientia Agricultura Sinica, 2004, 37(10): 1422-1427 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!