Scientia Agricultura Sinica ›› 2021, Vol. 54 ›› Issue (19): 4207-4217.doi: 10.3864/j.issn.0578-1752.2021.19.015

• FOOD SCIENCE AND ENGINEERING • Previous Articles     Next Articles

Effects of Steaming-Retrogradation Pretreatment on Physicochemical Properties and in Vitro Starch Digestibility of the Roasted Highland Barley Flour

WANG YuLin1(),LEI Lin1,2,XIONG WenWen1,YE FaYin1,2,ZHAO GuoHua1,2()   

  1. 1College of Food Science, Southwest University, Chongqing 400715
    2Chongqing Engineering Research Center for Special Food, Chongqing 400715
  • Received:2020-11-25 Accepted:2021-01-25 Online:2021-10-01 Published:2021-10-12
  • Contact: GuoHua ZHAO E-mail:wyl0407@email.swu.edu.cn;zhaogh@swu.edu.cn

Abstract:

【Objective】 This study was to explore the effects of steaming-retrogradation pretreatment on the nutritional profiles, physicochemical properties, and in vitro starch digestion of the roasted highland barley flour, with the aim to enrich the processing methods of highland barley.【Method】The effects of steaming-retrogradation pretreatment at different time (0, 6, 12, 18, and 24 h, respectively) on roasted highland barley flour was studied. The microstructure of the roasted highland barley flour was observed by scanning electron microscope and microscope. The effect of steaming-retrogradation pretreatment on short-range molecular order structure, relative crystallinity, and pasting properties of the roasted highland barley flour was determined by Fourier transform infrared spectroscopy, laser confocal microscopic Raman spectroscopy, X-ray diffraction, and rapid viscosity analysis. The effects of steaming-retrogradation pretreatment on the changes of starch digestibility in roasted highland barley flour were determined via In vitro digestion. 【Result】 Compared with the raw highland barley flour, the steaming-retrogradation pretreatment reduced the contents of starch, protein, fat, and β-glucan in roasted highland barley flour. However, steaming without retrogradation pretreatment (0-Roasted) increased the content of water-insoluble dietary fiber, water-soluble dietary fiber, and total dietary fiber in the roasted highland barley flour. The steaming-retrogradation pretreatment destroyed the starch granules in roasted highland barley flour, presenting disappearance of polarization cross. Meanwhile, the short-range molecular order structure was damaged by steaming-retrogradation pretreatment in roasted highland barley flour. Compared with the raw highland barley flour, the relatively crystallinity was reduced by steaming-retrogradation pretreatment in roasted highland barley. However, the relative crystallinity was increased with the increased time of retrogradation in roasted highland barley. The A-type diffraction pattern was changed into the V-type in roasted highland barley flour, indicating the formation of starch-lipid or starch-protein-lipid complexes after heat processing. The steaming-retrogradation pretreatment decreased the L* value while increased a* and b* values in roasted highland barley flour. Compared with the raw highland barley flour, the steaming-retrogradation pretreatment destroyed the pasting peak and caused a lower final viscosity, and increased the oil holding capacity while decreased the water holding capacity of roasted highland barley flour. Compared with the raw highland barley flour, the heat processing could increase the in vitro starch digestibility. Retrogradation at 6-24 h could decrease the content of rapidly digestible starch by 6%-16% and significantly increased the content of slowly digestible starch in roasted highland barley flour. 【Conclusion】 The steaming-retrogradation pretreatment could change nutritional profiles and physicochemical properties of roasted highland barley flour. Retrogradation at 6 h could decrease the in vitro starch digestion of the roasted highland barley flour, which was helpful in maintaining blood glucose homeostasis and could be developed as one of potential foods for diabetics and borderline diabetics.

Key words: roasted highland barley, retrogradation, physicochemical properties, starch digestibility characteristics, β-glucan

Fig. 1

Effects of steaming-retrogradation on macrostructures and microstructures of the roasted highland barley a-f: Pictures of highland barley flour; g-l: Scanning electron microscope pictures of highland barley flour (4000×); m-r: Microscopy pictures of highland barley (4×)"

Table 1

Effects of steaming-retrogradation on proximate compositions in the roasted highland barely (g/100 g)"

样品
Sample
水分*
Water
总淀粉
Total starch
蛋白质
Protein
脂肪
Fat
IDF SDF TDF β-葡聚糖
β-glucan
生青稞粉
Raw highland barley flour
13.8±0.1a 62.0±0.3a 8.5±0.5a 2.3±0.1a 18.3±0.4b 7.1±0.0b 25.5±0.4b 6.5±0.3a
0-Roasted 8.6±0.1b 60.2±1.3ab 7.6±0.4b 1.3±0.1bc 20.5±0.4a 10.8±0.1a 31.3±0.5a 2.2±0.1d
6-Roasted 7.0±0.11c 59.4±2.7ab 6.4±0.3c 1.5±0.1bc 16.7±0.0c 6.6±0.1b 23.3±0.1c 2.3±0.1cd
12-Roasted 5.2±0.2d 57.8±2.7ab 6.3±0.2c 1.3±0.4c 16.4±0.5c 6.8±0.6b 23.2±1.1c 2.6±0.0c
18-Roasted 3.4±0.0e 55.6±4.0b 6.8±0.5c 1.5±0.2bc 15.0±0.1d 7.1±0.8b 22.1±0.9c 4.0±0.1b
24-Roasted 2.8±0.1f 57.2±2.3b 7.5±0.5b 1.8±0.1b 15.4±0.2d 7.2±0.0b 22.5±0.2c 4.3±0.2b

Table 2

Effects of steaming-retrogradation on the short-range molecular orders of the roasted highland barley"

样品 Sample 1047/1022 cm-1 480 cm-1半峰全宽 Full width at half peak of 480 cm-1
生青稞粉 Raw highland barley flour 0.87±0.01a 16.59±0.38d
0-Roasted 0.61±0.02c 22.01±0.34a
6-Roasted 0.77±0.09b 20.96±1.62ab
12-Roasted 0.77±0.08b 20.13±0.57b
18-Roasted 0.83±0.00ab 19.66±0.09bc
24-Roasted 0.85±0.01a 18.64±0.43cd

Fig. 2

Effects of steaming-retrogradation on XRD diffraction patterns of the roasted highland barley RC%: Relative crystallinity. Different lowercase letters indicate significant differences (P<0.05). The same as below"

Table 3

Effects of steaming-retrogradation on the chrominance of the roasted highland barley"

样品 Sample L* a* b* ΔE
生青稞粉 Raw highland barley 92.3±0.2a 3.4±0.1e 10.8±0.4e
0-Roasted 81.4±0.7b 4.4±0.2d 14.9±0.2c 11.7±0.6d
6-Roasted 81.8±0.2b 4.4±0.2d 14.1±0.3d 11.0±0.2d
12-Roasted 79.5±0.4d 4.6±0.2d 15.4±0.3c 13.6±0.5c
18-Roasted 78.9±0.2e 5.7±0.1b 17.5±0.3a 16.0±0.3b
24-Roasted 80.5±0.4c 5.3±0.1c 17.4±0.2a 13.7±0.3c

Fig. 3

Effects of steaming-retrogradation on the RVA pasting profiles of the roasted highland barley"

Fig. 4

Effects of steaming-retrogradation on the water holding capacity and oil holding capacity of the roasted highland barley Different capital letters indicate significant difference (P<0.05) for oil holding capacity; different lowercase letters indicate significant difference (P<0.05) for water holding capacity"

Fig. 5

Effects of steaming-retrogradation on in vitro digestion of starch in the roasted highland barley a-c indicate significant difference in RDS (P<0.05); A-B indicate significant difference in SDS (P<0.05); A'-C' indicate significant difference in RS (P<0.05)"

[1] International Diabetes Federation. IDF DIABETES ATLAS, 9th edition 2019[EB/OL]. [2021-01-18]. https://diabetesatlas.org/upload/resources/2019/IDF_Atlas_9th_Edition_2019.pdf.
[2] YE E Q, CHACKO S A, CHOU E L, KUGIZAKI M, LIU S M. Greater whole-grain intake is associated with lower risk of type 2 diabetes, cardiovascular disease, and weight gain. The Journal of Nutrition, 2012, 142(7):1304-1313.
doi: 10.3945/jn.111.155325
[3] GUO P, YU J L, WANG S J, WANG S, COPELAND L. Effects of particle size and water content during cooking on the physicochemical properties and in vitro starch digestibility of milled durum wheat grains. Food Hydrocolloids, 2018, 77:445-453. doi: 10.1016/j.foodhyd.2017.10.021.
doi: 10.1016/j.foodhyd.2017.10.021
[4] GOFFH D H, REPIN N, FABEK H, KHOURY D E, GIDLEY M J. Dietary fiber for glycaemia control: Towards a mechanistic understanding. Bioactive Carbohydrates and Dietary Fiber, 2018, 14:39-53. doi: 10.1016/j.bcdf.2017.07.005.
doi: 10.1016/j.bcdf.2017.07.005
[5] MOZA J, GUJRAL H S. Starch digestibility and bioactivity of high altitude hulless barley. Food Chemistry, 2016, 194:561-568.
doi: 10.1016/j.foodchem.2015.07.149
[6] REN Y, XIE H Y, LIU L, JIA D Y, YAO K, CHI Y L. Processing and prebiotics characteristics of β-glucan extract from highland barley. Applied Sciences, 2018, 8(9):1481.
doi: 10.3390/app8091481
[7] YANGCHENG H Y, GONG L X, ZHANG Y, JANE J L. Pysicochemical properties of Tibetan hull-less barley starch. Carbohydrate Polymers, 2016, 137:525-531. doi: 10.1016/j.carbpol.2015.10.061.
doi: 10.1016/j.carbpol.2015.10.061
[8] 王新坤, 王月明, 刘超, 张智博, 王青, 程安玮, 郭溆, 李志国, 孙金月. 青稞碳水化合物构成与血糖稳定品质的关系. 中国粮油学报, 2019, 34(8):34-41.
WANG X K, WANG Y M, LIU C, ZHANG Z B, WANG Q, CHENG A W, GUO X, LI Z G, SUN J Y. The relationship between carbohydrate composition of highland barley kernels and glucostasis quality. Journal of the Chinese Cereals and Oils Association, 2019, 34(8):34-41. (in Chinese)
[9] 王新坤, 刘超, 杨清梅, 程安玮, 王月明, 王青, 孙金月. 青稞籽粒β-葡聚糖含量及不同加工方式对其变化的影响. 山东农业科学, 2019, 51(2):124-130.
WANG X K, LIU C, YANG Q M, CHENG A W, WANG Y M, WANG Q, SUN J Y. Beta glucan content in highland barley grains and its change influenced by different processing methods. Shandong Agricultural Sciences, 2019, 51(2):124-130. (in Chinese)
[10] SONIA S, WITJAKSONO F, RIDWAN R. Effect of cooling of cooked white rice on resistant starch content and glycemic response. Asia Pacific Journal of Clinical Nutrition, 2015, 24(4):620-625.
[11] ZHU Y D, WANG Z Y, WANG Y, LI D, WANG L J. Effect on parboiling processing on structure and thermal properties of highland barley flours. Powder Technology, 2020, 364:145-151. doi: 10.1016/j.powtec.2020.01.049.
doi: 10.1016/j.powtec.2020.01.049
[12] 杨希娟. 青稞糌粑加工工艺研究. 食品工业, 2016, 37(8):78-81.
YANG X J. Research on processing technology of hulless barely tsampa. The Food Industry, 2016, 37(8):78-81. (in Chinese)
[13] ASP N G, JOHANSSON C G, HALLMER H, SILJESTROEM M. Rapid enzymatic assay of insoluble and soluble dietary fiber. Journal of Agricultural and Food Chemistry, 1983, 31(3):476-482.
doi: 10.1021/jf00117a003
[14] LI J H, VASANTHAN T, ROSSNAGEL B, HOOVER R. Starch from hull-less barley: I. Granule morphology, composition and amylopectin structure. Food Chemistry, 2001, 74(4):395-405.
doi: 10.1016/S0308-8146(01)00246-1
[15] XU L, CHEN L, ALI B, YANG N, CHENG Y S, WU F F, JIN Z Y, XU X M. Impact of germination on nutritional and physicochemical properties of adlay seed (Coixlachryma-jobi L.). Food Chemistry, 2017, 229:312-318.
doi: 10.1016/j.foodchem.2017.02.096
[16] TAN X Y, ZHANG B J, CHEN L, LI X X, LI L, XIE F W. Effect of planetary ball-milling on multi-scale structures and pasting properties of waxy and high-amylose corn starches. Innovative Food Science & Emerging Technologies, 2015, 30:198-207. doi: 10.1016/j.ifset.2015.03.013.
doi: 10.1016/j.ifset.2015.03.013
[17] PUNCHA-ARNON S, UTTAPAP D. Rice starch vs. rice flour: Differences in their properties when modified by heat-moisture treatment. Carbohydrate Polymers, 2013, 91(1):85-91.
doi: 10.1016/j.carbpol.2012.08.006
[18] ZHU F M, DU B, XU B J. Superfine grinding improves functional properties and antioxidant capacities of bran dietary fibre from Qingke (hull-less barley) grown in Qinghai-Tibet Plateau, China. Journal of Cereal Science, 2015, 65:43-47. doi: 10.1016/j.jcs.2015.06.006.
doi: 10.1016/j.jcs.2015.06.006
[19] QI X G, CHENG L L, LI X J, ZHANG D Y, WU G C, ZHANG H, WANG L, QIAN H F, WANG Y N. Effect of cooking methods on solubility and nutrition quality of brown rice powder. Food Chemistry, 2019, 274:444-451. doi: 10.1016/j.foodchem.2018.07.164.
doi: 10.1016/j.foodchem.2018.07.164
[20] SHARMA P, GUJRAL H S, ROSELL C M. Effects of roasting on barley β-glucan, thermal, textural and pasting properties. Journal of Cereal Science, 2011, 53(1):25-30.
doi: 10.1016/j.jcs.2010.08.005
[21] 李彩丽. 淀粉回生过程中的自组装机制及对淀粉消化性的影响[D]. 天津: 天津科技大学, 2016.
LI C L. Self-assembly mechanism in the starch retrogradation and its effect on starch during digestibility[D]. Tianjin: Tianjin University of Science & Technology, 2016. (in Chinese)
[22] ZHENG B, ZHONG S W, TANG Y K, CHEN L. Understanding the nutritional functions of thermally-processed whole grain highland barley in vitro and in vivo. Food Chemistry, 2019, 310:125979. doi: 10.1016/j.foodchem.2019.125979.
doi: 10.1016/j.foodchem.2019.125979
[23] BJÖRCK I, ASP N G, BIRKHED D, ELIASSON A C, SJOBERG L B, LUNDQUIST L. Effects of processing on availability of starch for digestion in vitro and in vivo; I Extrusion cooking of wheat flours and starch. Journal of Cereal Science, 1984, 2(3):165-178.
doi: 10.1016/S0733-5210(84)80030-2
[24] GOUDAR G, SHARMA P, JANGHU S, LONGVAH T. Effect of processing on barley β-glucan content, its molecular weight and extractability. International Journal of Biological Macromolecules, 2020, 162:1204-1216. doi: 10.1016/j.ijbiomac.2020.06.208.
doi: 10.1016/j.ijbiomac.2020.06.208
[25] WANG S J, WANG S K, GUO P, LIU L, WANG S. Multiscale structural changes of wheat and yam starches during cooking and their effect on in vitro enzymatic digestibility. Journal of Agricultural and Food Chemistry, 2017, 65(1):156-166.
doi: 10.1021/acs.jafc.6b04272
[26] BAI Y P, ZHOU H M, ZHU K R, LI Q. Effect of thermal treatment on the physicochemical, ultrastructural and nutritional characteristics of whole grain highland barley. Food Chemistry, 2020, 17:128657. doi: 10.1016/j.foodchem.2020.128657.
doi: 10.1016/j.foodchem.2020.128657
[27] PU H Y, CHEN L, LI L, LI X X. Multi-scale structural and digestion resistibility changes of high-amylose corn starch after hydrothermal- pressure treatment at different gelatinizing temperatures. Food Research International, 2013, 53(1):456-463.
doi: 10.1016/j.foodres.2013.05.021
[28] SEVENOU O, HILL S E, FARHAT I A, MITCHELL J R. Organisation of the external region of the starch granule as determined by infrared spectroscopy. International Journal of Biological Macromolecules, 2002, 31(1):79-85.
doi: 10.1016/S0141-8130(02)00067-3
[29] KHUNAE P, TRAN T, SIRIVONGPAISAL P. Effect of heat-moisture treatment on structural and thermal properties of rice starches differing in amylose content. Starch-Staerke, 2007, 59(12):593-599.
doi: 10.1002/(ISSN)1521-379X
[30] ZOU J, XU M J, TANG W, WEN L R, YANG B. Modification of structural, physicochemical and digestive properties of normal maize starch by thermal treatment. Food Chemistry, 2020, 309:125733.
doi: 10.1016/j.foodchem.2019.125733
[31] WANG S J, LI C L, ZHANG X, COPELAND L, WANG S. Retrogradation enthalpy does not always reflect the retrogradation behavior of gelatinized starch. Scientific Reports, 2016, 6:20965.
doi: 10.1038/srep20965
[32] GUO P, YU J L, COPELAND L, WANG S, WANG S J. Mechanisms of starch gelatinization during heating of wheat flour and its effect on invitro starch digestibility. Food Hydrocolloids, 2018, 82:370-378. doi: 10.1016/j.foodhyd.2018.04.012.
doi: 10.1016/j.foodhyd.2018.04.012
[33] JAFARI M, KOOCHEKI A, MILANI E. Effect of extrusion cooking on chemical structure, morphology, crystallinity and thermal properties of sorghum flour extrudates. Journal of Cereal Science, 2017, 75:324-331. doi: 10.1016/j.jcs.2017.05.005.
doi: 10.1016/j.jcs.2017.05.005
[34] 景新俊. 不同热加工对萌动青稞加工特性和营养作用的影响[D]. 郑州: 郑州轻工业大学, 2019.
JING X J. Effects of different hot processing on process properties and nutritional effect of germinated barley[D]. Zhengzhou: Zhengzhou University of Light Industry, 2019. (in Chinese)
[35] 李高平. 热加工对板栗淀粉胶体特性及功能性质的影响[D]. 北京: 北京林业大学, 2018.
LI G P. Effect of thermal processing on the colloidal and functional properties of chestnut starch[D]. Beijing: Beijing Forestry University, 2018. (in Chinese)
[36] ASHWAR B A, GANI A, WANI I A, SHAH A, MASOODI F A, SAXENA D C. Production of resistant starch from rice by dual autoclaving-retrogradation treatment: Invitro digestibility, thermal and structural characterization. Food Hydrocolloids, 2016, 56:108-117.
doi: 10.1016/j.foodhyd.2015.12.004
[37] LUO X L, WANG Q, ZHENG B D, LIN L M, CHEN B Y, ZHENG Y F, XIAO J B. Hydration properties and binding capacities of dietary fibers from bamboo shoot shell and its hypolipidemic effects in mice. Food and Chemical Toxicology, 2017, 109:1003-1009. doi: 10.1016/j.fct.2017.02.029.
doi: 10.1016/j.fct.2017.02.029
[38] 张倩芳, 李敏, 栗红瑜, 孟晶岩. 不同加工方式对青稞膳食纤维组成及功能性质的影响. 粮食与油脂, 2020, 33(2):91-94.
ZHANG Q F, LI M, LI H Y, MENG J Y. Effects of different processing methods on dietary fiber composition and functional properties of highland barley. Cereals & Oils, 2020, 33(2):91-94. (in Chinese)
[39] PARK K H, LEE K Y, LEE H G. Chemical composition and physicochemical properties of barley dietary fiber by chemical modification. International Journal of Biological Macromolecules, 2013, 60(6):360-365.
doi: 10.1016/j.ijbiomac.2013.06.024
[40] 方冲. 不同添加物对挤压重组米血糖生成指数及性质的影响[D]. 南昌: 南昌大学, 2018.
FANG C. Effects of different additives on glycemic index and properties of extruded rice[D]. Nanchang: Nanchang University, 2018. (in Chinese)
[41] WANG S J, LI C L, COPELAND L, NIU Q, WANG S. Starch retrogradation: A comprehensive review. Comprehensive Reviews in Food Science and Food Safety, 2015, 14(5):568-585.
doi: 10.1111/crf3.2015.14.issue-5
[1] CUI Peng,ZHAO YiRen,YAO ZhiPeng,PANG LinJiang,LU GuoQuan. Starch Physicochemical Properties and Expression Levels of Anabolism Key Genes in Sweetpotato Under Low Temperature [J]. Scientia Agricultura Sinica, 2022, 55(19): 3831-3840.
[2] LIU Hong,GUO YuJie,XU Xiong,LI Xia,ZHANG HongRu,QI LiWei,SUN XueMei,ZHANG ChunHui. Preparation, Physicochemical Characterization and Bioactivity Comparison of Different Livestock and Poultry Bone Peptides [J]. Scientia Agricultura Sinica, 2022, 55(13): 2629-2642.
[3] GU MingHui,YANG ZeSha,MA Ping,GE XinYu,LIU YongFeng. Application of Ultrasound-Assisted Thawing in the Role of Maintaining Physicochemical Properties and Reducing Protein Loss in Mutton During Multiple Freeze-Thaw Cycles [J]. Scientia Agricultura Sinica, 2021, 54(18): 3970-3983.
[4] ZHAO WeiSong,GUO QingGang,LI SheZeng,WANG PeiPei,LU XiuYun,SU ZhenHe,ZHANG XiaoYun,MA Ping. Effect of Wilt-Resistant and Wilt-Susceptible Cotton on Soil Bacterial Community Structure at Flowering and Boll Stage [J]. Scientia Agricultura Sinica, 2020, 53(5): 942-954.
[5] GOU XiaoJu, TIAN You, GUO YuRong, YANG Xi, HOU YanJie, PING JiaXin, LI Ting. Analysis and Evaluation on Quality of Not from Concentrate Apple Juices in Different Maturation Period [J]. Scientia Agricultura Sinica, 2018, 51(19): 3778-3790.
[6] LIU XiWei, ZHANG Min, ZHANG YuChun, YANG Min, SONG XiaoJun, CAI RuiGuo. Effects of Shading at Grain Filling Stages on Starch Components and Physicochemical Properties of the Waxy Wheat and Non-Waxy Wheat [J]. Scientia Agricultura Sinica, 2017, 50(9): 1582-1593.
[7] GAO Xi-xi, ZHANG Shu-wen, LU Jing, LIU Lu, PANG Xiao-yang, YUE Xi-qing, Lü Jia-ping. Chemical Compositions and Physicochemical Properties of Milk Fat and Fractions Obtained by Short-Path Distillation [J]. Scientia Agricultura Sinica, 2016, 49(11): 2183-2193.
[8] GENG Yi-wen, HA Yi-ming, JIN Jing, LI Qing-peng. Apple Pomace Dietary Fibre Modification by Hydrogen Peroxide [J]. Scientia Agricultura Sinica, 2015, 48(19): 3979-3988.
[9] SU Dong-Xiao, LIAO Sen-Tai, ZHANG Ming-Wei, HOU Fang-Li, TANG Xiao-Jun, WEI Zhen-Cheng, ZHANG Rui-Fen, CHI Jian-Wei, ZHANG Yan, DENG Yuan-Yuan. Effect of Spray Drying Processing on the Physicochemical Properties of Instant Longan Powder [J]. Scientia Agricultura Sinica, 2011, 44(18): 3830-3839.
[10] ,,. Formation and Physicochemical Properties of Pressure-Induced Gels [J]. Scientia Agricultura Sinica, 2005, 38(08): 1652-1657 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!