Scientia Agricultura Sinica ›› 2019, Vol. 52 ›› Issue (2): 293-311.doi: 10.3864/j.issn.0578-1752.2019.02.009

• SOIL & FERTILIZER·WATER-SAVING IRRIGATION·AGROECOLOGY & ENVIRONMENT • Previous Articles     Next Articles

Environmental Risks for Application of Phosphogysum in Agricultural Soils in China

WANG XiaoBin,YAN Xiang(),LI XiuYing,JI HongJie   

  1. Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081
  • Received:2018-05-24 Accepted:2018-08-22 Online:2019-01-16 Published:2019-01-21
  • Contact: Xiang YAN E-mail:yanxiang@caas.cn

Abstract:

Phosphogypsum (PG) is an industrial by-product gypsum obtained from wet process production of phosphoric acid, and it is one of the largest solid waste emissions in the chemical industry. With the development of phosphate and compound fertilizer industry at the late 1950s, the PG waste residue discharged from the production process had continuously increased in China. To solve the environmental problems caused by massive PG stockpiling, at present, PG was mainly used as for building materials, such as cement retarder, and gypsum-building materials, as well as for filling mine pits and road construction. Some researches have also tried to use PG instead of natural gypsum for saline-alkali land amendment in agriculture since 1990s. However, several harmful elements in phosphate rock were preserved or enriched in PG in the process of wet process phosphoric acid production, resulting in high concentration of hazardous pollutants, including heavy metals, fluoride (F), and radioactive element radium ( 226Ra) in PG, and to some extent, even far beyond the limits of national standards for soil environmental quality and for groundwater quality. For example, the concentrations of heavy metals Cr, As, Cd and Hg in PG exceed the limits (about 20%-67%) of Soil Environmental Quality Risk Control Standard for Soil Contamination of Agricultural Land (GB 15618-2018); and the leachable concentrations of Hg, Cd, Pb, Ni, Cr and Be in PG exceeded the limits (IV-V) of Standards for Groundwater Quality (GB/T 14848-2017). The concentrations of total F and water-soluble F in PG exceeded the critical values of total and soluble F (about 89% and 100%, respectively) in soils of endemic fluorosis-affected areas in China, and the leachable concentration of F in PG exceeded the limit (V) of Standards for Groundwater Quality, and some exceeded the limit of Identification Standards for Hazardous Wastes Identification for Extraction Toxicity (GB 5085.3-2007). According to the concentration of pollutants in PG, as compared with the limits of Soil Environmental Quality Risk Control Standard (GB 15618-2018), the long-term impacts of PG application (if PG input was at rate of 22.5 t·hm -2·a -1, and with no leaching) on the accumulations of pollutants in the soil could be estimated. For instance, the accumulation of Cd, Hg, F and 226Ra from un-contaminated to contaminated soils would need 1, 5, 4 and 25 years, respectively. Some field experiments have shown that PG could lead to the risk of excessive pollutants (such as F, As, Cd, Hg, Pb and Zn) enriched in some agricultural products. In 2017, the Identification Standards for Solid Wastes General Rules (GB 34330-2017) was issued in China, which stipulated clearly that those by-products produced in the production process, including PG produced in the inorganic chemical production process, were solid wastes; and those directly used for soil amendment, land reconstruction, land restoration and other land use methods by solid waste disposal were still managed as solid wastes. In order to ensure soil health, food safety, and environmental quality, it was suggested that those industrial waste like PG without any harmless treatment of pollutants, and with harmful elements far beyond the limit standard should not be allowed to directly use as for soil remediation or conditioning in the farmlands by solid waste disposal methods, to prevent hazardous pollutants from entering food chain and harming to human health.

Key words: industrial waste, environmental safety risk, soil pollution, phosphogysum, heavy metals

Table 1

Concentration of elements in phosphate ores in China"

pH Hg Cd As Pb Cr Ni Cu Zn F 226Ra 232Th 40K 238U
(mg·kg-1) (Bq·kg-1)
参考文献References [40,47-48] [49] [47,50-51] [49,50] [49,50,51] [49,50,51] [49] [48,51] [48,51] [50,52-61] [62,63,64,65,66,67,68,69] [62,63,64,65] [63,65-66] [62,63,64]
样本数Num. 4 1 15 5 15 15 1 12 12 35 40 17 13 13
最小值Min. 4.68 0.69 0.13 0.58 5.5 7.5 48.8 1.3 0.6 5100 47.0 0.4 12.5 117.6
最大值Max. 9.28 0.69 2.29 20.40 283.0 123.8 48.8 12.5 10.7 37500 1566.0 14.7 231.0 1640.0
平均Ave. 7.39 0.69 0.42 9.46 35.4 25.3 48.8 9.8 8.7 22191 316.9 6.7 139.1 394.3
标准差SD. 2.10 0.53 8.29 71.1 27.6 3.1 2.6 9917 319.0 5.7 66.1 402.9
变异系数CV (%) 28.4 125.6 87.58 201.0 109.3 31.6 30.4 44.7 100.7 85.6 47.5 102.2
土壤环境背景值
Soil background [44,45]
0.065 0.097 11.2 26.0 61.0 26.9 22.6 74.2 478 44.7 16.5 588.3 32.4
土壤环境风险系数
Environment risk coeff.
10.62 4.31 0.84 1.36 0.41 1.81 0.43 0.12 46.4 7.1 0.4 0.2 12.2

Table 2

Concentration of radionuclides in phosphogysum and national environmental quality standard-limits"

226Ra 232Th 40K 238U 内照射指数IRa 外照射指数Ir
参考文献References [62,71-77] [62,71-77] [18,72-73,76-78] [62,64] [62,71-77] [62,71-77]
样本数Num. 31 29 27 4 31 30
最小值Min. 82.1 0.33 1.0 40 0.41 0.23
最大值Max. 788.0 137.00 1669.0 147 3.93 2.83
平均Ave. 305.0 21.94 277.2 87.8 1.59 1.05
标准差SD. 210.7 36.65 404.8 46.6 1.12 0.73
变异系数CV (%) 69.1 167.0 146.0 53.1 70.6 69.7
磷矿石中含量Phosphate ores (Table 1) 316.9 6.7 139.1 394.3
富集系数Enrichment coeff. 0.96 3.27 1.99 0.22
土壤环境背景值Soil background [45] 44.7 16.5 588.3 32.4
土壤环境风险系数Enrichment coeff. 6.8 1.3 0.5 2.7
超出标准率Over limits (%) 52 52 43
GB 6566—2010 [70] <200 <1.0 <1.0

Table 3

Concentration of elements in phosphogysum and enrichment coefficients of elements, national environmental quality standard-limits"

pH Hg Cd As Pb Cr Ni Cu Zn F F水溶
参考文献
References
[20,81-84,
106-107]
[9,71,81,
85-87]
[9-10,20,
71,78,81,
85-89]
[9-10,20,
71,78,81,
85-86,89]
[9,71,78,
81,85-89]
[9-10, 78,
81,85,87,89]
[78,81,85,
87-89]
[9, 71,
81,85-89]
[9, 71,78,
81,85-89]
[1, 9-10,16, 22,
34,43,52, 72-73,
78,81-84,88,90-107]
[9-10,43,
73,83,101,105-108]
样本数Number 37 12 35 30 33 25 23 27 33 126 15
最小值Min. 1.8 0.06 0 0.297 1.3 0 0.28 1.87 0 40 11.84
最大值Max. 6.5 10.78 37 66.5 240.5 1200 335 160 210 20400 7500
平均Ave. 3.41 1.61 1.96 18.3 38.6 106.8 31.9 29.0 67.3 3662 2143
标准差SD. 1.22 2.95 6.18 14.6 42.7 236.4 67.4 29.7 62.4 3657 2530
变异系数CV (%) 35.9 183.6 314.5 80.1 110.5 221.4 211.4 102.6 92.7 99.9 118.1
磷矿石中含量Phosphate ores (Table1) 7.39 0.69 0.42 9.46 35.39 25.27 48.80 9.77 8.66 22191
富集系数Enrichment coeff. 2.33 4.68 1.93 1.09 4.23 0.65 2.97 7.77 0.17
土壤环境背景值Soil background [44] 0.065 0.097 11.2 26 61 26.9 22.6 74.2 478
土壤环境风险系数Environment risk coeff. 24.7 20.2 1.6 1.5 1.8 1.2 1.3 0.9 7.7
超标数Over limits’ Num. 8 22 12 2 5 1 3 1 112 15
超出土壤标准率Over limits (%) 66.7 62.9 40.0 6.1 20.0 4.3 11.1 3.0 88.9 100.0
GB 15618—2018 limits [79] <0.5 <0.3 <20 <70 <150 <60 <50 <200
参考限量Referred limits[80] ≤800 ≤2.5

Table 4

Comparison between leachable contents of the elements in phosphogypsum and national environmental quality standard- limits for hazardous pollutants"

元素
Elements
浸出浓度 Leachable contents (Over-limit level) (mg·L-1) GB 5085.3—2007[117]
Limited value
(mg·L-1)
GB 8978—1996[115]
Limited value
(mg·L-1)
GB/T 14848—2017 [116]
Limited value (mg·L-1)
No. 1 [118] No. 2[103] No. 3[33]
湿法Wet 干法Dry III IV V
pH 4.22*-4.99*
(V)
2.23*-5.73*
(V-IV)
2.96*-3.09*
(V)
3.05*-5.37*
(V)
≤2.0 & ≥12.5a) 6-9b) 6.5-8.5 5.5-6.5,8.5-9 <5.5,>9
F 10.1*-98.0*
(V)
2.75*-45.9*
(V)
98.6*-224*
(V)
10.9*-20.2*
(V)
100 10-20 ≤1.0 ≤2.0 >2.0
Hg 0.000015-0.00159* (I-IV) 0.0002-0.014*
(I-V)
0.007-0.009*
(V)
0.000015
(I)
0.1 0.05 ≤0.001 ≤0.002 >0.002
Cd 0.015*-0.05*
(V)
0.005-0.023*
(III-V)
0.018*-0.027*
(V)
0.016*-0.065*
(V)
1 0.1 ≤0.005 ≤0.01 >0.01
As 0.0033-0.03
(II-III)
0.0007-0.117*
(I-V)
0.0096-0.047 (II-III) 0.009-0.016 (II-III) 5 0.5 ≤0.01 ≤0.05 >0.05
Pb 0.72*-2.00*
(V)
<0.1*
(IV)
0.18*-0.26*
(V)
0.19*-1.07*
(V)
5 1.0 ≤0.01 ≤0.1 >0.1
Cr 0.04-0.17*
(III-V)
<0.05
(III)
0.03-0.06*
(III-IV)
0.02-0.08*
(III-IV)
15 1.5 ≤0.05 ≤0.1 >0.1
Ni 0.15*-0.28*
(V)
0.04*-0.07*
(IV)
0.19*-0.33*
(V)
0.16*-0.32*
(V)
5 1.0 ≤0.02 ≤0.1 >0.1
Cu 0.04-0.11
(II-III)
0.02-0.06
(II-III)
0.024-0.15
(II-III)
0.034-0.13 (II-III) 100 0.5-2.0 ≤1.0 ≤1.5 >1.5
Zn 0.097-0.415
(I-II )
0.005-0.272
(I-II )
1.51*-5.10*
(IV-V)
0.036-0.771*
(I-III)
100 2.0-5.0 ≤1.0 ≤5.0 >5.0
Ba 0.05-0.064
(II)
3*-4.7*
(IV-V)
0.119-0.128
(III)
0.059-0.136 (II-III) 100 ≤0.70 ≤4.0 >4.0
Be 0.005*-0.009*
(IV)
<0.005*
(IV)
0.008*-0.012*
(V)
0.004*-0.010*
(V)
0.02 0.005 ≤0.002 ≤0.06 >0.06

Table 5

The effect of phosphogypsum (PG) on contents of pollutants in agricultural products"

试验地点/土壤
Sites /Soils tested
作物
Crop
磷石膏用量
PG rates
(kg·hm-2)
作物中In plant (mg·kg-1)
F As Cd Hg Pb Zn
沈阳康平县盐碱土[10]
Saline soil in Shenyang
玉米Maize
/水稻Rice
3750 0.62-1.18
/0.41-1.28
甘肃天水秦安县黄绵土[11]
Dryland in Gansu
大豆籽粒Soybean seed
/秸秆Stalks
1500-12000
/0.10-0.14

/0.11-0.24
1.10-4.86
/1.10-4.86
天津滨海盐碱地[16]
Coastal saline soil in Tianjin
水稻Rice
/玉米Maize
1500-5250 4.69-5.28
/3.33-3.90
山东陵县盐碱土[122]
Saline soil in Shandong
小麦Wheat 15000-60000 2.09-3.54
贵州模拟磷石膏渣场[123,124]
Modified PG matrix in Guizhou
蔬菜Vegetables 磷石膏改良基质
Modified PG matrix
79-266 0.66-1.56 46-362
云南玉溪江川县低硫缺磷土壤[20]
Tobacco-planting soil in Yunnan
烤烟Tobacco 90000 0.87-0.89
GB/T 18406.1—2001[121] ≤1.0 ≤0.5 ≤0.05 ≤0.01 ≤0.2
GB 13106—91[125] ≤20

Table 6

Assumed cumulative loading of elements that could result from phosphogypsum application to soil and estimated over- limit years (hypothetical assumption)"

Hg Cd As F 226Ra
(Bq·kg-1)
(mg·kg-1)
磷石膏中元素浓度Max. content in PG (mg·kg-1)
10.8 37.0 66.5 20400 788
磷石膏年用量Annual rate of PG (t·hm-2) 土壤中元素年累积量Accumulation in soil (kg·hm-2)
4.5 0.049 0.167 0.299 92 3.5
22.5 0.243 0.833 1.496 459 17.7
40.5 0.437 1.499 2.693 826 31.9
58.5 0.631 2.165 3.890 1193 46.1
超标年限Over-limit (years)
4.5 23.1 4.1 150 19.6 127
22.5 4.6 0.8 30 3.9 25
40.5 2.6 0.5 17 2.2 14
58.5 1.8 0.3 12 1.5 10
GB 15618—2018 limits [79]
参考限量Referred limits[80]
<0.50 <0.30 <20 ≤800
GB 6566—2010 limits [70] (Bq·kg-1) ≤200
[1] 杜璐杉, 明大增, 李志祥, 李勇辉 . 磷石膏的利用和回收. 化工技术与开发, 2010,39(4):25-28.
DU L S, MING D Z, LI Z X, LI Y H . Utilization and recovery of phosphogypsum. Technology & Development of Chemical Industry, 2010,39(4):25-28. (in Chinese)
[2] 梁贵鸿 . 环境工程中化工废渣磷石膏污染的治理探讨. 化工管理, 2014,18:217.
LIANG G H . Pollution governance for chemical waste phosphogypsum in environmental engineering. Chemical Enterprise Management, 2014,18:217. (in Chinese)
[3] 常近时 . 贵州省磷石膏渣对乌江汞排放的评估与环保对策. 毕节学院学报, 2014,32(8):62-67.
CHANG J S . Appraisal about mercury pollution of Wujiang River from phosphogypsum in Guizhou province and some suggestions for environmental protection. Journal of Bijie University, 2014,32(8):62-67. (in Chinese)
[4] 邢华, 陆树立, 周奇, 黄启飞 . 中国磷石膏资源化管理分析. 环境污染与防治, 2008,30(4):90-93.
XING H, LU S L, ZHOU Q, HUANG Q F . Resource management analysis on China phosphogypsum. Environmental Pollution & Control, 2008,30(4):90-93. (in Chinese)
[5] 张茹, 李艳军, 刘杰, 赵月阳, 姜雨妲 . 磷石膏的综合利用及有害元素处理方法. 矿产保护与利用,2015(2):50-54.
ZHANG R, LI Y J, LIU J, ZHAO Y Y, JIANG Y D . Utilization of phosphogypsum and treatment of the impure elements.Conservation and Utilization of Mineral Resources,2015(2):50-54. (in Chinese)
[6] 蔡良 . 磷石膏农用途径的探讨. 土壤肥料,1990(1):37-39.
CAI L . Discussion on the agricultural way of phosphogypsum.Soils and Fertilizers,1990(1):37-39. (in Chinese)
[7] 蔡良 . 磷石膏农用研究的新进展. 磷肥与复肥,1994(3):75-80.
CAI L . New progress in agricultural research of phosphogypsum.Phosphate & Compound Fertilizer,1994(3):75-80. (in Chinese)
[8] 王荣华, 王立兴, 刘兴泉, 王玮, 左余宝, 齐树森 . 磷石膏农用效果试验技术总结. 化肥工业,1994(3):23-27.
WANG R H, WANG L X, LIU X Q, WANG W, ZUO Y B, QI S S . Journal of the Chemical Fertilizer Industry,1994(3):23-27. (in Chinese)
[9] 张宝安, 章守陶 . 从磷石膏的特性谈农业上的应用. 土壤肥料,1997(2):3-7.
ZHANG B A, ZHANG S T . Talking about the application in agriculture from the characteristics of phosphogypsum.Soil and Fertilizer Sciences in China,1997(2):3-7. (in Chinese)
[10] 许宇飞, 张炜, 李艳金, 金志勇 . 盐碱土改良剂-石膏对农业环境影响的探讨. 农业环境与发展,2000(1):37-38.
XU Y F, ZHANG W, LI Y J, JIN Z Y . Saline soil conditioner - the impact of gypsum on agricultural environment.Agro-Environment and Development,2000(1):37-38. (in Chinese)
[11] 王成宝, 崔云玲, 郭天文, 李莲芳 . 磷石膏的农业应用及其安全性评价. 土壤通报, 2010,41(2):408-412.
WANG C B, CUI Y L, GUO T W, LI L F . Application of phosphogypsum in agriculture and its safety evaluation. Chinese Journal of Soil Science, 2010,41(2):408-412. (in Chinese)
[12] 尹得仲, 崔增团, 郭世乾, 傅亲民 . 不同盐碱地改良剂在棉花上的应用效果分析. 农业科研与信息, 2014,19:52-53.
YIN D Z, CUI Z T, GUO S Q, FU Q M . Analysis of effects of different soil conditioners on cotton in saline land. Agricultural Science-Technology and Information, 2014,19:52-53. (in Chinese)
[13] 翟永胜, 苗红英, 樊秀荣, 孙祥春, 米志恒, 闫素珍, 苏化洲, 孙秀云 . 内蒙古临河区磷石膏改良盐碱地效果分析. 安徽农业科学, 2017,45(14):98-99.
ZHAI Y S, MIAO H Y, FAN X R, SUN X C, MI Z H, YAN S Z, SU H Z, SUN X Y . The effect of phosphogypsum on improvement of saline-alkali land in Linhe district of Inner Mongolia. Journal of Anhui Agricultural Sciences, 2017,45(14):98-99. (in Chinese)
[14] 孙玉霞 . 盐碱地施用磷石膏对玉米产量的影响. 农村科技,2017(6):19-21.
SUN Y X . Effects of phosphogypsum on maize yield in saline land.Rural Science & Technology,2017(6):19-21. (in Chinese)
[15] 张济世, 于波涛, 张金凤, 刘玉明, 蒋曦龙, 崔振岭 . 不同改良剂对滨海盐渍土土壤理化性质和小麦生长的影响. 植物营养与肥料学报, 2017,23(3):704-711.
ZHANG J S, YU B T, ZHANG J F, LIU Y M, JIANG X L, CUI Z L . Effects of ifferent amendments on soil physical and chemical properties and wheat growth in a coastal saline soil. Journal of Plant Nutrition and Fertilizer, 2017,23(3):704-711. (in Chinese)
[16] 陈玉琦 . 工业固体废渣-磷石膏在农业上应用效果的研究. 天津农学院学报, 2005,12(3):49-52.
CHEN Y Q . Research on application effect of solid industrial waste residue: phosphorus plaster on Agriculture. Journal of Tianjin Agricultural College, 2005,12(3):49-52. (in Chinese)
[17] 刘雅辉, 王秀萍, 李强, 张国新, 鲁雪林 . 淤泥质滨海重盐土低成本快速脱盐技术研究. 水土保持研究, 2015,22(1):168-171.
LIU Y H, WANG X P, LI Q, ZHANG G X, LU X L . Study on rapid desalting of muddy coastal heavy solonnchack with low cost. Research of Soil and Water Conservation, 2015,22(1):168-171. (in Chinese)
[18] 张乐, 徐平平, 李素艳, 孙向阳, 张涛, 刘子豪, 姚丽媛 . 有机-无机复合改良剂对滨海盐碱地的改良效应研究. 中国水土保持科学, 2017,15(2):92-99.
ZHANG L, XU P P, LI S Y, SUN X Y, ZHANG T, LIU Z H, YAO L Y . Amelioration effects of organic-inorganic compound amendment on coastal saline-alkali soil. Science of Soil and Water Conservation, 2017,15(2):92-99. (in Chinese)
[19] 李九玉, 王宁, 徐仁扣 . 工业副产品对红壤酸度改良的研究. 土壤, 2009,41(6):932-939.
LI J Y, WANG N, XU R K . Amelioration of industrial by-products on soil acidity in red soil. Soils, 2009,41(6):932-939. (in Chinese)
[20] 张传光, 岳献荣, 史静, 张乃明, 谷林静, 郭辉, 夏运生 . 昆明不同产地磷石膏对烤烟生长及砷污染风险的影响. 生态环境学报, 2014,23(4):685-691.
ZHANG C G, YUE X R, SHI J, ZHANG N M, GU L J, GUO H, XIA Y S . Effects of different phosphogypsums from Kunming area on growth of tobacco and arsenic pollution risk. Ecology and Environmental Sciences, 2014,23(4):685-691. (in Chinese)
[21] 尹元萍, 舒艺周, 董文汉, 黄莉, 孙文丽, 宋玲凤, 梁泉 . 连续3年施用磷石膏对红壤理化性质的影响. 西南农业学报, 2016,29(9):2187-2192.
YIN Y P, SHU Y Z, DONG W H, HUANG L, SUN W L, SONG L F, LIANG Q . Effect of phosphorus gypsum application for three consecutive years on physical and chemical characteristics of red soil. Southwest China Journal of Agricultural Sciences, 2016,29(9):2187-2192. (in Chinese)
[22] 陈彦翠, 甘四洋, 万军, 闫亚楠, 赵怡然, 王君, 梁嘉琪 . 贵州省磷石膏的基本性能及应用研究. 砖瓦,2015(2):27-30.
CHEN Y C, GAN S Y, WAN J, YAN Y N, ZHAO Y R, WANG J, LIANG J Q . Study on the basic properties of phosphogypsum and its application in Guizhou province.Brick & Tile,2015(2):27-30. (in Chinese)
[23] 王晓岑, 李淑芹, 许景钢 . 农业应用磷石膏前景展望. 中国农学通报, 2010,26(4):287-294.
WANG X C, LI S Q, XU J G . Prospects for applications of phosphogypsum in agriculture. Chinese Agricultural Science Bulletin, 2010,26(4):287-294. (in Chinese)
[24] 武新民, 杨再银 . 磷石膏综合利用现状和展望. 硫酸工业,2017(8):18-21.
WU X M, YANG Z Y . Status and prospect of comprehensive utilization of phosphogypsum.Sulphuric Acid Industry,2017(8):18-21. (in Chinese)
[25] 叶学东 . “十二五”期间磷石膏利用现状及当前工作重点. 硫酸工业,2017(1):41-42.
YE X D . Phosphogypsum utilization situation during the Twelfth Five-Year plan period and current work focus.Sulphuric Acid Industry,2017(1):41-42. (in Chinese)
[26] 叶学东 . 2016年我国磷石膏利用现状、存在问题及建议. 磷肥与复肥, 2017,32(7):1-3.
YE X D . Present status, existing problems and suggestions of phosphogypsum utilization in China in 2016. Phosphate & Compound Fertilizer, 2017,32(7):1-3. (in Chinese)
[27] 郑磊, 陈宏坤, 王怀利, 齐英杰, 高璐阳, 张素素 . 我国磷石膏综合利用现状与发展建议. 磷肥与复肥, 2017,32(3):33-35.
ZHENG L, CHEN H K, WANG H L, QI Y J, GAO L Y, ZHANG S S . Comprehensive utilization status and development suggestions of phosphogypsum in China. Phosphate & Compound Fertilizer, 2017,32(3):33-35. (in Chinese)
[28] 高涵, 张文静 . 加强磷石膏堆场污染防治. 中国环境报, 2018-05-28(6).
GAO H ZHANG W J . Strengthening pollution control of phosphate gypsum stack. China Environment News, 2018 -05-28(6). (in Chinese)
[29] 李芳, 谷海明 . 浅析磷肥企业磷石膏堆存与综合利用. 环境科学导刊, 2016,35(S1):98-99.
LI F, GU H M . Analysis of stockpiling and comprehensive utilization of phosphogypsum in the phosphate fertilizer industry. Environmental Science Survey, 2016,35(S1):98-99. (in Chinese)
[30] 张凡凡, 陈超, 张西兴, 相利学 . 不同来源石膏的性能特点与应用分析. 无机盐工业, 2017,49(8):10-13.
ZHANG F F, CHEN C, ZHANG X X, XIANG L X . Analysis on performance characteristics and applications of gypsum from different sources. Inorganic Chemicals Industry, 2017,49(8):10-13. (in Chinese)
[31] 国家环保局. 环境标志产品技术要求-化学石膏制品: HJ/T 211—2005. 北京:中国环境科学出版社, 2005.
State Environmental Protection Administration of the People's Republic of China. Technical Requirement for Environmental Labeling Products Chemical Gypsum Products: HJ/T 211—2005. Beijing:China Environmental Science Press, 2005. ( in Chinese)
[32] 国家环保局. 环境标志产品技术要求-轻质墙体板材: HJ/T 223—2005. 北京:中国环境科学出版社, 2005.
State Environmental Protection Administration of the People's Republic of China. Technical Requirement for Environmental Labeling Products Lightweight Wall Boards: HJ/T 223—2005. Beijing:China Environmental Science Press, 2005. ( in Chinese)
[33] 杨永宏, 李柳琼, 顾大钧, 马晓峰 . 磷石膏属性调查及控制研究. 昆明理工大学学报(理工版), 2006,31(6):76-78.
YANG Y H, LI L Q, GU D J, MA X F . Property Investigation and Control Research of Phosphogypsum. Journal of Kunming University of Science and Technology (Science and Technology), 2006,31(6):76-78. (in Chinese)
[34] 胡来明, 陈清 . 化学工业固体废物毒性分析研究. 安徽化工,2002(6):31-33.
HU L M, CHEN Q . Analyzing the Toxicity discrimination of chemical Industrial Solid waste.Anhui Chemical Industry,2002(6):31-33. (in Chinese)
[35] 中华人民共和国国家环境保护部和国家质量监督检验检疫总局. 固体废物鉴别标准通则: GB 34330—2017. 北京:中国环境科学出版社, 2017.
State Environmental Protection Administration of the People's Republic of China and General Administration of Quality Supervision,Inspection and Quarantine of the People’s Republic of China. Identification Standards for Solid Wastes General Rules: GB 34330— 2017. Beijing:China Environmental Science Press, 2017. ( in Chinese)
[36] 马鸿文, 刘昶江, 苏双青, 孙华, 刘梅堂 . 中国磷资源与磷化工可持续发展. 地学前缘 (中国地质大学(北京); 北京大学), 2017,24(6):133-141.
MA H W, LIU C J, SU S Q, SUN H, LIU M T . Phosphorus resource and sustainable development of phosphorus chemical industry in China.Earth Science Frontiers (China University of Geosciences (Beijing); Peking University),24(6):133-141. (in Chinese)
[37] 纳志辉, 王国清, 李川坪 . 磷肥企业氟化物主要排放去向及环境管理重点. 环境科学导刊, 2015,34(S1):45-47.
NA Z H, WANG G Q, LI C P . Emissions of fluoride and environmental management in phosphate fertilizer enterprises. Environmental Science Survey, 2015,34(S1):45-47. (in Chinese)
[38] 官洪霞, 谭建红, 袁鹏, 蒋达波, 南鹏林 . 对磷石膏中各危害组分环境污染本质的分析. 广州化工, 2013,41(22):135-136.
GUAN H X, TAN J H, YUAN P, JIANG D B, NAN P L . The harm of phosphogypsum component analysis of the nature of environmental pollution. Guangzhou Chemical Industry, 2013,41(22):135-136. (in Chinese)
[39] 袁鹏, 谭建红, 官洪霞, 蒋达波, 南鹏林 . 磷石膏中有害杂质对环境影响的监测与评价. 广东化工, 2013,22:124-125.
YUAN P, TAN J H, GUAN H X, JIANG D B, NAN P L . Monitoring and evaluation of the harmful effects on the environment of the impurities in phosphogypsum. Guangdong Chemical Industry, 2013,22:124-125. (in Chinese)
[40] 郑美扬, 樊军芳, 闻伟峰 . 磷矿和磷肥中放射性核素迁移及其防护. 核电子学与探测技术, 2010,30(12):1641-1644.
ZHENG M Y, FAN J F, WEN W F . Migration of radionuclides in phosphate rock and phosphate and their protection. Nuclear Electronics & Detection Technology, 2010,30(12):1641-1644. (in Chinese)
[41] IAEA . Extent of Environmental contamination by naturally occurring radioactive material(NORM)and technological options for mitigation. Technical Reports Series No. 419. 2003.
[42] RENTERÍA-VILLALOBOS M, VIOQUE I, MANTERO J, MANJÓN G . Radiological, chemical and morphological characterizations of phosphate rock and phosphogypsum from phosphoric acid factories in SW Spain. Journal of Hazardous Materials, 2010,181:193-203.
doi: 10.1016/j.jhazmat.2010.04.116
[43] 叶学东 . 磷石膏的质量现状及综合利用中须注重的五个方面. 磷肥与复肥, 2009,24(6):60-64.
YE X D . Status of phosphogypsum quality and five aspects should be noted in its utilization. Phosphate & Compound Fertilizer, 2009,24(6):60-64. (in Chinese)
[44] 魏复盛, 陈静生, 吴燕玉, 郑春江 . 中国土壤环境背景值研究. 环境科学, 1991,12(4):12-19.
WEI F S, CHEN J S, WU Y Y, ZHENG C J . Research on China's soil environmental background value. Environmental Science, 1991,12(4):12-19. (in Chinese)
[45] 陈景坚, 朱永懿, 杨俊诚, 顾八明 . 全国18种土壤天然放射性活度的测定. 核农学通报, 1988,9(3):111-112.
CHEN J J, ZHU Y Y, YANG J C, GU B M . Determination of 18 kinds of natural radioactivity in Chinese soils. Nuclear Agricultural Science Bulletin, 1988,9(3):111-112. (in Chinese)
[46] 殷飞, 王海娟, 李燕燕, 李勤椿, 和淑娟, 王宏镔 . 不同钝化剂对重金属复合污染土壤的修复效应研究. 农业环境科学学报, 2015,34(3):438-448.
YIN F, WANG H J, LI Y Y, LI Q C, HE S J, WANG H B . Remediation of multiple heavy metal polluted soil using different immobilizing agents. Journal of Agro-Environment Science, 2015,34(3):438-448. (in Chinese)
[47] 罗远恒, 顾雪元, 吴永贵, 刘智敏, 童非, 谭印月 . 钝化剂对农田土壤镉污染的原位钝化修复效应研究. 农业环境科学学报, 2014,33(5):890-897.
LUO Y H, GU X Y, WU Y G, LIU Z M, TONG F, TAN Y Y . In-situ remediation of cadmium-polluted agriculture land using stabilizing amendments. Journal of Agro-Environment Science, 2014,33(5):890-897. (in Chinese)
[48] 冯磊, 刘永红, 胡红青, 郑新生 . 几种矿物材料对污染土壤中铜形态的影响. 环境科学学报, 2011,31(11):2467-2473.
FENG L, LIU Y H, HU H Q, ZHENG X S . Effect of several mineral materials on copper form in contaminated soil. Acta Scientiae Circumstantiae, 2016, 31(11):2467-2473. (in Chinese)
[49] 施泽明, 倪师军, 张成江, 葛良全, 沈前斌 . 龙门山地区磷矿开采和加工过程中放射性环境问题探讨. 矿物学报,2011(S1):726-727.
SHI Z M, NI S J, ZHANG C J, GE L Q, SHEN Q B . Discussion on radioactive environment in mining and processing of phosphate rock in Longmen mountain area.Acta Mineralogica Sinica,2011(S1):726-727. (in Chinese)
[50] 曾美云, 刘金, 邵鑫, 邹棣华 . 磷矿石化学成分分析标准物质研制. 岩矿测试, 2017,36(6):651-658.
ZENG M Y, LIU J, SHAO X, ZOU D H . Preparation of phosphate or econcentrate reference materials. Rock and Mineral Analysis, 2017,36(6):651-658. (in Chinese)
[51] 王建波, 柴昌信, 黄兴华, 祝建国 . 电感耦合等离子体质谱法测定磷矿石中锰、铜、铅、锌、铬、镉. 分析测试技术与仪器, 2015,21(4):270-273.
WANG J B, CHAI C X, HUANG X H, ZHU J G . Determination of manganese, copper, lead, zinc, chromium and cadmium in phosphate rock by inductively coupled plasma mass spectrometry. Analysis and Testing Technology and Instruments, 2015,21(4):270-273. (in Chinese)
[52] 李美 . 磷石膏品质的影响因素及其建材资源化研究[D]. 重庆: 重庆大学, 2012.
LI M . Study on quality influencing factors of phosphogypsum and its utilization as building materials[D]. Chongqing: Engineering in Chongqing University, 2012. ( in Chinese)
[53] 杨生怒 . 稀硝酸分解矿样--电极法测定磷矿石中氟. 贵州大学学报(自然科学版), 1990,7(2):60-63.
YANG S N . Dilute HNO3 decomposition of phosphate ore for F - determination using ion selective electrode . Journal of Guizhou University (Natural Science), 1990,7(2):60-63. (in Chinese)
[54] 刘代俊, 杨军, 江成发, 陈伟 . 磷矿资源加工研究进展: 3. 对低品位磷矿中高铁铝杂质的钝化. 磷肥与复肥, 2009,24(2):17-18.
LIU D J, YANG J, JIANG C F, CHEN W . Research progress of phosphate resource processing: 3. Study on the passivation of iron and aluminum impurities in medium and low grade phosphate rock. Phosphate & Compound Fertilizer, 2009,24(2):17-18. (in Chinese)
[55] 贲艳英, 马凯 . 硝酸分解磷矿粉生产硝基节酸磷肥. 化工科技市场, 2010,33(4):28-29.
BEN Y Y, MA K . Production of acid-saving nitricphophate fertilizer by nitric acid decomposing phophorite. Chemical Technology Market, 2010,33(4):28-29. (in Chinese)
[56] 李可及, 易建春, 潘钢 . X射线荧光光谱法测定磷矿石中11种主次组分. 冶金分析, 2013,33(9):22-27.
LI K J, YI J C, PAN G . Determination of eleven major and minor components in phosphate ores by X-ray fluorenscen spectrometry. Metallurgical Analysis, 2013,33(9):22-27. (in Chinese)
[57] 张跃庭, 高瓦玲 . 硝酸磷肥生产过程中废弃物碳酸钙渣的利用设想. 煤化工,2003(2):48-50.
ZHANG Y T, GAO W L . Scheme of utilization of calcium carbonate residue discarded during nitrophosphate production.Coal Chemical Industry,2003(2):48-50. (in Chinese)
[58] 吴礼定, 曾波, 王生军 . 中低品位磷矿尾矿的综合利用研究进展. 云南化工, 2008,35(6):55-58.
WU L D, ZENG B, WANG S J . Comprehensive utilization of low and medium-grade phosphate rock tailings. Yunnan Chemical Technology, 2008,35(6):55-58. (in Chinese)
[59] 王志刚, 方晓峰, 倪双林, 岳源, 陈洪来 . 混酸法硝酸磷肥酸解结晶工艺的研究. 磷肥与复肥, 2004,19(4):12-14.
WANG Z G, FANG X F, NI S L, YUE Y, CHEN H L . Study on acidulation and crystallization technology in production of nitrophosphate by mixed acid process. Phosphate & Compound Fertilizer, 2004,19(4):12-14. (in Chinese)
[60] 郑锦 . 帽天山磷矿区磷矿资源开发的水环境效应及磷、氟流失机制研究[D]. 昆明: 昆明理工大学, 2007.
ZHENG J . Study on water environment effect and phosphorus and fluoride loss mechanism in phosphate rock resource development in phosphorite mine land of Mao Tianshan mountain[D]. Kunming: Kunming University of Science and Technology, 2007. ( in Chinese)
[61] 何蓉, 周智武 . 磷矿尾矿和石灰渣在磷复肥生产中的应用与建议. 硫磷设计与粉体工程,2011(4):46-48.
HE R, ZHOU Z W . Application of phosphate rock tailings and lime sludge in compound phosphate fertilizer production and suggestions.Sulphur Phosphorus & Bulk Materials Handling Related Engineering,2011(4):46-48. (in Chinese)
[62] 孙冶 . 磷酸盐工业中的放射性污染及其防治. 云南环境科学, 2000,19(1):46-47.
SUN Y . Radiate pollution in phosphate industry. Yunnan Environmental Science, 2000,19(1):46-47. (in Chinese)
[63] 黄炳辉, 张青年, 徐永新 . 磷肥天然放射性含量及其卫生学评价. 中华放射医学与防护杂志,1996(2):140-141.
HUANG B H, ZHANG Q N, XU Y X . Natural radioactivity content of phosphate fertilizer and its hygienic evaluation.Chinese Journal of Radiation Mediation and Protection,1996(2):140-141. (in Chinese)
[64] 杨月红, 舒敦涛 . 云南磷矿石产业链中天然放射性核素的迁移、危害与防治//中国环境科学学会会议论文集. 北京: 中国环境科学学会, 2011, 3579-3583.
YANG Y H, SHU D T . Migration, harm and prevention of natural radionuclides in phosphate rock industrial chain in Yunnan//Proceedings of China Environmental Science Society Conference. Beijing: China Environmental Science Society, 2011, 3579-3583. (in Chinese)
[65] 李舟, 杨忠, 魏涛, 张小乐, 喻立新, 田祝娟 . 贵州省某磷矿区氡气及放射性水平的评价. 中国辐射卫生, 2006,15(3):262-263.
LI Z, YANG Z, WEI T, ZHANG X L, YU L X, TIAN Z J . Evaluation of radon and radioactivity level in phosphorite area in Guizhou. Chinese Journal of Radiological Health, 2006,15(3):262-263. (in Chinese)
[66] 谢明义 . 四川某磷肥厂放射卫生调查与评价. 中国辐射卫生, 1998,7(2):110-115.
XIE M Y . Investigation and evaluation of radiation health in a phosphate fertilizer plant in Sichuan. Chinese Journal of Radiological Health, 1998,7(2):110-115. (in Chinese)
[67] 宁查阻 . 云南省磷渣建材的放射性水平调查及其卫生学评价. 中国公共卫生, 1985,4(2):6-8.
NING C Z . Survey and hygienic evaluation on radioactivity level of phosphorus slag used in building materials in Yunnan. Chinese Journal of Public Health, 1985,4(2):6-8. (in Chinese)
[68] 罗进 . 浙江省磷肥中镭-226比活度及评价. 中国辐射卫生, 1996,5(2):104-105.
LUO J . Evaluation on the radium-226 specific activity in phosphate fertilizer in Zhejiang. Chinese Journal of Radiological Health, 1996,5(2):104-105. (in Chinese)
[69] 李秀兰, 王润溪, 何慧敏 . 山西省磷肥及磷矿石中 226Ra含量及卫生学评价. 中国辐射卫生 ,1994(2):102-103.
LI X L, WANG R X, HE H M . 226Ra content and hygienic evaluation on phosphate and phosphate rock in Shanxi.Chinese Journal of Radiological Health ,1994(2):102-103. (in Chinese)
[70] 中华人民共和国国家质量监督检验检疫总局和中国国家标准化管理委员会. 建筑材料放射性核素限量: GB 6566—2010. 北京:中国标准出版社, 2010.
General Administration of Quality Supervision,Inspection and Quarantine of the People’s Republic of China and Standardization Administration of the People's Republic of China. Limits of Radionuclides in Building Materials: GB 6566—2010. Beijing:China Standard Press, 2010. ( in Chinese)
[71] 杨瑞, 邓跃全, 张强, 董发勤, 徐光亮 . 川西磷石膏成分以及氡和放射性分析研究. 非金属矿, 2008,31(2):17-20.
YANG R, DENG Y Q, ZHANG Q, DONG F Q, XU G L . Analysis & study of composition, radon & radioactivity of phosphogypsum from the West Sichuan. Non-Metallic Mines, 2008,31(2):17-20. (in Chinese)
[72] 彭家惠, 万体智, 汤玲, 张建新, 陈明凤 . 磷石膏中杂质组成、形态、分布及其对性能的影响. 中国建材科技,2000(6):31-35.
PENG J H, WAN T Z, TANG L, ZHANG J X, CHEN M F . The impurity composition, formation and distribution of phosphorus gypsum, and its impacts on its performance.China Building Materials Science & Technology,2000(6):31-35. (in Chinese)
[73] 吴秀俊 . 用磷石膏生产水泥熟料的试验研究与技术探讨. 水泥,2010(1):1-7.
WU X J . Experimental study and technical discussion on producing cement clinker with phosphogypsum.Cement,2010(1):1-7. (in Chinese)
[74] 李瑞香, 刘新华, 甘霖 . 工业废渣天然放射性核素水平及综合利用评价. 中国核科技报告,1994(S1):1-16.
LI R X, LIU X H, GAN L . Natural radionuclides level, and the evaluation of comprehensive utilization for industrial waste residue.China Nuclear Science and Technology Report,1994(S1):1-16. (in Chinese)
[75] 王乐亮 . 磷石膏综合利用不可忽视的问题. 中国建材装备,1997(2):11-13.
WANG L L . An unignorable issue on comprehensive utilization of phosphogypsum.China Building Material Equipment,1997(2):11-13. (in Chinese)
[76] 林义银, 程棋钧, 朱福敏 . 建筑材料中天然放射性核素的测定. 苏州医学院学报, 1993,13(2):113-114.
LIN Y Y, CHENG Q J, ZHU F M . Determination of natural radionuclides in building materials. Acta Academiae Medicinae Suzhou, 2016, 13(2):113-114. (in Chinese)
[77] 姜子英 . 工业废渣利用与天然放射性照射监管的思考//中国环境科学学会会议论文集. 北京: 中国环境科学学会, 2016, 735-741.
JIANG Z Y . Consideration on utilization of industrial waste and supervision of natural radioactive exposure//Proceedings of the Chinese society of Environmental Sciences. Beijing: China Environmental Science Society, 2016, 735-741. (in Chinese)
[78] 陈未献, 李金娟, 刘文冬 . 磷石膏中主要元素的分布特征分析. 地球与环境, 2013,41(5):524-528.
CHEN W X, LI J J, LIU W D . Analysis of the distribution characteristics of major elements in phosphogypsum. Earth and Environment, 2013,41(5):524-528. (in Chinese)
[79] 中华人民共和国生态环境部和国家市场监督管理总局. 土壤环境质量农用地土壤污染风险管控标准(试行):GB 15618—2018. 北京:中国环境科学出版社, 2018.
Ministry of Ecology and Environment of the People's Republic of China, State Administration for Market Regulation. Soil Environmental Quality Risk Control Standard for Soil Contamination of Agricultural Land:GB 15618—2018. Beijing:China Environmental Science Press, 2018. ( in Chinese)
[80] 李静, 谢正苗, 徐建明, 吴卫红 . 我国氟的土壤健康质量指标及评价方法的初步探讨. 浙江大学学报(农业与生命科学版), 2005,31(5):593-597.
LI J, XIE Z M, XU J M, WU W H . Preliminary study on guideline on soil health quality index of fluorine and method of its evaluation in China. Journal of Zhejiang University (Agric. & Life Sci.), 2005,31(5):593-597. (in Chinese)
[81] 邢磊 . 工业固体废弃物的矿物学研究及其资源化途径探讨-以德阳磷石膏、钢渣, 绵阳铬渡为例[D]. 成都: 成都理工大学, 2001.
XING L . The Mineralogical features of industrial solid wastes and it’s utilization-taking Deyang phosphogypsum, steel slag, Mianyang chormie slagas as example[D]. Chengdu: Chengdu University of technology, 2001. ( in Chinese)
[82] 胡旭东, 赵志曼 . 磷石膏的预处理工艺综述. 建材发展导向,2006(1):48-51.
HU X D, ZHAO Z M . Review on the technology of phosphogypsum pretreatment.Development Guide to Building Materials,2006(1):48-51. (in Chinese)
[83] 兰鑫, 余江, 雷永佳, 陈文清 . JAS COAT固化剂对磷石膏环境风险的影响. 安全与环境学报, 2016,16(2):232-236.
LAN X, YU J, LEI Y J, CHEN W Q . Impact of JAS COAT on the environmental risk of phosphorus gypsum. Journal of Safety and Environment, 2016,16(2):232-236. (in Chinese)
[84] 陈秋, 安景文 . 磷石膏中的氟在土壤及作物籽粒中残留的初探. 盐碱地利用,1992(3):28-30.
CHEN Q, AN J W . Effects of fluorine in phosphorusgypsum on soil and crop seeds.Saline-Alkali Land Use,1992(3):28-30. (in Chinese)
[85] 杨尽 . 利用矿物改良土地整理新增耕地贫瘠土壤研究[D]. 成都: 成都理工大学, 2010.
YANG J . Using minerals improving barren soil of added cultivated land in land consolidation[D]. Chengdu: Chengdu University of Technology, 2010. ( in Chinese)
[86] 李佳宣, 施泽明, 唐瑞玲, 倪师军 . 磷石膏堆场对周围农田土壤重金属含量的影响. 中国非金属矿工业导刊,2010(5):52-55.
LI J X, SHI Z M, TANG R L, NI S J . Influence of phosphogypsum pile on the concentration of heavy metals in farming soil. China Non-Metallic Minerals Industry, 2010 ( 5):52-55. (in Chinese)
[87] 李燕 . 青岛市典型工业固体废物的调查及循环链网的构建研究[D]. 青岛: 青岛理工大学, 2014.
LI Y . Survey on situation fo the typical industrial solid waste in Qingdao and study on establishing circular chain method[D]. Qingdao: Qingdao Technological University, 2014. ( in Chinese)
[88] 王逸 . 磷石膏农业资源化利用技术与应用研究[D]. 广州: 华南理工大学, 2016.
WANG Y . Study on resource utilization technology and application of phosphogypsum in agriculture[D]. Guangzhou: South China University of Technology, 2016. ( in Chinese)
[89] 侯赟 . 磷石膏影响区重金属地球化学特征及其赋存形态研究[D]. 成都: 成都理工大学, 2015.
HOU Y . Geochemical characteristics and chemical speciation of heavy metals elements in areas affected by phosphogypsum[D]. Chengdu: Chengdu University of Technology, 2001. ( in Chinese)
[90] 熊祥祖, 包传平, 朱仲斌, 陈左圣 . 磷石膏渣场氟污染的检测及其控制. 磷肥与复肥, 1999,43:89-93.
XIONG X Z, BAO C P, ZHU Z B, CHEN Z S . Detection and control on phosphogypsum fluorine pollution. Phosphate & Compound Fertilizer, 1999,43:89-93. (in Chinese)
[91] 李滢 . 磷石膏的综合利用. 云南化工, 2007,34(6):74-80.
LI Y, LIU X H, GAN L . The comprehensive utilization of phosphogypsum. Yunnan Chemical Technology, 2007,34(6):74-80. (in Chinese)
[92] 梁静, 徐铁兵, 任钢, 刘庆辉 . 碱性尾矿应用于磷石膏无害化处理的实验构想. 资源节约与环保,2015(8):165-166.
LIANG J, XU T B, REN G, LIU Q H . Discussion on alkaline tailing application in disposal treatment of phosphogypsum.Resources Economization & Environmental Protection,2015(8):165-166. (in Chinese)
[93] 应国量 . 磷石膏分解特性的研究[D]. 武汉: 武汉理工大学, 2009.
YING G L . Research on decomposition characteristics of phosphogypsum[D]. Wuhan: Wuhan University of Technology, 2009.
[94] 韩松, 赵志曼, 成耀华, 全思臣 . 关于利用云南磷石膏制备磷建筑石膏预处理实验研究. 科学技术与工程, 2014,14(30):250-253.
HAN S, ZHAO Z M, CHENG Y H, QUAN S C . On study of pretreatment for preparation of gypsum building plaster with Yunnan Phosphorus. Science Technology and Engineering, 2014,14(30):250-253. (in Chinese)
[95] 储学群, 张国兴, 童小祥 . 磷石膏处置标准与磷石膏堆场处置设想. 磷肥与复肥, 2008,23(1):24-26.
CHU X Q, ZHANG G X, TONG X X . Disposal standard of phosphogypsum and tentative disposal ideas for the gypsum stack. Phosphate & Compound Fertilizer, 2008,23(1):24-26. (in Chinese)
[96] 廖霞 . 贵州磷石膏的理化性质分析及表征[D]. 贵州: 贵州大学, 2006.
LIAO X . Ana1ysis and token of Gu1zhou phosphogypsum, physical and chemic property[D]. Guizhou: Guizhou University, 2006. ( in Chinese)
[97] 高渝棕 . 煅烧预处理对磷石膏基复合胶凝材料的影响[D]. 武汉: 华中科技大学, 2012.
GAO Y Z . Effect of Calcination pretreatment phosphogypsum-based composite binder[D]. Huazhong: Huazhong University of Science & Technology, 2012. ( in Chinese)
[98] 孙清臣, 杨敏, 杨成军 . 杂质预处理方式对复相磷石膏水化特性的影响. 中国建材科技, 2014,6:40-41.
SUN Q C, YANG M, YANG C J . Effect of pretreatment methods of impurities on the hydration property of multiphase phosphogypsum. China Building Materials Science & Technology, 2014,6:40-41. (in Chinese)
[99] 赵红涛, 李会泉, 包炜军, 王晨晔, 李松庚, 林伟刚 . 磷石膏中微量含氟物相的光谱分析. 光谱学与光谱分析, 2015,35(8):2333-2338.
ZHAO H T, LI H Q, BAO W J, WANG C Y, LI S G, LIN W G . Spectral analysis of trace fluorine phase in phosphgypsum. Spectroscopy and Spectral Analysis, 2015,35(8):2333-2338. (in Chinese)
[100] 罗通, 杨林, 李彩玉, 曹建新 . 磷石膏基充填料的制备及其有害物溶出率的研究. 化工矿物与加工, 2017,5:39-43.
LUO T, YANG L, LI C Y, CAO J X . Study on preparation of phosphogypsum-based filling matrials and its its leaching rate of harmful substances. Industrial Minerals & Processing, 2017,5:39-43. (in Chinese)
[101] 俞国昇 . 利用磷石膏制造SO2气体及水泥熟料的工艺特点. 云南建材,1991(1):10-19.
YU G S . Process characteristics of making SO2 gas and cement clinker with phosphogypsum.Yunnan Building Materials,1991(1):10-19. (in Chinese)
[102] 李明功, 汪耘 . 连续标准加入法测定磷石膏含氟量. 磷肥与复肥, 2002,17(4):64-65.
LI M G, WANG Y . Determination of fluorine content in phosphogypsum by continuous standard addition method. Phosphate & Compound Fertilizer, 2002,17(4):64-65. (in Chinese)
[103] 万慧茹 . 我国锰渣与磷石膏产生系数分析研究. 矿冶, 2013,22(1):81-85.
WAN H R . Analysis on generation coefficient of manganese slag and phosphogypsum in China. Mining & Metallurgy, 2013,22(1):81-85. (in Chinese)
[104] 陈永松, 毛健全 . 磷石膏中污染物可溶磷的溶出特性实验研究. 贵州工业大学学报(自然科学版), 2007,36(1):99-102.
CHEN Y S, MAO J Q . Study on the leaching properties of soluble phosphorus in phosphogypsum. Journal of Guizhou University of Technology (Natural Science Edition), 2007,36(1):99-102. (in Chinese)
[105] 陈永忠 . 磷化工废渣特性及其在水泥中的应用研究[D]. 武汉: 武汉理工大学, 2007.
CHEN Y Z . Properties and study on cement industry of the phosphorous slags[D]. Wuhan: Wuhan University of Technology, 2007. ( in Chinese)
[106] 梁成华, 陈新之, 李焕珍, 李纪柏, 杨伟奇 . 施用磷石膏对碱化土壤氟含量及其吸附特性的影响. 环境科学学报, 1999,19(1):109-112.
LIANG C H, CHEN X Z, LI H Z, LI J B, YANG W Q . Effect of application phosphogysum on contents and adsorption characteristic of fluorine in alkaline soils. Acta Scientiae Circumstantiae, 1999,19(1):109-112. (in Chinese)
[107] 王文山, 谭振云, 王岱峰 . 辽宁省柳绕地区的氟状况及磷石膏施用对土壤氟的影响. 农业环境保护, 1996,15(2):75-77.
WANG W S, TAN Z Y, WANG D F . Fluorine status in Liuliu area of Liaoning province and effects of phosphogypsum application on soil fluorine. Agro-environmental Protection, 1996,15(2):75-77. (in Chinese)
[108] 周丽娜, 周明凯, 赵青林, 李进辉 . 不同改性处理方法对磷石膏水泥调凝剂性能的影响. 水泥, 2007,8:16-18.
ZHOU L N, ZHOU M K, ZHAO Q L, LI J H . The effect of different modified treatment methods on phosphogypsum used as cement setting time agent. Cement, 2016, 8:16-18. (in Chinese)
[109] 冯慕华, 李文朝, 李海英, 潘继征 . 云南抚仙湖流域磷化工对农田土壤和农作物的影响. 环境科学与技术, 2009,32(3):83-86.
FENG M H, LI W C, LI H Y, PAN J Z . Impact of phosphate industry on agricultural soil and crops in Fuxianhu watershed in Yunnan Province. Environmental Science & Technology, 2009,32(3):83-86. (in Chinese)
[110] 谢娟 . 从环保谈磷石膏的综合应用. 广西轻工业,2008(7):93-95.
XIE J . Taking about phosphogypsum comprehensive application from environmental protection.Guangxi Journal of Light Industry,2008(7):93-95. (in Chinese)
[111] 应国量 . 磷石膏分解特性及其流态化分解制硫酸联产石灰的工艺研究[D]. 武汉: 武汉理工大学, 2011.
YING G L . Decomposition characteristics of PG and its fluidization decomposition process for producing sulphuric acid and lime[D]. Wuhan: Wuhan University of Technology, 2011. ( in Chinese)
[112] 彭展翔, 褚学伟 . 摆纪磷石膏堆场渗漏分析. 地下水, 2012,34(5):14-15.
PENG Z X, CHU X W . Leakage analysis of phosphogypsum still in Baiji. Ground Water, 2012,34(5):14-15. (in Chinese)
[113] 党爽, 褚学伟, 丁坚平 . 贵州大型工业废渣堆场岩溶渗漏污染治理评价. 人民长江, 2014,45(15):96-99.
DANG S, CHU X W, DING J P . Evaluation on karst leakage pollution treatment in large industrial residue yards in Guizhou province. Yangtze River, 2014,45(15):96-99. (in Chinese)
[114] 查学芳, 覃应机, 吴攀, 韩志伟, 李学先, 叶慧君, 李玲 . 磷石膏堆场渗漏影响下岩溶地下水地球化学过程. 生态学杂志, 2018,37(6):1708-1715.
ZHA X F, QIN Y J, WU P, HAN Z W, LI X X, YE H J, LI L . Geochemical process of karst groundwater as affected by the leakage of phosphogypsum stock dump. Chinese Journal of Ecology, 2018,37(6):1708-1715. (in Chinese)
[115] 中华人民共和国国家环境保护局. 污水综合排放标准:GB 8978—1996. 北京:中国标准出版社, 1996.
State Environmental Protection Administration of the People's Republic of China. Integrated Wastewater Discharge Standards:GB 8978—1996. Beijing:China Standard Press, 1996. ( in Chinese)
[116] 中华人民共和国国家质量监督检验检疫总局和中国国家标准化管理委员会. 地下水质量标准:GB/T 14848—2017. 北京:中国标准出版社, 2017.
General Administration of Quality Supervision,Inspection and Quarantine of the People’s Republic of China,Standardization Administration of the People's Republic of China. Standards for Groundwater Quality:GB/T 14848—2017. Beijing:China Standard Press, 2017. ( in Chinese)
[117] 中华人民共和国国家环境保护总局和国家质量监督检验检疫总局. 危险废物鉴别标准浸出毒性鉴别:GB 5085.3—2007. 北京:中国环境科学出版社, 2007.
State Environmental Protection Administration of the People's Republic of China and General Administration of Quality Supervision,Inspection and Quarantine of the People’s Republic of China. Identification Standards for Hazardous Wastes Identification for Extraction Toxicity:GB 5085.3—2007. Beijing:China Environmental Science Press, 2007. ( in Chinese)
[118] 朱浩东, 杨云碧, 顾正聪 . 柳树箐磷石膏渣场地下水水质变化跟踪监测与管理分析. 环境科学导刊, 2017,36(3):109-114.
ZHU H D, YANG Y B, GU Z C . Analysis on monitoring and management of groundwater quality change in Liushuqing phosphogypsum residual site. Environmental Science Survey, 2017,36(3):109-114. (in Chinese)
[119] 中华人民共和国国家环境保护总局和国家质量监督检验检疫总局. 一般工业固体废物贮存、处置场污染控制标准:GB 18599—2001.北京: 中国环境科学出版社, 2001.
State Environmental Protection Administration of the People's Republic of China and General Administration of Quality Supervision,Inspection and Quarantine of the People’s Republic of China. Standard for Pollution Control on the Storage and Disposal Site for General Industrial Solid Wastes:GB 18599—2001. Beijing:China Environmental Science Press, 2001. ( in Chinese)
[120] 中华人民共和国国家环境保护总局和国家质量监督检验检疫总局. 危险废物鉴别标准腐蚀性鉴别:GB 5085.1—2007. 北京:中国环境科学出版社, 2007.
State Environmental Protection Administration of the People's Republic of China and General Administration of Quality Supervision,Inspection and Quarantine of the People’s Republic of China. Identification Standards for Hazardous Wastes Identification for Corrosivity:GB 5085.1—2007. Beijing:China Environmental Science Press, 2007. ( in Chinese)
[121] 中华人民共和国国家质量监督检验检疫总局. 农产品安全质量无公害蔬菜安全要求:GB/T 18406.1—2001. 北京:中国标准出版社, 2001.
General Administration of Quality Supervision,Inspection and Quarantine of the People’s Republic of China. Safety Qualification for Agricultural Product - Safety Requirements for Non-environmental Pollution Vegetable:GB/T 18406.1—2001. Beijing:China Standard Press, 2001. ( in Chinese)
[122] 左余宝 . 鲁西北地区大量施用磷石膏对作物体内毒性物质含量的影响及评价. 土壤肥料,1996(3):48-49.
ZUO Y B . Effects of large amount of phosphogypsum on the contents of toxic substances in crops in the northwest of Shandong Province.Soils and Fertilizers,1996(3):48-49. (in Chinese)
[123] 李金娟, 王运长, 解田, 杨丽萍, 刘文冬 . 磷石膏改良基质中As和F在蔬菜内富集和迁移特征. 地球与环境, 2013,41(2):150-154.
LI J J, WANG Y C, XIE T, YANG L P, LIU W D . The characteristics of enrichment and migration of arsenic and fluorine in vegetables planted in improved phoshogy matrix. Earth and Environment, 2013,41(2):150-154. (in Chinese)
[124] 王运长, 李金娟, 解田, 杨丽萍, 郭兴强 . 磷石膏改良基质中Cd、Zn在蔬菜内的富集和迁移特征. 中国农学通报, 2012,28(13):271-275.
WANG Y C, LI J J, XIE T, YANG L P, GUO X Q . The characteristics of enrichment and migration of Cd and Zn in vegetables planted in improved phosphogypsum matrix. Chinese Agricultural Science Bulletin, 2012,28(13):271-275. (in Chinese)
[125] 中华人民共和国卫生部. 食品中锌限量卫生标准:GB 13106—91. 北京:中国标准出版社, 1991.
The Minister of Health of the People's Republic of China. Tolerance Limit of Zinc in Food:GB 13106—91. Beijing:China Standard Press, 1991. ( in Chinese)
[126] 徐丽君 . 磷石膏处理方案综合评价研究[D]. 成都: 西南交通大学, 2013.
XU L J . Comprehensive assessment of disposal program for phosphogysum[D]. Chengdu: Southwest Jiaotong University, 2013. ( in Chinese)
[127] BALIGAR V C, CLARK R B, KORCAK R F, WRIGHT R J . Flue gas desulfurization product use on agricultural land. Advances in Agronomy, 2011,111, 51-86.
doi: 10.1016/B978-0-12-387689-8.00005-9
[128] 李静, 谢正苗, 徐建明 . 我国氟的土壤环境质量指标与人体健康关系的研究概况. 土壤通报, 2006,37(1):194-199.
LI J, XIE Z M, XU J M . Research progress in the relationship between soil environmental quality index of fluorine and human health in China. Chinese Journal of Soil Science, 2006,37(1):194-199. (in Chinese)
[129] 舒金华 . 我国部分磷肥厂周围地区土壤的氟污染. 环境科学丛刊, 1981,1:12-18.
SHU J H . Fluorine Pollution in soil near some phosphorus fertilizer plants in China. Environmental Science Series, 1981,1:12-18. (in Chinese)
[130] 钱文敏, 唐芬, 许中俊, 王秋姮 . 云南磷石膏综合利用现状及次生环境问题. 环境科学导刊, 2015,34(1):58-60.
QIAN W M, TANG F, XU Z J, WANG Q H . The present situation of comprehensive utilization of phosphogypsum and its secondary environmental problems in Yunnan Province. Environmental Science Survey, 2015,34(1):58-60. (in Chinese)
[131] 吉汝安 . 贵州地方性氟中毒与环境的关系. 贵州地质, 1985,3:291-295.
JI R A . The local fluorine poisoning in Guizhou and its relations with environment. Ecology of Guizhou, 1985,3:291-295. (in Chinese)
[1] WANG XiaoBin, YAN Xiang, LI XiuYing. Environmental Safety Risk for Application of Anaerobic Fermentation Biogas Slurry from Livestock Manure in Agricultural Land in China [J]. Scientia Agricultura Sinica, 2021, 54(1): 110-139.
[2] XueFei MAO,JiXin LIU,YongZhong QIAN. Technical Review of Fast Detection of Heavy Metals in Soil [J]. Scientia Agricultura Sinica, 2019, 52(24): 4555-4566.
[3] WANG XiaoBin, YAN Xiang, LI XiuYing, CAI DianXiong, LEI Mei. Environment Risk for Application of Flue Gas Desulfurization Gypsum in Soils in China [J]. Scientia Agricultura Sinica, 2018, 51(5): 926-939.
[4] YANG Zhen-xing, ZHOU Huai-ping, XIE Wen-yan, GUAN Chun-lin, CHE Li. Effect of Long-Term Fertilization on Pb, As Contents of Soil and Maize Grain [J]. Scientia Agricultura Sinica, 2015, 48(23): 4827-4836.
[5] LIU Kai-Lou, LI Da-Ming, HUANG Qing-Hai, YU Xi-Chu, YE Hui-Cai, XU Xiao-Lin, HU Hui-Wen, WANG Sai-Lian. Ecological Benefits and Environmental Carrying Capacities of Red Paddy Field Subjected to Long-Term Pig Manure Amendments [J]. Scientia Agricultura Sinica, 2014, 47(2): 303-313.
[6] MAO Xue-Fei-1, LIU Ji-Xin-2, WANG Min-1, QIAN Yong-Zhong-1. Applications of Solid Sampling Analytical Technologies of Elements for Quality and Safety of Agri-Products [J]. Scientia Agricultura Sinica, 2013, 46(16): 3432-3443.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!