Scientia Agricultura Sinica ›› 2012, Vol. 45 ›› Issue (22): 4612-4626.doi: 10.3864/j.issn.0578-1752.2012.22.007

• PLANT PROTECTION • Previous Articles     Next Articles

Screening, Identification and Biocontrol Potential of Antagonistic Fungi Against Strawberry Root Rot and Plant Growth Promotion

 SHEN  Guang-Hui, XUE  Quan-Hong, ZHANG  JING  , DUAN  Jia-Li, WANG  Dong-Sheng, YANG  Xing-Hua   

  1. 1.College of Resources and Environment, Northwest A&F University, Yangling 712100, Shaanxi; 2College of Food Science, Sichuan Agricultural University, Yaan 625014, Sichuan
  • Received:2012-03-26 Online:2012-11-15 Published:2012-05-23

Abstract: 【Objective】The objective of this study is to verify the suitability of a rapid screening program for biocontrol fungi based on root-zone microflora differentiae between healthy and root rot diseased strawberry plants. 【Method】 The isolated antagonistic fungi were identified according to colony and morphological characteristics observed by scanning electron microscope (SEM) and rDNA-ITS sequences analysis. Mycelium growth rate method and slide dual culture method were used to investigate antagonistic activity of cell-free culture filtrate and the antagonistic effect of antagonistic fungi against soil-borne pathogens, respectively. The seed germination promotion activity of culture filtrate was measured by Petri dish assays. A pot experiment was conducted to evaluate the control efficiency of antagonistic fungi against strawberry root rot caused by Cylindrocarpon macrodidyma CF9 and plant growth promotion effect. Colonization capacity and microbial flora were also determined by dilution plate count method. 【Result】Strain HF3 and strain HF7 were identified as Penicillium griseofulvum and Aspergillus terreus, respectively. The cell-free culture filtrate both of two strains exhibited strong antagonistic effect on mycelium growth of test pathogens. The mycelium inhibitory rate of strain HF3 culture filtrate on Rhizoctonia solani and Verticillium dahliae were 100.0% after 96 h. It was also observed that HF3 broke the hyphae of C. macrodidyma CF9, such as contorting, slimmer, bulging, dissolved, protoplasm condense. It was observed that 103 and 104 diluted-fold filtrate of two strains enhanced the melon seed germination and growth, 104 diluted-fold filtrate of HF7 promoted seed germination, plumule and radicle growth of watermelon. In a pot experiment, the control efficiency against root rot of strawberry of HF3 and HF7 were 53.0% and 46.9%, respectively. Moreover, two antagonistic strains exhibited strawberry plant growth promotion as well as fruit yield enhancement. HF3 and HF7 efficiently colonized strawberry root with rhizoplane densities 2.23×105, 1.02×105 CFU•g-1 dry soil, respectively. The population of C. macrodidyma CF9 in root-zone were reduced largely. HF3 and HF7 also balanced the root-zone microbial flora when inoculated with C. macrodidyma CF9. 【Conclusion】The rapid screening program based on the root-zone microflora differentiae between healthy and root rot strawberry plant is a simple and reliable way to seek for strong potential biocontrol agents for the field practice. HF3 and HF7 isolated from healthy strawberry native root-zone have better potential for the control of strawberry root rot.

Key words: root rot , Penicillium griseofulvum , Aspergillus terreus , antagonistic activity , soil microflora

[1]Nemec S. Fungi associated with strawberry root rot in Illinois. Mycopathologia, 1970, 41(3/4): 331-346.

[2]Martin F N, Bull C T. Biological approaches for control of root pathogens of strawberry. Phytopathology, 2002, 92(12): 1356-1362.

[3]Fang X L, Phillips D, Li H, Sivasithamparam K, Barbetti M J. Severity of crown and root diseases of strawberry and associated fungal and oomycete pathogens in Western Australia. Australasian Plant Pathology, 2011, 40(2): 109-119.

[4]Yuen G Y, Schroth M N, Weinhold A R, Hancock J G. Effects of soil fumigation with methyl bromide and chloropicrin on root health and yield of strawberry. Plant Disease, 1991, 75(4): 416-420.

[5]Martin F N. Development of alternative strategies for management of soilborne pathogens currently controlled with methyl bromide. Annual Review of Phytopathology, 2003, 41: 325-350.

[6]Njoroge S M C, Kabir Z, Martin F N, Koike S T, Subbarao K V. Comparison of crop rotation for Verticillium wilt management and effect on Pythium species in conventional and organic strawberry production. Plant Disease, 2009, 93(5): 519-527.

[7]Benlioglu S, Boz O, Yildiz A, Kaskavalci G, Benlioglu K. Alternative soil solarization treatments for the control of soil-borne diseases and weeds of strawberry in the western Anatolia of Turkey. Journal of Phytopathology, 2005, 153(7/8): 423-430.

[8]王占武, 李晓芝, 刘彦利, 田洪涛. 枯草芽孢杆菌B501在草莓根际的定殖及其动态变化. 植物病理学报, 2003, 33(2): 188-189.

Wang Z W, Li X Z, Liu Y L, Tian H T. Colonization and population dynamics of Bacillus subtilis B501 in the rhizosphere of strawberry. Acta Phytopathologica Sinica, 2003, 33(2): 188-189. (in Chinese)

[9]Kurze S, Bahl H, Dahl R, Berg G. Biological control of fungal strawberry diseases by Serratia plymuthica HRO-C48. Plant Disease, 2001, 85(5): 529-534.

[10]Dias A C F, Costa F E C, Andreote F D, Lacava P T, Teixeira M A, Assumpca L C, Araujo W L, Azevedo J L, Melo I S. Isolation of micropropagated strawberry endophytic bacteria and assessment of their potential for plant growth promotion. World Journal of Microbiology and Biotechnology, 2009, 25(2): 189-195.

[11]Berg G, Kurze S, Buchner A, Wellington E M, Smalla K. Successful strategy for the selection of new strawberry-associated rhizobacteria antagonistic to Verticillium wilt. Canadian Journal of Microbiology, 2000, 46(12): 1128-1137.

[12]孙敬祖, 薛泉宏, 唐  明, 曹书苗, 邢胜利. 放线菌制剂对连作草莓根区微生物区系的影响及其防病促生作用. 西北农林科技大学学报: 自然科学版, 2009, 37(12): 153-158.

Sun J Z, Xue Q H, Tang M, Cao S M, Xing S L. Study on the effect of actinomycetes on microflora of replanted strawberry’s root domain and the bio-control effectiveness. Journal of Northwest A&F University: Natural Science Edition, 2009, 37(12): 153-158. (in Chinese)

[13]LaMondia J A, Cowles R S. Effect of entomopathogenic nematodes and Trichoderma harzianum on the strawberry black root rot pathogens Pratylenchus penetrans and Rhizoctonia fragariae. Journal of Nematology, 2002, 34(4): 351-357.

[14]Olatinwo R O, Sabaratnam S, Schilder A M C. Trichoderma stromaticum: A potential biological control agent for black root rot in strawberries. Phytopathology, 2004, 94(6): S78-S78.

[15]Raziq F, Fox R T V. Combinations of fungal antagonists for biological control of Armillaria root rot of strawberry plants. Biological Agriculture and Horticulture, 2005, 23(1): 45-57.

[16]Porras M, Barrau C, Arroyo F T, Santos B, Blanco C, Romero F. Reduction of Phytophthora cactorum in strawberry fields by Trichoderma spp. and soil solarization. Plant Disease, 2007, 91(2): 142-146.

[17]Tahmatsidou V, O'Sullivan J, Cassells A C, Voyiatzis D, Paroussi G. Comparison of AMF and PGPR inoculants for the suppression of Verticillium wilt of strawberry (Fragaria × ananassa cv. Selva). Applied Soil Ecology, 2006, 32(3): 316-324.

[18]Vestberg M, Kukkonen S, Saari K, Parikka P, Huttunen J, Tainio L, Devos N, Weekers F, Kevers C, Thonart P, Lemoine M C, Cordier C, Alabouvette C, Gianinazzi S. Microbial inoculation for improving the growth and health of micropropagated strawberry. Applied Soil Ecology, 2004, 27(3): 243-258.

[19]程丽娟, 薛泉宏. 微生物学实验技术. 西安: 世界图书出版社, 2000.

Cheng L J, Xue Q H. Experimental Techniques of Microbiology. Xi’an: World Book Publishing, 2000. (in Chinese)

[20]孔华忠. 中国真菌志. 第三十五卷. 北京: 科学出版社, 2007: 160-162.

Kong H Z. Flora Fungorum Sinicorum, Vol. 35. Beijing: Science Press, 2007: 160-162. (in Chinese)

[21]齐祖同. 中国真菌志. 第五卷. 北京: 科学出版社, 1997: 61-63.

Qi Z T. Flora Fungorum Sinicorum, Vol. 5. Beijing: Science Press, 1997: 61-63. (in Chinese)

[22]魏景超. 真菌鉴定手册. 上海: 上海科学技术出版社, 1979.

Wei J C. Identification Manual of Fungi. Shanghai: Shanghai Science and Technology Press, 1979. (in Chinese)

[23]孙广宇, 张雅梅, 张  荣. 突脐孢属Brn1基因核苷酸序列比较及系统发育研究. 菌物学报, 2004, 23(4): 480-486.

Sun G Y, Zhang Y M, Zhang R. Sequence comparison and phylogenetic analysis of Brn1 genes from exserohilum species. Mycosystema, 2004, 23(4): 480-486. (in Chinese)

[24]White T J, Bruns T, Lee S, Taylor J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics//PCR Protocols: a Guide to Methods and Applications. San Diego: Academic Press, 1990: 315-322.

[25]方中达. 植病研究方法. 北京: 中国农业出版社, 1998.

Fang Z D. Method of Plant Pathology. Beijing: China Agriculture Press, 1998. (in Chinese)

[26]孙广宇, 宗兆峰. 植物病理学实验技术. 北京: 中国农业出版社, 2002.

Sun G Y, Zong Z F. Laboratory Manual of Plant Pathology. Beijing: China Agriculture Press, 2002. (in Chinese)

[27]马  艳, 常志州, 赵江涛, 黄红英, 叶小梅, 张建英. 一株疫病拮抗青霉P. st10菌株的抗菌活性及其对辣椒疫病的盆栽防效. 中国生物防治, 2006, 22(3): 239-243.

Ma Y, Chang Z Z, Zhao J T, Huang H Y, Ye X M, Zhang J Y. Antifungal activity of Penicillium striatisporum strain P. st10 and its inhibition against pepper blight caused by Phytophthora spp. Chinese Journal of Biological Control, 2006, 22(3): 239-243. (in Chinese)

[28]田  峰, 何仁发, 李明月, 王  娟, 叶波平. 浙贝母内生真菌菌株FTJZZJ09及其抑菌活性成分. 微生物学通报, 2010, 37(10): 1475-1480.

Tian F, He R F, Li M Y, Wang J, Ye B P. The endophytic fungus strain FTJZZJ09 isolated from the bulbs of Fritillaria thunbergii and its antibacterial metabolites. Microbiology China, 2010, 37(10): 1475-1480. (in Chinese)

[29]李明月, 常  敏, 张庆华, 何仁发, 叶波平. 木榄内生真菌菌株ZD6及其代谢产物的抑菌活性. 菌物学报, 2010, 29(5): 739-745.

Li M Y, Chang M, Zhang Q H, He R F, Ye B P. The endophytic fungus strain ZD6 isolated from the stem of Bruguiera gymnorrhiza and the antibacterial activity of its metabolites. Mycosystema, 2010, 29(5): 739-745. (in Chinese)

[30]何  璐, 纪明山, 王  勇, 徐洪波, 齐补坤. 一株苦参内生真菌的抑菌特性及活性成分的结构鉴定. 中国农业科学, 2011, 44(15): 3127-3133.

He L, Ji M S, Wang Y, Xu H B, Qi B K. Antimicrobial action of an endophytic fungus from Sophora flavescens and structure identification of its active constituents. Scientia Agricultura Sinica, 2011, 44(15): 3127-3133. (in Chinese)

[31]叶波平, 贾阳阳, 许婷婷, 刘  冰, 李明月. 来自红海榄根际土壤的曲霉属真菌F7菌株及其生物活性分析. 菌物学报, 2010, 29(2): 241-248.

Ye B P, Jia Y Y, Xu T T, Liu B, Li M Y. Aspergillus sp. strain F7 from the rhizospheric soil of Rhizophora stylosa and its biological activity evaluation. Mycosystema, 2010, 29(2): 241-248. (in Chinese)

[32]周晓见, 陈毓遒, 缪  莉, 董昆明, 董夏伟, 靳翠丽. 一株拮抗烟草青枯病菌的真菌的筛选与鉴定. 生态环境学报, 2011, 20(10): 1418-1423.

Zhou X J, Chen Y Q, Miao L, Dong K M, Dong X W, Jin C L. The screening and identification of an active fungus against tobacco wilt pathogen Ralstonia solanacearum. Ecology and Environmental Sciences, 2011, 20(10): 1418-1423. (in Chinese)

[33]王茹华, 张启发, 靳亚忠, 吴  瑕, 马光恕. 嫁接茄子根际真菌的分离鉴定及对黄萎病菌的作用效果研究. 土壤通报, 2010, 41(6): 1376-1379.

Wang R H, Zhang Q F, Jin Y Z, Wu X, Ma G R. Isolation and identification of rhizosphere fungi of grafted eggplants and their effects on Verticillium wilt. Chinese Journal of Soil Science, 2010, 41(6): 1376-1379. (in Chinese)

[34]蔡  艳, 薛泉宏, 陈占全, 常显波, 司美茹, 孙小凤, 来航线. 青海高原东部土壤辣椒疫霉生防菌的初步筛选. 西北农业学报, 2007, 16(2): 241-244.

Cai Y, Xue Q H, Chen Z Q, Chang X B, Si M R, Sun X F, Lai H X. Preliminary selecting of soil antimicrobials against Phytophthora capsici in the eastern part of Qinghai Plateau. Acta Agriculturae Boreali-Occidentalis Sinica, 2007, 16(2): 241-244. (in Chinese)

[35]段春梅, 薛泉宏, 呼世斌, 赵  娟, 魏  样, 王玲娜, 申光辉, 陈  秦. 连作黄瓜枯萎病株、健株根域土壤微生物生态研究. 西北农林科技大学学报: 自然科学版, 2010, 38(4): 143-150.

Duan C M, Xue Q H, Hu S B, Zhao J, Wei Y, Wang L N, Shen G H, Chen Q. Microbial ecology of Fusarium wilt infected and healthy cucumber plant in root zone of continuous cropping soil. Journal of Northwest A&F University: Natural Science Edition, 2010, 38(4): 143-150. (in Chinese)

[36]王玲娜, 薛泉宏, 唐  明, 申光辉, 赵  娟, 段春梅, 陈  秦, 薛  磊, 毛  宁. 内蒙古芹菜根腐病病株和健株根域土壤的微生物生态研究. 西北农林科技大学学报: 自然科学版, 2010, 38(8): 167-172, 181.

Wang L N, Xue Q H, Tang M, Shen G H, Zhao J, Duan C M, Chen Q, Xue L, Mao N. Microbial ecological study about the root-zone soil of the healthy and diseased celery plant in Inner Mongolia. Journal of Northwest A&F University: Natural Science Edition, 2010, 38(8): 167-172, 181. (in Chinese)

[37]王  霞, 王素英, 高朋辉. 青霉TS67菌株对大豆根腐病和玉米小斑病的防治效果评价. 微生物学通报, 2008, 35(8): 1246-1250.

Wang X, Wang S Y, Gao P H. Evaluation of antagonism of Penicillium TS67 against soybean root rot disease and corn southern leaf blight. Microbiology China, 2008, 35(8): 1246-1250. (in Chinese)

[38]Fang J G, Tsao P H. Efficacy of Penicillium funiculosum as a biological-control agent against Phytophthora root rots of azalea and citrus. Phytopathology, 1995, 85(8): 871-878.

[39]De Cal A, Sztejnberg A, Sabuquillo P, Melgarejo P. Management Fusarium wilt on melon and watermelon by Penicillium oxalicum. Biological Control, 2009, 51(3): 480-486.

[40]Sabuquillo P, Sztejnberg A, De Cal A, Melgarejo P. Relationship between number and type of adhesions of Penicillium oxalicum conidia to tomato roots and biological control of tomato wilt. Biological Control, 2009, 48(3): 244-251.

[41]张炳欣, 张  平, 陈晓斌. 影响引入微生物根部定殖的因素. 应用生态学报, 2000, 11(6): 951-953.

Zhang B X, Zhang P, Chen X B. Factors affecting colonization of introduced microorganisms on plant roots. Chinese Journal of Applied Ecology, 2000, 11(6): 951-953. (in Chinese)

[42]Pagliaccia D, Merhaut D, Colao M C, Ruzzi M, Saccardo F, Stanghellini M E. Selective enhancement of the fluorescent pseudomonad population after amending the recirculating nutrient solution of hydroponically grown plants with a nitrogen stabilizer. Microbial Ecology, 2008, 56(3): 538-554.
[1] WANG MengRui, LIU ShuMei, HOU LiXia, WANG ShiHui, LÜ HongJun, SU XiaoMei. Development of Artificial Inoculation Methodology for Evaluation of Resistance to Fusarium Crown and Root Rot and Screening of Resistance Sources in Tomato [J]. Scientia Agricultura Sinica, 2022, 55(4): 707-718.
[2] LIU ShuSen,SUN Hua,SHI Jie,GUO Ning,MA HongXia,ZHANG HaiJian. Grading Criterion of Maize Root Rot Based on Aboveground Symptoms and the Relationship Between Severity and Agronomic Traits [J]. Scientia Agricultura Sinica, 2022, 55(20): 3939-3947.
[3] HaiChao CAO,XiuHuan LI,XiaoKun WANG,HaiXiu BAI,Wei MU,Feng LIU. Control Efficacy of Pyraclostrobin and Triazole Fungicides Against Tomato Crown and Root Rot [J]. Scientia Agricultura Sinica, 2018, 51(21): 4065-4075.
[4] ShaSha WANG, XiaoXia CUI, YanZhong HUANG, HuiDong XUAN, Na GUO, Han XING. Cloning and Functional Analysis of the GmWRKY148 in Soybean [J]. Scientia Agricultura Sinica, 2018, 51(18): 3445-3454.
[5] ZHANG NanNan, XUE Dong, CUI XiaoXia, ZHAO JinMing, GUO Na, WANG HaiTang, XING Han. Cloning and Functional Analysis of the CTR1 in Soybean [J]. Scientia Agricultura Sinica, 2017, 50(16): 3082-3091.
[6] CHENG Yan-bo, MA Qi-bin, MU Ying-hui, TAN Zhi-yuan, WU Hong, NIAN Hai. Analysis of Resistance Genes of Soybean Accessions from South China to Phytophthora Root Rot [J]. Scientia Agricultura Sinica, 2015, 48(12): 2296-2305.
[7] XIANG Ni, DUAN Can-Xing, XIAO Yan-Nong, WANG Xiao-Ming, ZHU Zhen-Dong. Identification of the Pathogen Causing Fusarium Root Rot of Pea and Diversity of Pathogenicity Genes [J]. Scientia Agricultura Sinica, 2012, 45(14): 2838-2847.
[8] JIANG Fei,LIU Ye-xia,AI Xi-zhen,ZHENG Nan,WANG Hong-tao
. Study on Relationship Among Microorganism, Enzymes’ Activity in Rhizosphere Soil and Root Rot Resistance of Grafted Pepper
[J]. Scientia Agricultura Sinica, 2010, 43(16): 3367-3374 .
[9] TANG Qing-hua,CUI Lin-kai,LI De-long,DAI Ting-ting,YIN Wei-xiao,DONG Suo-meng,XING Han,ZHENG Xiao-bo,WANG Yuan-chao
. Resistance Evaluation of Soybean Germplasm from Huanghuai Valley to Phytophthora Root Rot
[J]. Scientia Agricultura Sinica, 2010, 43(11): 2246-2252 .
[10] . Inheritance of Resistance to Phytophthora sojae in Soybean
[J]. Scientia Agricultura Sinica, 2009, 42(2): 492-498 .
[11] FENG Jie; ZHENG Xiao-bo; CHEN Wan-quan; KANG Zhen-sheng; WANG Xiao-ming; WANG Yuan-chao; HU Bai-shi; ZHANG Guo-zhen; HAN Li-juan. Rapid Detection Technologies for Potential Crop Invasive Diseases [J]. Scientia Agricultura Sinica, 2007, 40(增刊): 3143-3150.
[12] . The Pathogen of Erigeron brevisapus Root Rot in Yunnan [J]. Scientia Agricultura Sinica, 2007, 40(8): 1830-1834 .
[13] ,,,,,,,,. The Causal Microorganisms of Panax notoginseng Root Rot Disease [J]. Scientia Agricultura Sinica, 2006, 39(7): 1371-1378 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!