Scientia Agricultura Sinica ›› 2023, Vol. 56 ›› Issue (18): 3655-3669.doi: 10.3864/j.issn.0578-1752.2023.18.013

• FOOD SCIENCE AND ENGINEERING • Previous Articles     Next Articles

Effects of Different Drying Methods on the Quality Characteristics of Dried Zanthoxylum armatum Leaves

WANG AnNa1(), WANG Yun1, PENG XiaoWei1, WU YuFang1, KAN Huan1, LIU Yun1, QUAN Wei2(), LU Bin3()   

  1. 1 College of Life Sciences, Southwest Forestry University, Kunming 650224
    2 Yunnan Rural Science and Technology Service Center, Kunming 650021
    3 Yunnan Academy of Forestry and Grassland Sciences, Kunming 650201
  • Received:2023-03-20 Accepted:2023-04-19 Online:2023-09-16 Published:2023-09-21
  • Contact: QUAN Wei, LU Bin

Abstract:

Objective】In order to ensure improved drying quality of Zanthoxylum armatum (Z. armatum) leaves with low processing cost and high nutritional value, the effects of different drying methods on the quality of Z. armatum leaves were studied, so as to provide a reference basis for its development and utilization. 【Method】With Z. armatum leaves as test materials, 5 different drying methods were set, including natural drying (ND), hot air drying (AD), heat pump drying (PD), vacuum drying (VD), and vacuum freezing drying (FD). The effects of 5 different drying methods on their drying characteristics, functional characteristics, microstructure, content of polyphenol, flavonoid, protein, fat, and total sugar, as well as antioxidant capacities and volatile compounds, were investigated. 【Result】The moisture ratios of Z. armatum leaves under 5 different drying methods all exhibited an exponential downward trend, and the time required to reach the end of drying was 32, 7, 6, 16 and 28 h for ND, AD, PD, VD and FD, respectively. During the drying period, the faster the water diffusion, the greater the drying rate and the shorter the elapsed time, and the drying rate was PD>AD>VD>FD>ND. The effects of different drying methods on the color of Z. armatum leaves was VD>ND>PD>AD>FD, where AD and FD could better retain their chlorophyll content at 12.74 and 12.85 mg∙g-1, respectively. The microstructure showed that temperature had a significant effect on the internal structure of Z. armatum leaves, which was more seriously damaged by high temperature, and FD exhibited a porous structure with better water-holding capacity of 5.85 g∙g-1. ND had the highest retention of sugars at 6.53 g/100 g, resulting in a higher water-solubility of 35.93%. PD retained its protein and fat better, with content of 2.43 and 4.86 g/100 g, respectively. The retention of polyphenols and flavonoids in dried Z. armatum leaves was high, with polyphenol content ranging from 72.16 to 109.50 mg∙g-1 and flavonoid content ranging from 45.60 to 82.23 mg∙g-1, where AD and FD were high and relatively close in polyphenol and flavonoid content. The scavenging capacities of DPPH∙, ABTS+∙ and the power of FRAP reduction were FD>AD>PD>ND>VD, with positive correlation between the content of polyphenols, flavonoids and antioxidant capacities. Simultaneously, the volatile compounds were determined by headspace solid-phase microextraction-mass spectrometry coupled with gas chromatography-mass spectrometry, and a total of 49 species were detected, which could be classified into seven categories according to structures, including olefins, ketones, aldehydes, esters, alcohols, benzenes, and phenols. It was found that the types, numbers, and relative content of volatile compounds in Z. armatum leaves varied under 5 different drying methods, among which olefins were dominant, with a total of 26 species and relative content ranging from 58.02% to 75.18%.【Conclusion】Based on the comprehensive quality indexes of materials and actual operation cost, it was found that AD was more suitable for drying Z. armatum leaves, with higher efficiency, lower cost, as well as relatively better quality of color and antioxidant capacities.

Key words: Zanthoxylum armatum leaves, drying methods, drying characteristics, quality assessment

Fig. 1

The relationship curves between moisture ratio, drying rate and time under different drying methods"

Table 1

Effects of different drying methods on color of dried Z. armatum leaves"

干燥方式
Drying method
色泽参数 Color parameter
L a b ΔE
鲜样 Fresh sample 43.81±0.26a -12.99±1.64d 13.92±0.95a /
自然干燥 ND 34.13±0.13c -1.53±0.15a 13.43±0.08b 15.00±0.09b
热风干燥 AD 37.69±0.24b -2.99±0.29b 11.77±0.39c 11.92±0.36d
热泵干燥 PD 33.69±0.01d -3.45±0.36b 13.71±0.28b 14.00±0.25c
真空干燥 VD 30.90±0.01e -1.53±0.08a 13.38±0.17b 17.26±0.05a
冷冻干燥 FD 37.94±0.09b -4.91±0.26c 14.64±0.08a 10.01±0.25e

Table 2

Effects of different drying methods on chlorophylls of dried Z. armatum leaves"

干燥方式
Drying method
叶绿素a
Chlorophyll a (mg∙g-1)
叶绿素b
Chlorophyll b (mg∙g-1)
总叶绿素
Total chlorophyll (mg∙g-1)
鲜样Fresh sample 4.98±0.07a 8.60±0.05a 13.73±0.14a
自然干燥 ND 4.11±0.04d 7.53±0.06d 11.63±0.02d
热风干燥 AD 4.49±0.03c 8.38±0.04b 12.74±0.03b
热泵干燥 PD 4.39±0.04c 8.07±0.04c 12.45±0.08c
真空干燥 VD 4.72±0.04b 4.15±0.04e 8.87±0.02e
冷冻干燥 FD 4.40±0.01c 8.35±0.11b 12.85±0.03b

Fig. 2

Scanning electron microscope images of dried Z. armatum leaves under different drying methods ND: Natural drying; AD: Hot air drying; PD: Heat pump drying; VD: Vacuum drying; FD: Vacuum freeze drying. The same as below"

Table 3

Water-holding capacity and water-solubility index of dried Z. armatum leaves"

干燥方式
Drying method
持水性
Water-holding capacity (g∙g-1)
水溶性指数
Water-solubility index (%)
自然干燥 ND 4.11±0.12c 35.93±0.01a
热风干燥 AD 4.64±0.22bc 27.79±0.01c
热泵干燥 PD 4.68±0.11bc 30.74±0.01b
真空干燥 VD 4.77±0.27b 27.53±0.01c
冷冻干燥 FD 5.85±0.56a 31.04±0.01b

Table 4

Effects of different drying methods on components of dried Z. armatum leaves"

干燥方式
Drying method
黄酮
Flavonoids
(mg∙g-1)
多酚
Polyphenols
(mg∙g-1)
蛋白质
Proteins
(g/100 g)
总糖
Total sugars
(g/100 g)
还原糖
Reducing sugars
(g/100 g)
脂肪
Fats
(g/100 g)
自然干燥 ND 50.37±1.71d 83.98±0.99d 1.54±0.03e 6.53±0.85a 3.82±0.01a 3.48±0.26c
热风干燥 AD 77.89±1.43b 101.16±4.40b 2.16±0.03b 5.53±0.42bc 2.79±0.13c 4.47±0.37ab
热泵干燥 PD 53.80±2.27c 96.43±1.68c 2.43±0.73a 5.59±0.31b 2.97±0.08bc 4.86±0.06a
真空干燥 VD 45.60±0.92e 72.16±0.78e 1.88±0.39d 5.23±0.21d 2.34±0.21d 3.58±0.46c
冷冻干燥 FD 82.23±2.23a 109.50±1.41a 1.99±0.50c 5.50±0.46c 3.06±0.08b 4.15±0.19b

Table 5

Effects of different drying methods on the antioxidant capacities of dried Z. armatum leaves"

干燥方式
Drying method
DPPH∙
(mmo<BOLD>L</BOLD>∙g-1)
ABTS+
(mmo<BOLD>L</BOLD>∙g-1)
FRAP
(mmo<BOLD>L</BOLD>∙g-1)
自然干燥 ND 359.77±0.84d 408.11±6.50d 217.57±1.76d
热风干燥 AD 372.67±0.33b 486.52±4.48b 316.21±0.12b
热泵干燥 PD 366.14±0.84c 471.01±4.48c 304.79±0.46c
真空干燥 VD 339.35±0.50e 344.35±2.58e 211.06±0.15e
冷冻干燥 FD 383.05±0.33a 748.44±1.49a 348.10±0.01a

Fig. 3

Total ion flow diagram of dried Z. armatum leaves under different drying methods"

Fig. 4

Maps of the differences in volatile components in dried Z. armatum leaves under different drying methods"

Table 6

Volatile components and their ROAV in dried Z. armatum under different drying methods"

No. 名称 CAS 香气描述
Aroma description
ROAV
自然干燥
ND
热风干燥
AD
热泵干燥
PD
真空干燥
VD
冷冻干燥
FD
1 α-萜品烯 α-Terpinene 99-86-5 柑橘香 Citrus - - - - <0.01
2 萜品油烯 Terpinolene 586-62-9 柑橘香 Citrus - - <0.01 - <0.01
3 3-异丙基-6-亚甲基-1-环己烯 β-Phellandrene 555-10-2 薄荷香 Mint - - 0.09 - -
4 (+)-α蒎烯 (+)-α-Pinene 7785-70-8 松香 Pine 19.04 2.55 - - 2.54
5 桧烯 Sabinene 3387-41-5 药香 Medicine 0.04 0.01 <0.01 <0.01 <0.01
6 月桂烯 Myrcene 123-35-3 辛香 Peppery 1.97 0.28 0.01 0.01 0.03
7 α-水芹烯 α-Phellandrene 99-83-2 辛香 Peppery - - - - <0.01
8 (+)-3-蒈烯 (+)-3-Carene 498-15-7 甜香 Sweet 0.2 0.07 <0.01 0.01 -
9 D-柠檬烯 D-Limonene 5989-27-5 柠檬香 Lemons 0.48 0.12 0.01 0.01 0.02
10 γ-萜品烯 γ-Terpinene 99-85-4 柠檬香Lemons <0.01 - <0.01 - <0.01
11 β-石竹烯 β-Caryophyllene 87-44-5 辛香 Peppery 0.62 0.14 0.01 0.01 <0.01
12 α-石竹烯 α-Caryophyllene 6753-98-6 木香 Woody 2.38 0.46 0.02 0.07 0.02
13 α-侧柏酮 α-Thujone 546-80-5 松香 Cedarleaf - - - - <0.01
14 壬基甲基甲酮 2-Undecanone 112-12-9 果香 Fruity 0.12 0.08 <0.01 0.01 <0.01
15 (E)-β-紫罗兰酮 trans-β-Ionone 79-77-6 木香 Woody - - 100 100 100
16 (E)-2-己烯醛 (E)-2-Hexenal 6728-26-3 青草香 Grass 5.34 0.16 0.01 - 0.06
17 苯甲醛 Benzaldehyde 100-52-7 果香 Fruity 0.95 - - - -
18 香茅醛 Citronellal 106-23-0 花香 Floral 100 100 9.31 - -
19 癸醛 Decana1 112-31-2 花香 Floral 27.25 - 0.18 0.39 -
20 (+)-香茅醛 (+)-Citronellal 2385-77-5 柑橘香 Citrus - - - - 0.05
21 β-环柠檬醛 β-Cyclocitral 432-25-7 果香 Fruity 18.77 - - - -
22 (E)-3-己烯-1-醇 (E)-3-Hexen-1-ol 928-97-2 泥土香 Earthy - - 0.04 - -
23 苯乙醇 Phenylethyl Alcohol 60-12-8 花香 Floral - 0.65 0.04 0.47 -
24 香茅醇 Citronellol 106-22-9 花香 Floral - - - 6.8 -
[1]
马金双, 程用谦. 中国植物志. 北京: 科学出版社, 1997.
MA J S, CHENG Y Q. Flora Reipublicae Popularis Sinicae. Beijing: Science Press, 1997. (in Chinese)
[2]
毕君, 曹福亮. 花椒属植物化学有效成分与开发利用研究进展. 林业科技开发, 2008, 22(3): 9-13.
BI J, CAO F L. Research progress on chemical effective components and development and utilization of Zanthoxylum. China Forestry Science and Technology, 2008, 22(3): 9-13. (in Chinese)
[3]
孟资宽, 任元元, 邹育, 张鑫, 张星灿, 王拥军. 花椒副产物的研究现状及展望. 食品与发酵科技, 2021, 57(3): 140-144.
MENG Z K, REN Y Y, ZOU Y, ZHANG X, ZHANG X C, WANG Y J. Summary of the research status and future prospects of Zanthoxylum bungeanum by-products. Sichuan Food and Fermentation, 2021, 57(3): 140-144. (in Chinese)
[4]
孟佳敏, 邸江雪, 江汉美, 卢金清, 喻祥龙, 肖宇硕. 花椒及花椒叶挥发性成分对比研究. 中国调味品, 2018, 43(4): 49-52, 58.
MENG J M, DI J X, JIANG H M, LU J Q, YU X L, XIAO Y S. Comparative study on volatile components of Zanthoxylum bungeanum and Zanthoxylum bungeanum leaves. China Condiment, 2018, 43(4): 49-52, 58. (in Chinese)
[5]
PHUYAL N, JHA P K, PRASAD RATURI P, RAJBHANDARY S. Zanthoxylum armatum DC.: Current knowledge, gaps and opportunities in Nepal. Journal of Ethnopharmacology, 2019, 229: 326-341.

doi: 10.1016/j.jep.2018.08.010
[6]
NOOREEN Z, BUSHRA U, BAWANKULE D U, SHANKER K, AHMAD A, TANDON S. Standardization and xanthine oxidase inhibitory potential of Zanthoxylum armatum fruits. Journal of Ethnopharmacology, 2019, 230: 1-8.

doi: 10.1016/j.jep.2018.10.018
[7]
史芳芳, 周孟焦, 梁晓峰, 康明, 陈凯. 竹叶花椒叶挥发油提取及其化学成分的GC-MS分析. 中药材, 2020, 43(5): 1191-1195.
SHI F F, ZHOU M J, LIANG X F, KANG M, CHEN K. Extraction of volatile oil from Zanthoxylum bungeanum leaves and GC-MS analysis of its chemical constituents. Journal of Chinese Medicinal Materials, 2020, 43(5): 1191-1195. (in Chinese)
[8]
张欢, 梁晶晶, 刘阳, 乔明锋, 胡军, 姜元华. 花椒叶在椒盐曲奇饼干制作工艺中的应用研究. 食品研究与开发, 2018, 39(14): 103-109.
ZHANG H, LIANG J J, LIU Y, QIAO M F, HU J, JIANG Y H. Study on the application of Zanthoxylum bungeanum leaves in the processing of salt and pepper cookies. Food Research and Development, 2018, 39(14): 103-109. (in Chinese)
[9]
郑若菲, 刘子嘉, 努尔尼萨∙喀斯木, 王冬梅. 花椒叶-金露梅叶复合饮料的制备及其抗氧化活性研究. 林产化学与工业, 2022, 42(2): 115-124.
ZHENG R F, LIU Z J, NVERNISA∙KASIMU, WANG D M. Preparation and antioxidant effect of Zanthoxylum bungeanum leaves and Potentilla fruticosa leaves extracts compound beverage. Chemistry and Industry of Forest Products, 2022, 42(2): 115-124. (in Chinese)
[10]
何枫媛. 花椒叶抗氧化功能口服液的研究[D]. 杨凌: 西北农林科技大学, 2015.
HE F Y. Study on antioxidant oral liquid of Zanthoxylum bungeanum leaves[D]. Yangling: Northwest A & F University, 2015. (in Chinese)
[11]
唐文, 陈思伊, 朱艳, 侯芙蓉, 欧阳晶晶. 一种甜味型花椒叶调味料及其制备方法: CN113679025A[P]. 2021-11-23.
TANG W, CHEN S Y, ZHU Y, HOU F R, OUYANG J J. Sweet pepper leaf seasoning and preparation method: CN113679025A[P]. 2021-11-23. (in Chinese)
[12]
GETAHUN E, DELELE M A, GABBIYE N, FANTA S W, VANIERSCHOT M. Studying the drying characteristics and quality attributes of chili pepper at different maturity stages: Experimental and mechanistic model. Case Studies in Thermal Engineering, 2021, 26: 101052.

doi: 10.1016/j.csite.2021.101052
[13]
KARAM M C, PETIT J, ZIMMER D, BAUDELAIRE DJANTOU E, SCHER J. Effects of drying and grinding in production of fruit and vegetable powders: a review. Journal of Food Engineering, 2016, 188: 32-49.

doi: 10.1016/j.jfoodeng.2016.05.001
[14]
SU D B, LV W Q, WANG Y, WANG L J, LI D. Influence of microwave hot-air flow rolling dry-blanching on microstructure, water migration and quality of Pleurotus eryngii during hot-air drying. Food Control, 2020, 114: 107228.

doi: 10.1016/j.foodcont.2020.107228
[15]
雷宏杰, 纪珍珍, 杨沫, 冯莉, 张鹤鑫, 徐怀德. 不同干燥方式对花椒叶品质特性的影响. 食品工业科技, 2017, 38(13): 158-162.
LEI H J, JI Z Z, YANG M, FENG L, ZHANG H X, XU H D. Effect of different drying methods on the quality characteristic of dried pepper leaves. Science and Technology of Food Industry, 2017, 38(13): 158-162. (in Chinese)
[16]
王海鸥, 谢焕雄, 陈守江, 扶庆权, 王蓉蓉, 张伟, 胡志超. 不同干燥方式对柠檬片干燥特性及品质的影响. 农业工程学报, 2017, 33(14): 292-299.
WANG H O, XIE H X, CHEN S J, FU Q Q, WANG R R, ZHANG W, HU Z C. Effect of different drying methods on drying characteristics and qualities of lemon slices. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(14): 292-299. (in Chinese)
[17]
杨婉如, 余洋洋, 陈树鹏, 余元善, 傅曼琴, 卜智斌. 不同热泵干燥温度对柑橘果皮品质的比较分析. 现代食品科技, 2021, 37(6): 237-243.
YANG W R, YU Y Y, CHEN S P, YU Y S, FU M Q, BU Z B. Quality of Citrus peels dried at different temperatures using heat pump. Modern Food Science & Technology, 2021, 37(6): 237-243. (in Chinese)
[18]
尚平, 关亚鹏, 张丽媛, 田亚红. 热风干燥桑叶的干燥特性、活性成分含量及抗氧化能力研究. 食品研究与开发, 2022, 43(1): 52-59.
SHANG P, GUAN Y P, ZHANG L Y, TIAN Y H. Study of the drying characteristics, active component content and antioxidant capacity of hot-air-dring mulberry leaves. Food Research and Development, 2022, 43(1): 52-59. (in Chinese)
[19]
LI H Y, XIE L, MA Y, ZHANG M, ZHAO Y W, ZHAO X Y. Effects of drying methods on drying characteristics, physicochemical properties and antioxidant capacity of okra. LWT-Food Science and Technology, 2019, 101: 630-638.

doi: 10.1016/j.lwt.2018.11.076
[20]
吴雅璐. 不同干燥方法对花椒叶色泽、挥发性物质及抗氧化性的影响[D]. 临汾: 山西师范大学, 2019.
WU Y L. Effects of different drying methods on color, volatile substances and antioxidant activity of Zanthoxylum bungeanum leaves[D]. Linfen: Shanxi Normal University, 2019. (in Chinese)
[21]
ZHANG Z P, SONG H G, PENG Z, LUO Q N, MING J, ZHAO G H. Characterization of stipe and cap powders of mushroom (Lentinus edodes) prepared by different grinding methods. Journal of Food Engineering, 2012, 109(3): 406-413.

doi: 10.1016/j.jfoodeng.2011.11.007
[22]
赵璐, 何婷, 丁文欢, 田树革. 考马斯亮兰法(Bradford法)测定驼乳中蛋白质的含量. 应用化工, 2016, 45(12): 2366-2368, 2372.
ZHAO L, HE T, DING W H, TIAN S G. Determination of protein from camel milk by Bradford. Applied Chemical Industry, 2016, 45(12): 2366-2368, 2372. (in Chinese)
[23]
黄阿根, 陈学好, 高云中, 车婧. 黄秋葵的成分测定与分析. 食品科学, 2007, 28(10): 451-455.
HUANG A G, CHEN X H, GAO Y Z, CHE J. Determination and analysis of ingredient in okra. Food Science, 2007, 28(10): 451-455. (in Chinese)
[24]
田平平, 李仁宙, 简永健, 李健明, 王杰. 核桃青皮的强抗氧化活性成分及其抗氧化稳定性. 中国农业科学, 2016, 49(3): 543-553. doi: 10.3864/j.issn.0578-1752.2016.03.012.

doi: 10.3864/j.issn.0578-1752.2016.03.012
TIAN P P, LI R Z, JIAN Y J, LI J M, WANG J. Analysis of antioxidative functional components from walnut green rind and its antioxidation stability. Scientia Agricultura Sinica, 2016, 49(3): 543-553. doi: 10.3864/j.issn.0578-1752.2016.03.012. (in Chinese)

doi: 10.3864/j.issn.0578-1752.2016.03.012
[25]
HU L, WANG C, GUO X, CHEN D K, ZHOU W, CHEN X Y, ZHANG Q. Flavonoid levels and antioxidant capacity of mulberry leaves: effects of growth period and drying methods. Frontiers in Plant Science, 2021, 12: 684974.

doi: 10.3389/fpls.2021.684974
[26]
党斌. 青海藜麦资源酚类物质及其抗氧化活性分析. 食品工业科技, 2019, 40(17): 30-37.
DANG B. Analysis on phenols and antioxidant activities of quinoa resources in Qinghai. Science and Technology of Food Industry, 2019, 40(17): 30-37. (in Chinese)
[27]
ZHU Y F, CHEN J, CHEN X J, CHEN D Z, DENG S G. Use of relative odor activity value (ROAV) to link aroma profiles to volatile compounds: Application to fresh and dried eel (Muraenesox cinereus). International Journal of Food Properties, 2020, 23(1): 2257-2270.

doi: 10.1080/10942912.2020.1856133
[28]
SEHRAWAT R, NEMA P K, KAUR B P. Quality evaluation and drying characteristics of mango cubes dried using low-pressure superheated steam, vacuum and hot air drying methods. LWT-Food Science and Technology, 2018, 92: 548-555.

doi: 10.1016/j.lwt.2018.03.012
[29]
TULY S S, MAHIUDDIN M, KARIM A. Mathematical modeling of nutritional, color, texture, and microbial activity changes in fruit and vegetables during drying: a critical review. Critical Reviews in Food Science and Nutrition, 2023, 63(13): 1877-1900.

doi: 10.1080/10408398.2021.1969533
[30]
里奥·范海默特著// 李智宇. 化合物嗅觉阈值汇编. 北京:科学出版社, 2018.
VANHERIMER L// LI Z Y. Compilation of Compounds Olfactory Thresholds (2nd ed.). Beijing: Science Press, 2018. (in Chinese)
[31]
闫新焕, 谭梦男, 孟晓萌, 潘少香, 刘雪梅, 郑晓冬, 白瑞亮, 宋烨. 红枣片热风干制过程中特征香气活性化合物的确定及表征. 食品科学, 2022, 43(20): 222-231.
YAN X H, TAN M N, MENG X M, PAN S X, LIU X M, ZHENG X D, BAI R L, SONG Y. Characterization of key aroma-active compounds in red jujube slices during hot air drying. Food Science, 2022, 43(20): 222-231. (in Chinese)

doi: 10.7506/spkx1002-6630-20211213-140
[32]
楚文靖, 盛丹梅, 张楠, 于艳, 张峰, 叶双双. 红心火龙果热风干燥动力学模型及品质变化. 食品科学, 2019, 40(17): 150-155.

doi: 10.7506/spkx1002-6630-20190415-196
CHU W J, SHENG D M, ZHANG N, YU Y, ZHANG F, YE S S. Hot-air drying of red-fleshed pitaya: kinetic modelling and quality changes. Food Science, 2019, 40(17): 150-155. (in Chinese)

doi: 10.7506/spkx1002-6630-20190415-196
[33]
VIEIRA DA SILVA E JR, LINS DE MELO L, BATISTA DE MEDEIROS R A, PIMENTA BARROS Z M, AZOUBEL P M. Influence of ultrasound and vacuum assisted drying on papaya quality parameters. LWT-Food Science and Technology, 2018, 97: 317-322.

doi: 10.1016/j.lwt.2018.07.017
[34]
XU B G, CHEN J N, SYLVAIN TILIWA E, YAN W Q, ROKNUL AZAM S M, YUAN J, WEI B X, ZHOU C S, MA H L. Effect of multi-mode dual-frequency ultrasound pretreatment on the vacuum freeze-drying process and quality attributes of the strawberry slices. Ultrasonics Sonochemistry, 2021, 78: 105714.

doi: 10.1016/j.ultsonch.2021.105714
[35]
赵愉涵, 袁丽雪, 王敏, 孙斐, 韩聪, 陈庆敏, 岳凤丽, 崔波, 傅茂润. 不同干燥方式对芹菜叶品质的影响. 食品与发酵工业, 2022, 48(8): 205-211.
ZHAO Y H, YUAN L X, WANG M, SUN F, HAN C, CHEN Q M, YUE F L, CUI B, FU M R. Effects of different drying methods on quality attributes of celery leaves. Food and Fermentation Industries, 2022, 48(8): 205-211. (in Chinese)
[37]
ZHANG L J, DONG X B, FENG X, IBRAHIM S A, HUANG W, LIU Y. Effects of drying process on the volatile and non- volatile flavor compounds of Lentinula edodes. Foods, 2021, 10(11): 2836.

doi: 10.3390/foods10112836
[36]
FEI X T, QI Y C, LEI Y, WANG S J, HU H C, WEI A Z. Transcriptome and metabolome dynamics explain aroma differences between green and red prickly ash fruit. Foods, 2021, 10(2): 391.

doi: 10.3390/foods10020391
[38]
蒲凤琳. 不同产地花椒风味分析及其特征香气指纹图谱的构建[D]. 成都: 西华大学, 2017.
PU F L. Flavor analysis of Zanthoxylum bungeanum from different producing areas and construction of its characteristic aroma fingerprint[D]. Chengdu: Xihua University, 2017. (in Chinese)
[39]
赵珊, 仲伶俐, 秦琳, 黄世群, 李曦, 郑幸果, 雷欣宇, 雷绍荣, 郭灵安, 冯俊彦. 不同干燥方式对甘薯叶功能成分及抗氧化活性的影响. 中国农业科学, 2021, 54(21): 4650-4663. doi: 10.3864/j.issn.0578-1752.2021.21.014.

doi: 10.3864/j.issn.0578-1752.2021.21.014
ZHAO S, ZHONG L L, QIN L, HUANG S Q, LI X, ZHENG X G, LEI X Y, LEI S R, GUO L A, FENG J Y. Effects of different drying methods on functional components and antioxidant activity in sweet potato leaves. Scientia Agricultura Sinica, 2021, 54(21): 4650-4663. doi: 10.3864/j.issn.0578-1752.2021.21.014. (in Chinese)

doi: 10.3864/j.issn.0578-1752.2021.21.014
[1] ZHAO Shan,ZHONG LingLi,QIN Lin,HUANG ShiQun,LI Xi,ZHENG XingGuo,LEI XinYu,LEI ShaoRong,GUO LingAn,FENG JunYan. Effects of Different Drying Methods on Functional Components and Antioxidant Activity in Sweet Potato Leaves [J]. Scientia Agricultura Sinica, 2021, 54(21): 4650-4663.
[2] XUE Shan, ZHAO WuQi, GAO GuiTian, Wu Zhong. Drying Characteristics and Model of Bitter Melon Slice in Air-Impingement Jet Dryer [J]. Scientia Agricultura Sinica, 2017, 50(4): 743-754.
[3] DENG YuanYuan, TANG Qin, ZHANG RuiFen, ZHANG Yan, WEI ZhenCheng, LIU Lei, MA YongXuan, ZHANG MingWei. Effects of Different Drying Methods on the Nutrition and Physical Properties of Momordica charantia [J]. Scientia Agricultura Sinica, 2017, 50(2): 362-371.
[4] . Effects of Different Drying Methods on Quality Changes during Processing and Storage of Tremella fuciformis [J]. Scientia Agricultura Sinica, 2016, 49(6): 1163-1172.
[5] ZHAO Ke, XIAO Xu-lin. Drying Characteristics and Model of Walnut in Air-Impingement Jet Dryer [J]. Scientia Agricultura Sinica, 2015, 48(13): 2612-2621.
[6] LI Wen-Feng, XIAO Xu-Lin, WANG Wei. Drying Characteristics and Model of Purple Sweet Potato in Air-impingement Jet Dryer [J]. Scientia Agricultura Sinica, 2013, 46(2): 356-366.
[7] XIE Jian,ZHENG Sheng-xian,YANG Zeng-ping,NIE Jun,LIAO Yu-lin,WU Xiao-dan,XIANG Yan-wen
. Comprehensive Evaluation of Soil Quality in Different Productive Paddy Soils in Typical Double-Rice Cropping Regions of Hunan Province
[J]. Scientia Agricultura Sinica, 2010, 43(23): 4840-4851 .
[8]

. Effects of Drying Maize Seeds with Different Intermittent Microwave on Germination Percentage and Drying Characteristics
[J]. Scientia Agricultura Sinica, 2009, 42(1): 340-348 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!