Scientia Agricultura Sinica ›› 2025, Vol. 58 ›› Issue (11): 2239-2252.doi: 10.3864/j.issn.0578-1752.2025.11.012

• HORTICULTURE • Previous Articles     Next Articles

Heat Resistance Analysis of Meiosis Related Gene BrASY2 in Chinese Flowering Cabbage

PANG QiangQiang(), SUN XiaoDong(), CHEN YiSong, ZHOU Man, WANG YaQiang, SHI GuoBin   

  1. Institute of Vegetable, Hainan Provincial Academy of Agricultural Sciences/Hainan Province Key Laboratory of Vegetable Biology/ Hainan Province Melon and Vegetable Breeding Engineering Technology Research Center, Haikou 571100
  • Received:2025-01-15 Accepted:2025-03-14 Online:2025-06-01 Published:2025-06-09
  • Contact: SUN XiaoDong

Abstract:

【Objective】 Chinese flowering cabbage (Brassica campestris L. ssp. chinensis var. utilis Tsen et Lee) was a heat-resistant and enjoy cold vegetable, high temperature is one of the main problems faced in the production of summer and autumn vegetable production. In the early stage, we discovered a gene fragment that may be closely related to the response to heat stress in the transcriptome database of Chinese flowering cabbage, named BrASY2. By studying its physicochemical properties, protein structure, systematic evolution, and expression characteristics, and exploring its function in heat tolerance regulation, this study provides a reference for molecular breeding of heat-resistant. 【Method】 The BrASY2 gene sequence was obtained by whole gene synthesis, the physicochemical properties, signal peptides, protein structure, and cis acting elements of BrASY2 were analyzed using ExPASy ProtParam, ProtScale, SignalP-5.0, SOPMA, Swiss Model, and PlantCARE, respectively. Construct phylogenetic tree using MEGA 6.0, and the expression characteristics under heat stress were analyzed using real-time fluorescence quantitative PCR (qRT-PCR) method. Construct yeast heterologous overexpression vector pYES2-NTB-BrASY2 and gene silencing vector pK7GWIWG2(I)-BrASY2, respectively, to obtain transgenic yeast and silenced expression cabbage plants, and perform heat tolerance functional analysis.Cytological observation of meiotic chromosome behavior in BrASY2 silenced plant cells using anther pressing method.【Result】BrASY2 with an ORF of 852 bp was obtained, encoding 283 amino acids, the relative molecular weight was 69.16 kDa with a theoretical isoelectric point being 5.09. The results of gene structure analysis indicate that it contains abundant alpha helices and random coi. Signal peptide prediction revealed that BrASY2 was a hydrophilic protein without signal peptides. Evolutionary analysis revealed that BrASY2 had the closest genetic relationship with Chinese cabbage and Brassica napus. Transcriptome data showed that the BrASY2 gene expression levels were low in both the heat sensitive material CX7-3 and the heat-resistant material CX1-7 before high temperature stress (0 h), and the expression level was rapidly increased in CX1-7 after 6 h of heat stress, however, there was no significant change in CX7-3. qRT-PCR results showed that the expression level of BrASY2 gene in the leaves of heat-resistant inbred line CX1-7 showed an upregulation trend with the prolongation of heat stress treatment time, the highest expression level was occurred at 24 h. However, in the thermosensitive inbred line CX7-3, the relative expression level remained in a low-level expression state with no significant change. Analysis of heterologous overexpression of yeast revealed that overexpression of yeast pYES2-NTB-BrASY2 was tolerant to high temperatures and can help the yeast overcome heat stress.The silencing results showed that the expression of BrHsfA2, BrHsp90, and BrMn-SOD in the silenced plants were inhibited after heat stress compared with the control plants, and the plant leaves color became lighter, chlorophyll content decreased, relative conductivity and H2O2 content increased, and SOD activity decreased. The cytological observation results of meiosis showed that, compared with the control plants, the chromosome behavior of BrASY2 silenced plants at all stages was normal, and there was no significant difference in the proportion of balanced splits cells and quaternary inmeiosis anaphase.【Conclusion】 This study successfully obtained the BrASY2 gene in Chinese flowering cabbage, and it plays a positive regulatory role in response to heat stress.

Key words: Chinese flowering cabbage, BrASY2, heat resistance, gene overexpression, gene silencing expression

Table 1

Primers used in this study"

引物名称Primer name 引物序列Primer sequence (5′-3′) 引物用途Primer purpose
BrASY2-F GGCAGATGGGTTCAGATTCG qRT-PCR
BrASY2-R AAGAGGCGTGCTCATACTCA
BrHsfA2-F GACCATTGCTCCAAGACACC
BrHsfA2-R GGAAGAGACGGTGACCTACG
BrHsp90-F CTGCAACAGTCTCACCCTCT
BrHsp90-R CTGAGAGCAAGTGGTGGAAC
BrMn-SOD-F AGATGAGTGCTGAAGGTGCT
BrMn-SOD-R CTGATTGGCGGTTGTGTCAA
BrCKⅠ-F GTCTAACTTCCTCGCCACCT 内参基因Reference gene
BrCKⅠ-R GATTCGACGACAAGCCAGAC

Fig. 1

ORF sequences and amino acid sequences of BrASY2"

Fig. 2

Bioinformatics analysis results of BrASY2 A: Prediction of the hydrophobic/hydrophilic of BrASY2 protein; B: Prediction of the signal peptide prediction of BrASY2 protein; C: Prediction of BrASY2 protein secondary structure; D: Prediction of the three-dimensional structure of BrASY2 protein; E: Phylogenetic tree of ASY2 amino acid sequence from flowering Chinese cabbage and other plants"

Fig. 3

Expression level of BrASY2 under heat stress Different lowercase letters indicate significant differences at P<0.05. The same as below"

Fig. 4

Relative expression levels of BrASY2 gene under heat stress"

Fig. 5

Analysis results of BrASY2 gene cis acting elements"

Fig. 6

Phenotype of BrASY2 gene overexpression yeast under heat stress"

Fig. 7

Expression of BrASY2 with gene silencing and control of Chinese flowering cabbage"

Fig. 8

Expression analysis of heat tolerant genes in BrASY2 gene silencing and control leaves of Chinese flowering cabbage"

Fig. 9

Phenotypic changes of BrASY2 gene silenced plants and control plants before and after heat stress"

Fig. 10

Determination results of relevant physiological indicators in BrASY2 gene silenced plants and control leaves"

Fig. 11

Cytological observation of meiosis process in BrASY2 silenced expression plants and control plants"

Table 2

Statistical results of anaphaseⅠchromosome isolation, and anaphaseⅡbinary, ternary, and quaternary chromosomes"

材料
Material
后期ⅠAnaphaseⅠ 后期ⅡAnaphaseⅡ
观察细胞数
Observe the No. of cells
均衡分裂数
No. of balanced splits
比例
Proportion
(%)
二分体
Binary
三分体
Ternary
四分体
Quaternary
四分体比例
Quaternary proportion (%)
BrASY2沉默植株
BrASY2 silent plants
51 48 94.12 2 0 26 92.86
对照植株
Control plant
49 46 93.88 2 0 24 92.31
[1]
张华, 刘自珠. 菜薹(菜心)的市场需求与育种现状. 中国蔬菜, 2010(3): 10-12.
ZHANG H, LIU Z Z. Market demand and breeding status of Chinese flowering cabbage (Chinese flowering cabbage). China Vegetables, 2010(3): 10-12. (in Chinese)
[2]
曹毅, 李春梅, 邓燏, 刘永聪. 不同菜心品种耐热性研究. 西南师范大学学报(自然科学版), 2010, 35(5): 128-131.
CAO Y, LI C M, DENG Y, LIU Y C. Study on heat tolerance of different Brassica campestris L.ssp. chinensis var. utilis Tsen et Lee varieties. Journal of Southwest China Normal University (Natural Science Edition), 2010, 35(5): 128-131. (in Chinese)
[3]
刘畅. 高温涝渍对菜心农艺性状和生理特性影响的研究[D]. 广州: 广州大学, 2020.
LIU C. Effects of high temperature waterlogging on agronomic and physiological characteristics of Chinese cabbage[D]. Guangzhou: Guangzhou University, 2020. (in Chinese)
[4]
李春梅. 高温对不同菜心品种生长及生理性状的影响. 佛山科学技术学院学报(自然科学版), 2011, 29(3): 76-78.
LI C M. Effect of high temperature on growth and physiological character of different Caixin varieties. Journal of Foshan University (Natural Science Edition), 2011, 29(3): 76-78. (in Chinese)
[5]
AHMED W, XIA Y S, LI R H, ZHANG H, SIDDIQUE K H M, GUO P G. Identification and analysis of small interfering RNAs associated with heat stress in flowering Chinese cabbage using high-throughput sequencing. Frontiers in Genetics, 2021, 12: 746816.
[6]
庞强强, 孙晓东, 周曼, 蔡兴来, 张文, 王亚强. 菜心BrHsfA3基因克隆及其对高温胁迫的响应. 生物技术通报, 2023, 39(2): 107-115.

doi: 10.13560/j.cnki.biotech.bull.1985.2022-0568
PANG Q Q, SUN X D, ZHOU M, CAI X L, ZHANG W, WANG Y Q. Cloning of BrHsfA3 in Chinese flowering cabbage and its responses to heat stress. Biotechnology Bulletin, 2023, 39(2): 107-115. (in Chinese)
[7]
庞强强, 周曼, 孙晓东, 张文, 蔡兴来. 菜心耐热性评价及酶促抗氧化系统对高温胁迫的响应. 浙江农业学报, 2020, 32(1): 72-79.

doi: 10.3969/j.issn.1004-1524.2020.01.09
PANG Q Q, ZHOU M, SUN X D, ZHANG W, CAI X L. Evaluation of heat tolerance and response of enzymatic antioxidant system to heat stress in Brassica parachinensis L.. Acta Agriculturae Zhejiangensis, 2020, 32(1): 72-79. (in Chinese)
[8]
李荣华, 郭培国, 张华, 黄红弟, 郑岩松, 夏岩石. 高温胁迫对不同耐热性菜心材料生理特性的差异研究. 北方园艺, 2012(1): 1-6.
LI R H, GUO P G, ZHANG H, HUANG H D, ZHENG Y S, XIA Y S. Effects of heat stress on several physiological traits in heat-yolerant and heat-sensitive genotypes of flowering Chinese cabbage. Northern Horticulture, 2012(1): 1-6. (in Chinese)
[9]
闫振华, 刘东尧, 贾绪存, 杨琴, 陈艺博, 董朋飞, 王群. 花期高温干旱对玉米雄穗发育、生理特性和产量影响. 中国农业科学, 2021, 54(17): 3592-3608. doi: 10.3864/j.issn.0578-1752.2021.17.004.
YAN Z H, LIU D Y, JIA X C, YANG Q, CHEN Y B, DONG P F, WANG Q. Maize tassel development, physiological traits and yield under heat and drought stress during flowering stage. Scientia Agricultura Sinica, 2021, 54(17): 3592-3608. doi: 10.3864/j.issn.0578-1752.2021.17.004. (in Chinese)
[10]
LOHANI N, SINGH M B, BHALLA P L. High temperature susceptibility of sexual reproduction in crop plants. Journal of Experimental Botany, 2020, 71(2): 555-568.

doi: 10.1093/jxb/erz426 pmid: 31560053
[11]
MERCIER R, GRELON M. Meiosis in plants: ten years of gene discovery. Cytogenetic and Genome Research, 2008, 120(3/4): 281-290.
[12]
MA H. Molecular genetic analyses of microsporogenesis and microgametogenesis in flowering plants. Annual Review of Plant Biology, 2005, 56: 393-434.

pmid: 15862102
[13]
周巧玲, 郭恒琳, 勾晓婉. 高温对植物减数分裂过程的影响. 农业灾害研究, 2021, 11(11): 71-73.
ZHOU Q L, GUO H L, GOU X W. Effects of high temperature on meiosis of plants. Journal of Agricultural Catastrophology, 2021, 11(11): 71-73. (in Chinese)
[14]
陈赛华, 仲伟杰, 薛明. 植物有性生殖对高温胁迫的响应机制. 作物学报, 2023, 49(12): 3143-3153.

doi: 10.3724/SP.J.1006.2023.32020
CHEN S H, ZHONG W J, XUE M. Advances in heat-stress responses at sexual reproduction stage in plants. Acta Agronomica Sinica, 2023, 49(12): 3143-3153. (in Chinese)
[15]
ARMSTRONG S J, CARYL A P, JONES G H, CHRISTOPHER H, FRANKLIN F. Asy1, a protein required for meiotic chromosome Synapsis, localizes to axis-associated chromatin in Arabidopsis and Brassica. Journal of Cell Science, 2002, 115(Pt 18): 3645-3655.
[16]
BODEN S A, SHADIAC N, TUCKER E J, LANGRIDGE P, ABLE J A. Expression and functional analysis of TaASY1 during meiosis of bread wheat (Triticum aestivum). BMC Molecular Biology, 2007, 8: 65.
[17]
NONOMURA K I, NAKANO M, EIGUCHI M, SUZUKI T, KURATA N. PAIR2 is essential for homologous chromosome Synapsis in rice meiosis I. Journal of Cell Science, 2006, 119(Pt 2): 217-225.
[18]
POCHON G, HENRY I M, YANG C, LORY N, FERNÁNDEZ- JIMÉNEZ N, BÖWER F, HU B Y, CARSTENS L, TSAI H T, PRADILLO M, COMAI L, SCHNITTGER A. The Arabidopsis Hop1 homolog ASY1 mediates cross-over assurance and interference. PNAS Nexus, 2022, 2(3): pgac302.
[19]
CHAMBON A, WEST A, VEZON D, HORLOW C, DE MUYT A, CHELYSHEVA L, RONCERET A, DARBYSHIRE A, OSMAN K, HECKMANN S, FRANKLIN F C H, GRELON M. Identification of ASYNAPTIC4, a component of the meiotic chromosome axis. Plant Physiology, 2018, 178(1): 233-246.

doi: 10.1104/pp.17.01725 pmid: 30002256
[20]
DE STORME N, GEELEN D. The impact of environmental stress on male reproductive development in plants: Biological processes and molecular mechanisms. Plant, Cell & Environment, 2014, 37(1): 1-18.
[21]
马爱茹. 大白菜CO基因与ASY1基因的克隆及分析[D]. 保定: 河北农业大学, 2012.
MA A R. Cloning and analysis of CO gene and ASY1 gene in Chinese cabbage[D]. Baoding: Hebei Agricultural University, 2012. (in Chinese)
[22]
李纷芬. 番茄转录因子VAHOX1SlMBP22在生殖发育及干旱胁迫响应中的功能研究[D]. 重庆: 重庆大学, 2022.
LI F F. Study on the functions of tomato transcription factors VAHOX1 and SlMBP22 in reproductive development and drought stress response[D]. Chongqing: Chongqing University, 2022. (in Chinese)
[23]
朱云娜, 杨景辉, 王斌, 王玉昆, 周裕荣, 卢威宇, 刘建国. 菜心BcCIPK23基因克隆及表达特性分析. 广东农业科学, 2023, 50 (9): 89-98.
ZHU Y N, YANG J H, WANG B, WANG Y K, ZHOU Y R, LU W Y, LIU J G. Cloning and expression characteristics analysis of BcCIPK23 in flowering Chinese cabbage. Guangdong Agricultural Sciences, 2023, 50(9): 89-98. (in Chinese)
[24]
曾泽湘, 肖显梅, 谭小丽, 范中奇, 陈建业. 菜薹BrWRKY57的特性及其对BrPPH1BrNCED3的调控. 园艺学报, 2021, 48(3): 518-530.

doi: 10.16420/j.issn.0513-353x.2020-0432
ZENG Z X, XIAO X M, TAN X L, FAN Z Q, CHEN J Y. Characteristics of the transcription factor BrWRKY57 and its regulation on BrPPH1 and BrNCED3. Acta Horticulturae Sinica, 2021, 48(3): 518-530. (in Chinese)
[25]
陶鹏, 赵彦婷, 钟新民, 岳智臣, 雷娟利, 李必元. 菜心BrAGL24基因mRNA在嫁接体中的长距离运输分析. 核农学报, 2019, 33(5): 880-887.

doi: 10.11869/j.issn.100-8551.2019.05.0880
TAO P, ZHAO Y T, ZHONG X M, YUE Z C, LEI J L, LI B Y. Analysis of mRNA long-distance transport of Chinese flowering cabbage BrAGL24 in heterograft. Journal of Nuclear Agricultural Sciences, 2019, 33(5): 880-887. (in Chinese)
[26]
庞强强, 孙晓东, 周曼, 张文, 陈贻诵. 一种菜心耐热性评价方法: CN113348992A[P]. 2021-09-07.
PANG Q Q, SUN X D, ZHOU M, ZHANG W, CHEN Y S. A method for evaluating the heat resistance of vegetable hearts: CN113348992A[P]. 2021-09-07. (in Chinese)
[27]
庞强强, 周曼, 孙晓东, 陈贻诵, 蔡兴来. 不同菜心品种萌发期和苗期耐热性分析及其鉴定指标筛选. 西北农业学报, 2020, 29(2): 295-305.
PANG Q Q, ZHOU M, SUN X D, CHEN Y S, CAI X L. Comprehensive evaluation and indexes screening of heat tolerance at germination and seedling stages in different cultivars of Chinese flowering cabbage. Acta Agriculturae Boreali-occidentalis Sinica, 2020, 29(2): 295-305. (in Chinese)
[28]
吴廷全, 张长远, 王瑞, 谭德龙, 王茹芳, 郭金菊, 曹海顺. 菜心胞质磺基转移酶基因BraSOT12在抗霜霉病中的应用. CN114941002B[P]. 2023-03-24.
WU T Q, ZHANG C Y, WANG R, TAN D L, WANG R F, GUO J J, CAO H S. Application of BrasOT12 in anti downy mildew of Chinese flowering cabbage. CN114941002B[P]. 2023-03-24. (in Chinese)
[29]
王志远. CsHsfA2调控黄瓜耐热性分子机理研究[D]. 泰安: 山东农业大学, 2024.
WANG Z Y. Study on molecular mechanism of CsHsfA2 regulating cucumber heat tolerance[D]. Taian: Shandong Agricultural University, 2024. (in Chinese)
[30]
张楠, 王映红, 王志敏, 岳振宇, 牛义. 植物热激转录因子家族的研究进展. 生物工程学报, 2021, 37(4): 1155-1167.
ZHANG N, WANG Y H, WANG Z M, YUE Z Y, NIU Y. Heat shock transcription factor family in plants: A review. Chinese Journal of Biotechnology, 2021, 37(4): 1155-1167. (in Chinese)
[31]
汤佳乐, 徐海, 苑平, 何科佳, 王仁才, 卜范文. 植物Hsp90s与耐热性关系的研究进展. 生物技术通报, 2020, 36(10): 173-179.

doi: 10.13560/j.cnki.biotech.bull.1985.2020-0264
TANG J L, XU H, YUAN P, HE K J, WANG R C, BU F W. Advance in relationship between heat shock protein 90s and thermo-tolerance in plants. Biotechnology Bulletin, 2020, 36(10): 173-179. (in Chinese)
[32]
庞强强, 孙晓东, 周曼, 王亚强, 蔡兴来. 菜心高温胁迫内参基因及其筛选方法和应用: CN115927296A[P]. 2023-04-07.
PANG Q Q, SUN X D, ZHOU M, WANG W Q, CAI X L. Heat stress internal reference genes and their screening methods and applications in Chineseflowering cabbage: CN115927296A[P]. 2023-04-07. (in Chinese)
[33]
勾晓婉, 周巧玲, 于书冉, 文心月, 陈仕月, 吴方瑜. 植物中减数分裂过程相关调控基因的研究进展. 现代农业科技, 2021(21): 7-10, 13.
GOU X W, ZHOU Q L, YU S R, WEN X Y, CHEN S Y, WU F Y. Research progress on genes involved in regulation of meiosis in plants. Modern Agricultural Science and Technology, 2021(21): 7-10, 13. (in Chinese)
[34]
NING Y J, LIU Q P, WANG C, QIN E D, WU Z H, WANG M H, YANG K, ELESAWI I E, CHEN C L, LIU H, QIN R, LIU B. Heat stress interferes with formation of double-strand breaks and homolog Synapsis. Plant Physiology, 2021, 185(4): 1783-1797.
[35]
王娅丽. 棉花减数分裂相关基因REC8的克隆与功能鉴定[D]. 北京: 中国农业科学院, 2023.
WANG Y L. Cloning and functional identification of cotton meiosis related gene REC8.[D]. Beijing: Chinese Academy of Agricultural Sciences, 2023. (in Chinese)
[36]
张冰雪. 夏枯草高温敏感的分子机制[D]. 北京: 中国科学院大学, 2023.
ZHANG B X. Molecular mechanism of high temperature sensitivity of Prunella vulgaris[D]. Beijing: University of Chinese Academy of Sciences, 2023. (in Chinese)
[37]
HIGGINS J D, WRIGHT K M, BOMBLIES K, CHRIS H FRANKLIN F. Cytological techniques to analyze meiosis in Arabidopsis arenosa for investigating adaptation to polyploidy. Frontiers in Plant Science, 2014, 4: 546.
[38]
SANCHEZ-MORAN E, SANTOS J L, JONES G H, CHRISTOPHER H FRANKLIN F. ASY 1 mediates AtDMC1-dependent interhomolog recombination during meiosis in Arabidopsis. Genes & Development, 2007, 21(17): 2220-2233.
[39]
ÁLVAREZ D, VOß B, MAASS D, WÜST F, SCHAUB P, BEYER P, WELSCH R. Carotenogenesis is regulated by 5'UTR-mediated translation of phytoene synthase splice variants. Plant Physiology, 2016, 172(4): 2314-2326.

pmid: 27729470
[40]
KOTAK S, LARKINDALE J, LEE U, VON KOSKULL-DÖRING P, VIERLING E, SCHARF K D. Complexity of the heat stress response in plants. Current Opinion in Plant Biology, 2007, 10(3): 310-316.

doi: 10.1016/j.pbi.2007.04.011 pmid: 17482504
[41]
梁敏敏. 自噬相关基因CaATG6在辣椒响应逆境中的功能及作用机制[D]. 杨凌: 西北农林科技大学, 2023.
LIANG M M. Function and mechanism of autophagy-related gene CaATG6 in pepper response to adversity[D]. Yangling: Northwest A & F University, 2023. (in Chinese)
[42]
梁森林, 党江波, 梁国鲁, 郭启高. 天然四倍体枇杷‘B431’减数分裂观察及育性分析. 园艺学报, 2018, 45(10): 1895-1904.

doi: 10.16420/j.issn.0513-353x.2018-0222
LIANG S L, DANG J B, LIANG G L, GUO Q G. Meiosis observation and fertility analysis in natural tetraploid loquat of ‘B431'. Acta Horticulturae Sinica, 2018, 45(10): 1895-1904. (in Chinese)
[43]
FU H Q, ZHAO J Y, REN Z M, YANG K, WANG C, ZHANG X H, ELESAWI I E, ZHANG X H, XIA J, CHEN C L, LU P, CHEN Y X, LIU H, YU G H, LIU B. Interfered chromosome pairing at high temperature promotes meiotic instability in autotetraploid Arabidopsis. Plant Physiology, 2022, 188(2): 1210-1228.
[1] XU TianJun, LÜ TianFang, LI ZiHao, ZHANG Yong, LIU HongWei, LIU YueE, CAI WanTao, ZHANG RuYang, SONG Wei, XING JinFeng, ZHAO JiuRan, WANG RongHuan. Comparison of Heat Tolerance of Maize Hybrids and Their Parental Inbreds with Different Genotypes [J]. Scientia Agricultura Sinica, 2024, 57(2): 403-415.
[2] ZHANG LiYa, LI Qi, SHI ShanShan, MA YuMeng, LIU YaQi, ZHAO ChaoWei, WANG HeRu, CAO HaiQun, LIAO Min, ZHAO Ning. Resistance Mechanism of Barnyard Grass (Echinochloa crus-galli) to Penoxsulam and Screening Herbicides for Its Control in Rice Fields [J]. Scientia Agricultura Sinica, 2023, 56(14): 2713-2723.
[3] FENG XianJun, WANG Li, WANG Tong, HOU LeiPing, LI MeiLan. Comparison of Sugar Content and Expression Analysis of Genes Related to Sugar Metabolism in Different Parts of Chinese Flowering Cabbage [J]. Scientia Agricultura Sinica, 2023, 56(11): 2158-2171.
[4] LIU Xiu-Ming, HUANG Chen-Yang, CHEN Qiang, WU Xiang-Li, ZHANG Jin-Xia. Study on the Metabolic Pathway of Trehalose in Pleurotus pulmonarius During Heat Stress Recovery [J]. Scientia Agricultura Sinica, 2013, 46(24): 5188-5195.
[5] . Comparative Study on Heat Resistance of Lily Hybrids and Their Parents
[J]. Scientia Agricultura Sinica, 2011, 44(6): 1201-1209 .
[6] GUO Xiao,LI Ke-bin,YIN Jiao,WANG Bing,CAO Ya-zhong . Effects of Wheat Varieties on Population Parameters of Macrosiphum avenae (Fabricius)
[J]. Scientia Agricultura Sinica, 2010, 43(10): 2056-2063 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!