Scientia Agricultura Sinica ›› 2015, Vol. 48 ›› Issue (3): 594-603.doi: 10.3864/j.issn.0578-1752.2015.03.18
• ANIMAL SCIENCE·VETERINARY SCIENCERE • Previous Articles Next Articles
HAO Hai-hong, CHENG Gu-yue, DAI Meng-hong, WANG Xu, WANG Yu-lian, HUANG Ling-li, LIU Zhen-li, YUAN Zong-hui
[1] Dibner J J, Richards J D. Antibiotic growth promoters in agriculture: history and mode of action. Poultry Science, 2005, 84(4):634-643.
[2] Niewold T A. The nonantibiotic anti-inflammatory effect of antimicrobial growth promoters, the real mode of action? A hypothesis. Poultry Science, 2007, 86(4):605-609.
[3] Marshall B M, Levy S B. Food animals and antimicrobials: impacts on human health. Clinical Microbiology Reviews, 2011, 24(4): 718-733.
[4] FDV-CVM. Risk assessment of streptogramin resistance in enterococcus faecium attributable to the use of streptogramins in animals. “Virginiamycin Risk Assessment” In: Medicine FCfV, editor:http://www.fda.gov/downloads/animalveterinary/newsevents/cvmupdates/ucm054722.pd; 2004.
[5] Casewell M, Friis C, Marco E, McMullin P, Phillips I. The European ban on growth-promoting antibiotics and emerging consequences for human and animal health. The Journal of Antimicrobial Chemotherapy, 2003, 52(2):159-161.
[6] Phillips I, Casewell M, Cox T, De Groot B, Friis C, Jones R, Nightingale C, Preston R, Waddell J. Antibiotic use in animals. The Journal of Antimicrobial Chemotherapy, 2004, 53(5):885-886.
[7] Phillips I, Casewell M, Cox T, De Groot B, Friis C, Jones R, Nightingale C, Preston R, Waddell J. Does the use of antibiotics in food animals pose a risk to human health? A critical review of published data. The Journal of Antimicrobial Chemotherapy, 2004, 53(1):28-52.
[8] Turnidge J. Antibiotic use in animals--prejudices, perceptions and realities. The Journal of Antimicrobial Chemotherapy, 2004, 53(1): 26-27.
[9] Jones R N, Ballow C H, Biedenbach D J, Deinhart J A, Schentag J J. Antimicrobial activity of quinupristin-dalfopristin (RP 59500, Synercid) tested against over 28,000 recent clinical isolates from 200 medical centers in the United States and Canada. Diagnostic Microbiology and Infectious Disease, 1998, 31(3):437-451.
[10] McDonald L C, Yu H T, Yin H C, Hsiung C A, Hung C C, Ho M. Correlates of antibiotic use in Taiwan hospitals. Infect Control Hosp Epidemiol, 2001, 22(9):565-571.
[11] McDonald L C, Rossiter S, Mackinson C, Wang Y Y, Johnson S, Sullivan M, Sokolow R, DeBess E, Gilbert L, Benson J A, Hill B, Angulo F J. Quinupristin-dalfopristin-resistant Enterococcus faecium on chicken and in human stool specimens. The New England Journal of Medicine, 2001, 345(16):1155-1160.
[12] McDonald L C, Chen M T, Lauderdale T L, Ho M. The use of antibiotics critical to human medicine in food-producing animals in Taiwan. Journal of Microbiology, Immunology, and Infection, 2001, 34(2):97-102.
[13] Phillips G. Microbiological aspects of clinical waste. The Journal of Hospital Infection, 1999, 41(1):1-6.
[14] Sorensen T L, Blom M, Monnet D L, Frimodt-Moller N, Poulsen R L, Espersen F. Transient intestinal carriage after ingestion of antibiotic- resistant Enterococcus faecium from chicken and pork. The New England Journal of Medicine, 2001, 345(16):1161-1166.
[15] Hershberger E, Oprea S F, Donabedian S M, Perri M, Bozigar P, Bartlett P, Zervos M J. Epidemiology of antimicrobial resistance in enterococci of animal origin. The Journal of Antimicrobial Chemotherapy, 2005, 55(1):127-130.
[16] Smith D L, Johnson J A, Harris A D, Furuno J P, Perencevich E N, Jr Morris J G. Assessing risks for a pre-emergent pathogen: virginiamycin use and the emergence of streptogramin resistance in Enterococcus faecium. The Lancet Infectious Diseases 2003, 3(4):241-249.
[17] Hurd H S, Doores S, Hayes D, Mathew A, Maurer J, Silley P, Singer R S, Jones R N. Public health consequences of macrolide use in food animals: a deterministic risk assessment. Journal of Food Protection, 2004, 67(5):980-992.
[18] NARMS. Retail meat report-national antimicrobial resistance monitoring system. http://www.fda.gov/AnimalVeterinary/SafetyHealth/ AntimicrobialResistance/NationalAntimicrobialResistanceMonitoringSystem/default.htm, editor; 2010.
[19] Hao H, Yuan Z, Shen Z, Han J, Sahin O, Liu P, Zhang Q. Mutational and transcriptomic changes involved in the development of macrolide resistance in Campylobacter jejuni. Antimicrobial Agents and Chemotherapy, 2013, 57(3):1369-1378.
[20] Hao H, Dai M, Wang Y, Peng D, Liu Z, Yuan Z. 23S rRNA mutation A2074C conferring high-level macrolide resistance and fitness cost in Campylobacter jejuni. Microbial Drug Resistance (Larchmont, NY), 2009, 15(4): 239-244.
[21] Almofti Y A, Dai M, Sun Y, Haihong H, Yuan Z. Impact of erythromycin resistance on the virulence properties and fitness of Campylobacter jejuni. Microbial Pathogenesis, 2011, 50(6):336-342.
[22] Almofti Y A, Dai M, Sun Y, Hao H, Liu Z, Cheng G, Yuan Z. The physiologic and phenotypic alterations due to macrolide exposure in Campylobacter jejuni. International Journal of Food Microbiology, 2011, 151(1):52-61.
[23] SCAN. Opinion of the Scientific Committee for Animal Nutrition (SCAN) on the immediate and long-term risk to the value of streptogramins in human medicine posed by the use of virginiamycin as an animal growth promoter. Luxemburg; 1998.
[24] Cervantes H. Assessing The results of the EU Ban on antibiotic feed aAdditives. http://www.thepoultrysite.com/articles/471/assessing-the- results-of-the-eu-ban-on-antibiotic-feed-additives; 2005.
[25] Voss A, Loeffen F, Bakker J, Klaassen C, Wulf M. Methicillin- resistant staphylococcus aureus in pig farming. Emerging Infectious Diseases, 2005, 11(12):1965-1966.
[26] Alexander T W, Inglis G D, Yanke L J, Topp E, Read R R, Reuter T, McAllister T A. Farm-to-fork characterization of Escherichia coli associated with feedlot cattle with a known history of antimicrobial use. International Journal of Food Microbiology, 2010, 137(1):40-48.
[27] Dutil L, Irwin R, Finley R, Ng L K, Avery B, Boerlin P, Bourgault A M, Cole L, Daignault D, Desruisseau A, Demczuk W, Hoang L, Horsman G B, Ismail J, Jamieson F, Maki A, Pacagnella A, Pillai D R. Ceftiofur resistance in Salmonella enterica serovar Heidelberg from chicken meat and humans, Canada. Emerging Infectious Diseases, 2010, 16(1):48-54.
[28] Barber M. Methicillin-resistant staphylococci. Journal of Clinical Pathology, 1961, 14:385-393.
[29] Wenzel R P. The emergence of methicillin-resistant Staphylococcus aureus. Annals of Internal Medicine, 1982, 97(3):440-442.
[30] Haley R W, Hightower A W, Khabbaz R F, Thornsberry C, Martone W J, Allen J R, Hughes J M. The emergence of methicillin-resistant Staphylococcus aureus infections in United States hospitals. Possible role of the house staff-patient transfer circuit. Annals of Internal Medicine, 1982, 97(3):297-308.
[31] Pan E S, Diep B A, Charlebois E D, Auerswald C, Carleton H A, Sensabaugh G F, Perdreau-Remington F. Population dynamics of nasal strains of methicillin-resistant Staphylococcus aureus and their relation to community-associated disease activity. The Journal of Infectious Diseases, 2005, 192(5):811-818.
[32] Maree C L, Daum R S, Boyle-Vavra S, Matayoshi K, Miller L G. Community-associated methicillin-resistant Staphylococcus aureus isolates causing healthcare-associated infections. Emerging Infectious Diseases, 2007, 13(2):236-242.
[33] Labandeira-Rey M, Couzon F, Boisset S, Brown E L, Bes M, Benito Y, Barbu E M, Vazquez V, Hook M, Etienne J, Vandenesch F, Bowden M G. Staphylococcus aureus Panton-Valentine leukocidin causes necrotizing pneumonia. Science, 2007, 315(5815):1130-1133.
[34] Catry B, Van Duijkeren E, Pomba M C, Greko C, Moreno M A, Pyorala S, Ruzauskas M, Sanders P, Threlfall E J, Ungemach F, Torneke K, Munoz-Madero C, Torren-Edo J. Reflection paper on MRSA in food-producing and companion animals: epidemiology and control options for human and animal health. Epidemiology and Infection, 2010, 138(5):626-644.
[35] Holmes M A, Zadoks R N. Methicillin resistant S. aureus in human and bovine mastitis. Journal of Mammary Gland Biology and Neoplasia, 2011, 16(4):373-382.
[36] Verkade E, Kluytmans J. Livestock-associated Staphylococcus aureus CC398: Animal reservoirs and human infections. Infect Genet Evology, 2014, 21:523-530.
[37] Loncaric I, Kubber-Heiss A, Posautz A, Stalder G L, Hoffmann D, Rosengarten R, Walzer C. Characterization of methicillin-resistant Staphylococcus spp. carrying the mecC gene, isolated from wildlife. The Journal of Antimicrobial Chemotherapy, 2013, 68(10):2222-2225.
[38] Hower S, Phillips M C, Brodsky M, Dameron A, Tamargo M A, Salazar N C, Jackson C R, Barrett J B, Davidson M, Davis J, Mukherjee S, Ewing R Y, Gidley M L, Sinigalliano C D, Johns L, Johnson F E, Adebanjo O, Plano L R. Clonally related methicillin- resistant Staphylococcus aureus isolated from short-finned pilot whales (Globicephala macrorhynchus), human volunteers, and a bayfront cetacean rehabilitation facility. Microbial Ecology, 2013, 65(4): 1024-1038.
[39] Haenni M, Saras E, Chatre P, Medaille C, Bes M, Madec J Y, Laurent F. A USA300 variant and other human-related methicillin-resistant Staphylococcus aureus strains infecting cats and dogs in France. The Journal of Antimicrobial Chemotherapy, 2012, 67(2):326-329.
[40] Ewers C, Bethe A, Semmler T, Guenther S, Wieler L H. Extended- spectrum beta-lactamase-producing and AmpC-producing Escherichia coli from livestock and companion animals, and their putative impact on public health: a global perspective. Clinical Microbiology and Infection, 2012, 18(7):646-655.
[41] Guenther S, Ewers C, Wieler L H. Extended-spectrum Beta- Lactamases producing E. coli in wildlife, yet another form of environmental pollution? Frontiers in Microbiology, 2011, 2:246.
[42] Dolejska M, Frolkova P, Florek M, Jamborova I, Purgertova M, Kutilova I, Cizek A, Guenther S, Literak I. CTX-M-15-producing Escherichia coli clone B2-O25b-ST131 and Klebsiella spp. isolates in municipal wastewater treatment plant effluents. The Journal of Antimicrobial Chemotherapy, 2011, 66(12):2784-2790.
[43] Guenther S, Grobbel M, Lubke-Becker A, Goedecke A, Friedrich N D, Wieler L H, Ewers C. Antimicrobial resistance profiles of Escherichia coli from common European wild bird species. Veterinary Microbiology, 2009, 144(1/2):219-225.
[44] Guenther S, Grobbel M, Beutlich J, Guerra B, Ulrich R G, Wieler L H, Ewers C. Detection of pandemic B2-O25-ST131 Escherichia coli harbouring the CTX-M-9 extended-spectrum beta-lactamase type in a feral urban brown rat (Rattus norvegicus). The Journal of Antimicrobial Chemotherapy, 2010, 65(3):582-584.
[45] Kirst H A, Thompson D G, Nicas T I. Historical yearly usage of vancomycin. Antimicrobial Agents and Chemotherapy, 1998, 42(5): 1303-1304.
[46] Acar J, Casewell M, Freeman J, Friis C, Goossens H. Avoparcin and virginiamycin as animal growth promoters: a plea for science in decision-making. Clinical Microbiology and Infection, 2000, 6(9): 477-482.
[47] Werner G, Coque T M, Hammerum A M, Hope R, Hryniewicz W, Johnson A, Klare I, Kristinsson K G, Leclercq R, Lester C H, Lillie M, Novais C, Olsson-Liljequist B, Peixe LV, Sadowy E, Simonsen G S, Top J, Vuopio-Varkila J, Willems R J, Witte W, Woodford N. Emergence and spread of vancomycin resistance among enterococci in Europe. Euro Surveillance, 2008, 13(47): pii 19046.
[48] Garcia-Migura L, Liebana E, Jensen L B, Barnes S, Pleydell E. A longitudinal study to assess the persistence of vancomycin-resistant Enterococcus faecium (VREF) on an intensive broiler farm in the United Kingdom. FEMS Microbiology Letters, 2007, 275(2):319-325.
[49] DANMAP. DANMAP 2010 - Use of antimicrobial agents and occurrence of antimicrobial resistance in bacteria from food animals, food and humans in Denmark. http://www.danmap.org, editor; 2010.
[50] Nilsson O, Greko C, Top J, Franklin A, Bengtsson B. Spread without known selective pressure of a vancomycin-resistant clone of Enterococcus faecium among broilers. The Journal of Antimicrobial Chemotherapy, 2009, 63(5):868-872.
[51] FDA. Freedom of Information Summary NADA 1412068. 1998, http://www.fda.gov/cvm/foi/942.html.
[52] FDA. Final decision of the Commissioner Docket No. 2000N21571 with drawal of approval of the new animal drug application for enrofloxacin in poultry [EB/OL]. http://www.fda.gov/oc/antimicrobial/ baytri. html]; 2002.
[53] Nelson J M, Chiller T M, Powers J H, Angulo F J. Fluoroquinolone- resistant Campylobacter species and the withdrawal of fluoroquinolones from use in poultry: a public health success story. Clinical Infectious Disease, 2007, 44(7):977-980.
[54] JVARM. A report on the Japanese veterinary antimicrobial resistance monitoring system 2002-2007. 2008.
[55] CIPARS. Canadian integrated program for antimicrobial resistance surveillance annual report 2008. http://www.phac-aspc.gc.ca/cipars- picra/2008/index-eng.php, editor; 2008.
[56] Zeitouni S, Collin O, Andraud M, Ermel G, Kempf I. Fitness of macrolide resistant Campylobacter coli and Campylobacter jejuni. Microbial Drug Resistance, 2012, 18(2):101-108.
[57] Luo N, Pereira S, Sahin O, Lin J, Huang S, Michel L, Zhang Q. Enhanced in vivo fitness of fluoroquinolone-resistant Campylobacter jejuni in the absence of antibiotic selection pressure//Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(3):541-546.
[58] Prescott J F. Antibiotics: miracle drugs or pig food? The Canadian Veterinary, 1997, 38(12):763-766.
[59] Aarestrup F M, Nielsen E M, Madsen M, Engberg J. Antimicrobial susceptibility patterns of thermophilic Campylobacter spp. from humans, pigs, cattle, and broilers in Denmark. Antimicrobial Agents and Chemotherapy, 1997, 41(10):2244-2250.
[60] Anjum M F, Choudhary S, Morrison V, Snow L C, Mafura M, Slickers P, Ehricht R, Woodward M J. Identifying antimicrobial resistance genes of human clinical relevance within Salmonella isolated from food animals in Great Britain. The Journal of Antimicrobial Chemotherapy, 2011, 66(3):550-559.
[61] Drouin E. Helicobacter pylori: novel therapies. Canadian Journal of Gastroenterology, 1999, 13(7):581-583.
[62] Rose N, Beaudeau F, Drouin P, Toux J Y, Rose V, Colin P. Risk factors for Salmonella enterica subsp. enterica contamination in French broiler-chicken flocks at the end of the rearing period. Preventive Veterinary Medicine, 1999, 39(4):265-277.
[63] Lovland A, Kaldhusdal M. Severely impaired production performance in broiler flocks with high incidence of Clostridium perfringens- associated hepatitis. Avian Pathology, 2001, 30(1):73-81.
[64] Jensen G B, Hansen B M, Eilenberg J, Mahillon J. The hidden lifestyles of Bacillus cereus and relatives. Environmental Microbiology, 2003, 5(8):631-640.
[65] DANMAP. DANMAP 2000 - Use of antimicrobial agents and occurrence of antimicrobial resistance in bacteria from food animals, food and humans in Denmark. http://www.danmap.org, editor; 2000.
[66] Mahews K. Antimicrobial drug use and veterinary costs in U.S. Livestock Production, 2001, 766: 761-768 .
[67] DANMAP. DANMAP 2003 - Use of antimicrobial agents and occurrence of antimicrobial resistance in bacteria from food animals, food and humans in Denmark. http://www.danmap.org, editor; 2003.
[68] IFAH-EuroP. IFAH-Europe annual report 2005; 2005.
[69] Hook S E, Wright A D, McBride B W. Methanogens: methane producers of the rumen and mitigation strategies. Archaea, 2010, 945785.
[70] Jones C M. The effects of selected antibiotics on nitrogen uptake by Spirodela punctata[D]. Arcata: Humboldt State University, 2010.
[71] Poduval R D, Kamath R P, Corpuz M, Norkus E P, Pitchumoni C S. Clostridium difficile and vancomycin-resistant enterococcus: the new nosocomial alliance. The American Journal of Gastroenterology, 2000, 95(12):3513-3515.
[72] Jones R L. Clostridial enterocolitis. The Veterinary Clinics of North America, 2000,16(3):471-485.
[73] Tice A. Outpatient parenteral antimicrobial therapy (OPAT): a global perspective. Introduction Chemotherapy, 2001, 47( Suppl 1):1-4.
[74] Russell S M. The effect of airsacculitis on bird weights, uniformity, fecal contamination, processing errors, and populations of Campylobacter spp. and Escherichia coli. Poultry Science, 2003, 82(8):1326-1331.
[75] Heuer O E, Pedersen K, Andersen J S, Madsen M. Prevalence and antimicrobial susceptibility of thermophilic Campylobacter in organic and conventional broiler flocks. Letters in Applied Microbiology, 2001, 33(4):269-274.
[76] Hurd H S. Risk-Risk Assessment of Antibiotic Use in Food Animals. 2011; COEX, Seoul, Korea. www.isaar.org.
[77] Hurd H S, Yaeger M J, Brudvig J M, Taylor D D, Wang B. Lesion severity at processing as a predictor of Salmonella contamination of swine carcasses. American Journal of Veterinary Research, 2012, 73(1):91-97.
[78] Cook R. EU ban on four antibiotic growth promoters. The Veterinary Record, 1999, 144(6):158.
[79] Ferran A A, Toutain P L, Bousquet-Melou A. Impact of early versus later fluoroquinolone treatment on the clinical; microbiological and resistance outcomes in a mouse-lung model of Pasteurella multocida infection. Veterinary Microbiology, 2011, 148(2-4):292-297.
[80] Ferran A A, Kesteman A S, Toutain P L, Bousquet-Melou A. Pharmacokinetic/pharmacodynamic analysis of the influence of inoculum size on the selection of resistance in Escherichia coli by a quinolone in a mouse thigh bacterial infection model. Antimicrobial Agents and Chemotherapy, 2009, 53(8):3384-3390. |
[1] | YAN ChaoQun,LI ShuaiPeng,ZHANG Shen,XIE Shun,WEI KaiYun,HUANG XianHui. Residue Depletion Study and Withdrawal Period for Cefalonium Intramammary Infusion (Dry cow) in Bovine Milk [J]. Scientia Agricultura Sinica, 2019, 52(2): 367-375. |
[2] | XIAO ZhiMing, WANG Jun, SUO DeCheng, WEI ShuLin, JIA Zheng, LIU ChengXin, FAN Xia. Quantitative Determination of Diludine in Animal Feeds by Ultra-Performance Liquid Chromatography-Tandem Mass Spectrometry [J]. Scientia Agricultura Sinica, 2018, 51(9): 1806-1814. |
[3] | SHEN LiuHong, XIAO JinBang, WU XiaoFeng, JIANG SiXun, JIANG Tao, DENG JunLiang, ZUO ZhiCai, YU ShuMin, CAO SuiZhong . Effects of Compound Natural Plant Preparation on Milk Withdrawal and Galactin in Dairy Cows [J]. Scientia Agricultura Sinica, 2017, 50(18): 3620-3630. |
[4] | . Development and application of a PCR approach for detection of animal derived materials in feedstuff [J]. Scientia Agricultura Sinica, 2008, 41(7): 2112-2119 . |
[5] | ,,,,,,,. Pharmacokinetics and Residues of Danofloxacin Mesylate in Goldfish (Carassius auratus Linnaeus) [J]. Scientia Agricultura Sinica, 2006, 39(02): 418-424 . |
|