Previous Articles Next Articles
ZHOU Wei, LI Shu-tian, LIN Bao
[1]Liu C Q, Cao S Q, Wu X J. Outline of sulphur status in the agriculture of China. In: The Sulfur Institute. Proceedings of the International Symposium on Present and Future Raw Material and Fertilizer Sulphur Requirements for China. Beijing: The Sulfur Institute, 1993: 41-50. [2]Fan M X, Messick D L. The current status of S in Chinese agriculture. Sulphur in Agriculture, 1997, 20: 71-79. [3]Blair G J, Lefroy R D B. Sulfur soil testing. Plant and Soil, 155: 383-386. [4]中国农业科学院土壤肥料研究所. 中国肥料. 上海: 上海科学技术出版社, 1994. [5]Haynes R J, Williams P H. Accumulation of soil organic matter and the forms, mineralization potentials and plant availability of accumulated organic sulfur: effect of pasture experiment and intensive cultivation. Soil Biology and Biochemistry, 1992, 24: 209-217. [6]Jaggi R C, Aulakh M S, Sharma R. Temperature effects on soil organic sulphur mineralization and elemental sulphur oxidation in subtropical soils of varying pH. Nutrient Cycling in Agroecosystem, 1999, 54: 175-182. [7]Ghani A, McLaren R G, Swift R S. The incorporation and transformations of 35S in soil: effects of soil conditioning and glucose or sulfate additions. Soil Biology and Biochemistry, 1993, 25: 327-335. [8]Kertesz M A, Mirleau P. The role of soil microbes in plant sulphur nutrition. Journal of Experimental Botany, 2004, 55: 1939-1945. [9]White P J, Bowen H C, Demidchik V, Nichols C, Davies J M. Genes for calcium-permeable channels in the plasma membrane of plant root cells. Biochimica et Biophysica Acta, 2002, 1564: 299-309. [10]White P J, Broaddley M R. Calcium in Plants. Annals of Botany, 2003, 92: 487-511. [11]Marschner H. Mineral Nutrition of Higher Plants (2nd edition). London: Academic Press, 1995. [12]周 卫, 汪 洪. 植物钙吸收、转运及代谢的生理和分子机制. 植物学通报, 2007,24(6): 789-812. [13]国家自然科学基金委员会编. 国家自然科学基金资助项目优秀成果选编(四). 北京: 科学出版社, 2006: 83. [14]Graham R D, Welch R M, Bouis H E. Addressing micronutrient malnutrition through enhancing the nutritional quality of staple foods: principles, perspectives and knowledge gaps. Advances in Agronomy, 2001, 70: 77-142. [15]Broadley M R, Bowen H C, Cotterill H L, Hammond J P, Meacham M C, Mead A, White P J. Variation in the shoot calcium content of angiosperms. Journal of Experimental Botany, 2003, 54: 1431-1446. [16]Demidchik V, Bowen H C, Maathuis F J M, Shabala S N, Tester M A, White P J, Davies J M. Arabidopsis thaliana root non-selective cation channels mediate calcium uptake and are involved in growth. Plant Journal, 2002, 32: 799-808. [17]Very A A, Davis J M. Hyperpolarization-activated calcium channels at the tip of Arabidopsis root hairs. Proceeding of the National Academy of Science, USA, 2000, 97: 9801-9806. [18]Zhou W, Wang H, Zhao L P, Lin B. Study on characteristics of Ca uptake by young fruit of apple and its regulation by hormones. Chinese Agricultural Sciences, 2000: 90-97. [19]Chen J, Zhou W. Calcium forms, subcellular distribution and ultrastructure of pulp cells influenced by calcium deficiency in apple fruits. Agricultural Sciences in China, 2004, 3(5): 349-355. [20]周 卫, 何 萍. 苹果果肉质膜微囊主动运输Ca2+的Ca2+-ATP酶特性研究. 植物生理学报, 1999, 25(2):151-158. [21]Hirschi K D. The calcium conundrum, both versatile nutrient and specific signal. Plant Physiology, 2004, 136: 2438-2442. [22]Hepler P K. Calcium, a central regulator of plant growth and development. Plant Cell, 2005, 17: 2142-2155. [23]Reddy V S, Reddy A S N. Proteomics of calcium-signaling components in plants. Phytochemistry, 2004, 65: 1745-1776. [24]Li S T, Lin B, Zhou W. Crop response to sulfur fertilizers and soil sulfur status in some provinces of China. Landbauforschung Volkenrod Special Issue, 2005, 283: 81-84. [25]Zhou W, Li S T, He P, Lin B. Transformation of sulfate and organic S in rice straw in flooded paddy soils and its availability to plants using sulfur-35 labeling. Geoderma, 2006, 132: 1-8. [26]Zhou W, He P, Li S T, Lin B. Mineralization of organic sulfur in paddy soils under flooded conditions and its availability to plants. Geoderma, 2005, 125: 85-93. [27]Zhou W, Wan M, He P, Li S T, Lin B. Elemental sulfur oxidation in paddy soils as influenced by flooded condition and plant growth. Biology & Fertility of Soils, 2002, 36(5):352-358. [28]Zhou W, Li S T, Wang H, He P, Lin B. Mineralization of organic sulphur and is importance as a reservoir of plant-available sulfur in upland soils of north China. Biology & Fertility of Soils, 1999, 30: 245-250. [29]Li S T, Lin B, Zhou W. Effects of previous elemental sulfur applications on oxidation of additional applied elemental sulfur in soils. Biology & Fertility of Soils, 2005, 42:146-152. [30]Li S T, Lin B, Zhou W. Soil organic sulfur mineralization in the presence of growing plants under aerobic or waterlogged conditions.Soil Biology and Biochemistry, 2001, 33(6): 721-728. [31]Li S T, Lin B, Zhou W. Sulfur supply assessment using anion exchange resin strip-plant root simulator probe. Communication in Soil Science and Plant Analysis, 2001, 32(5&6): 711-722. [32]Hawkesford M J. Plant responses to sulphur deficiency and genetic manipulation of sulphate transporters to improve sutilization efficiency. Journal of Experimental Botany, 2000, 51: 131-138. [33]Buchner P, Takahashi H, Hawkesford M J. Plant sulphate transporters: co-ordination of uptake, intracellular and long-distance transport. Journal of Experimental Botany, 2004, 55: 1765-1773. [34]Yoshimoto N, Takahashi H, Smith F W, Yamaya T, Saito K. Two distinct high-affinity sulfate transporters with different inducibilities mediate uptake of sulfate in Arabidopsis root. The Plant Journal, 2002, 29: 465-473. [35]Awazuhara M, Fujiwara T, Hayashi H, Watanabe-Takahashi A, Takahashi H, Saito K. The function of SULTR2;1 sulfate transporter during seed development in Arabidopsis thaliana. Physiologia Plantarum, 2005, 125 (1): 95-105. [36]Yoshimoto N, Inoue E, Saito K, Yamaya T, Takahashi H. Phloem-localizing sulfate transporter, Sultr1; 3, mediates redistribution of sulfur from source to sink organs in Arabidopsis. Plant Physiology, 2003, 131: 1511-1517. [37]Wang R, Okamoto M, Xing X, Crawford N M. Microarray analysis of the nitrate response in Arabidopsis roots and shoots reveals over 1000 rapidly responding genes and new linkages to glucose, trehalose-6-phosphate, iron, and sulfate metabolism. Plant Physiology, 2003, 132: 556-567. [38]Droux M. Sulfur assimilation and the role of sulfur in plant metabolism: a survey. Photosynthesis Research, 2004, 79: 331-348. [39]Takahashi H, Yamazaki M, Sasakura N, Watanabe A, Leustek T, de Almeida-Engler J, Engler G, van Montagu M, Saito K. Regulation of sulfur assimilation in higher plants: a sulfate transporter induced in sulphate starved roots plays a central role in Arabidopsis thaliana. Proceedings of the National Academy of Science, USA, 1997, 94: 11102-11107. |
[1] | LI MingFeng,LIU XinWei,WANG HaiTong,ZHAO ZhuQing. Effects of Sulfur Fertilizer on Boron Uptake and Distribution of Rape in B-contaminated Soil [J]. Scientia Agricultura Sinica, 2019, 52(5): 874-881. |
|