[1] |
FICKEL J, WAGENER A, LUDWIG A. Semen cryopreservation and the conservation of endangered species. European Journal of Wildlife Research, 2007, 53(2): 81-89.
|
[2] |
潘红梅, 彭刚, 吴玲, 肖杰秋, 徐荣. 猪冷冻精液在我国的应用现状和存在的问题. 猪业科学. 2020, 37(06): 44-48.
|
|
PAN H M, PENG G, WU L, XIAO J Q, XU R. The current application status and existing problems of frozen pig semen in China Pig Science 2020, 37(06): 44-48. (in Chinese)
|
[3] |
WATSON P F. Recent developments and concepts in the cryopreservation of spermatozoa and the assessment of their post-thawing function. Reproduction, Fertility, and Development, 1995, 7(4): 871-891.
|
[4] |
THURSTON L M, SIGGINS K, MILEHAM A J, WATSON P F, HOLT W V. Identification of amplified restriction fragment length polymorphism markers linked to genes controlling boar sperm viability following cryopreservation. Biology of Reproduction, 2002, 66(3): 545-554.
doi: 10.1095/biolreprod66.3.545
pmid: 11870056
|
[5] |
FRASER L, BRYM P, PAREEK C S, MOGIELNICKA-BRZOZOWSKA M, PAUKSZTO Ł, JASTRZĘBSKI J P, WASILEWSKA-SAKOWSKA K, MAŃKOWSKA A, SOBIECH P, ŻUKOWSKI K. Transcriptome analysis of boar spermatozoa with different freezability using RNA-Seq. Theriogenology, 2020, 142: 400-413.
doi: S0093-691X(19)30495-9
pmid: 31711689
|
[6] |
童世锋, 任智彬, 林斐, 葛雨竹, 陶景丽, 刘杨. 二花脸公猪不同耐冻性精子的蛋白质组学分析. 中国农业科学, 2022, 55(23): 4743-4752. doi: 10.3864/j.issn.0578-1752.2022.23.01410.3864/j. issn.0578-1752.2022.23.014. TONG S F, REN Z B, LIN F, GE Y Z, TAO J L, LIU Y. Proteomic analysis of sperm with different freezing tolerance in Erhualian boar. Scientia Agricultura Sinica, 2022, 55(23): 4743-4752. doi: 10.3864/j.issn.0578-1752.2022.23.01410.3864/j. issn.0578-1752.2022.23.014. (in Chinese)
|
|
|
[7] |
EVANS H C, DINH T T N, UGUR M R, HITIT M, SAJEEV D, KAYA A, TOPPER E, NICODEMUS M C, SMITH G D, MEMILI E. Lipidomic markers of sperm cryotolerance in cattle. Scientific Reports, 2020, 10(1): 20192.
doi: 10.1038/s41598-020-77089-9
pmid: 33214639
|
[8] |
ODDI S, CARLUCCIO A, CIARAMELLANO F, MASCINI M, BUCCI R, MACCARRONE M, ROBBE D, DAINESE E. Cryotolerance of equine spermatozoa correlates with specific fatty acid pattern: a pilot study. Theriogenology, 2021, 172: 88-94.
doi: 10.1016/j.theriogenology.2021.06.004
pmid: 34146973
|
[9] |
ZHANG Y T, YUAN W J, LIU Y C, LIU Y, LIANG H L, XU Q Q, LIU Z H, WENG X G. Plasma membrane lipid composition and metabolomics analysis of Yorkshire boar sperms with high and low resistance to cryopreservation. Theriogenology, 2023, 206: 28-39.
doi: 10.1016/j.theriogenology.2023.04.016
pmid: 37178672
|
[10] |
GIRAUD M N, MOTTA C, BOUCHER D, GRIZARD G. Membrane fluidity predicts the outcome of cryopreservation of human spermatozoa. Human Reproduction, 2000, 15(10): 2160-2164.
pmid: 11006192
|
[11] |
ZALBA S, TEN HAGEN T L M. Cell membrane modulation as adjuvant in cancer therapy. Cancer Treatment Reviews, 2017, 52: 48-57.
doi: S0305-7372(16)30115-3
pmid: 27889637
|
[12] |
ALVAREZ J G, STOREY B T. Evidence for increased lipid peroxidative damage and loss of superoxide dismutase activity as a mode of sublethal cryodamage to human sperm during cryopreservation. Journal of Andrology, 1992, 13(3): 232-241.
pmid: 1601742
|
[13] |
KOU Z Y, HU B Y, LI Y Q, CAI R, GAO L, CHU G Y, YANG G S, PANG W J. Boar seminal plasma improves sperm quality by enhancing its antioxidant capacity during liquid storage at 17℃. Zygote, 2022, 30(5): 695-703.
|
[14] |
PINART E, YESTE M, BONET S. Acrosin activity is a good predictor of boar sperm freezability. Theriogenology, 2015, 83(9): 1525-1533.
doi: 10.1016/j.theriogenology.2015.02.005
pmid: 25748245
|
[15] |
CATALÁN J, YÁNEZ-ORTIZ I, TORRES-GARRIDO M, RIBAS- MAYNOU J, LLAVANERA M, BARRANCO I, YESTE M, MIRÓ J. Impact of seminal plasma antioxidants on DNA fragmentation and lipid peroxidation of frozen-thawed horse sperm. Antioxidants, 2024, 13(3): 322.
|
[16] |
YESTE M, ESTRADA E, CASAS I, BONET S, RODRÍGUEZ-GIL J E. Good and bad freezability boar ejaculates differ in the integrity of nucleoprotein structure after freeze-thawing but not in ROS levels. Theriogenology, 2013, 79(6): 929-939.
doi: 10.1016/j.theriogenology.2013.01.008
pmid: 23398739
|
[17] |
TONG S F, YIN C, GE Y Z, REN Z B, TAO J L, LIU Y. Albumin (ALB) and protein disulfide isomerase family A member 4 (PDIA4) are novel markers to predict sperm freezability of Erhualian boar. Cryobiology, 2022, 109: 37-43.
|
[18] |
TORRES M A, PEDROSA A C, NOVAIS F J, ALKMIN D V, COOPER B R, YASUI G S, FUKUMASU H, MACHATY Z, DE ANDRADE A F C. Metabolomic signature of spermatozoa established during holding time is responsible for differences in boar sperm freezability. Biology of Reproduction, 2022, 106(1): 213-226.
|
[19] |
BAILEY J L, BILODEAU J F, CORMIER N. Semen cryopreservation in domestic animals: a damaging and capacitating phenomenon. Journal of Andrology, 2000, 21(1): 1-7.
|
[20] |
BUHR M M, FISER P, BAILEY J L, CURTIS E F. Cryopreservation in different concentrations of glycerol alters boar sperm and their membranes. Journal of Andrology, 2001, 22(6): 961-969.
pmid: 11700860
|
[21] |
GUTHRIE H D, WELCH G R. Impact of storage prior to cryopreservation on plasma membrane function and fertility of boar sperm. Theriogenology, 2005, 63(2): 396-410.
pmid: 15626407
|
[22] |
MARTIN G, SABIDO O, DURAND P, LEVY R. Cryopreservation induces an apoptosis-like mechanism in bull sperm. Biology of Reproduction, 2004, 71(1): 28-37.
pmid: 14973261
|
[23] |
THOMSON L K, FLEMING S D, AITKEN R J, DE IULIIS G N, ZIESCHANG J A, CLARK A M. Cryopreservation-induced human sperm DNA damage is predominantly mediated by oxidative stress rather than apoptosis. Human Reproduction, 2009, 24(9): 2061-2070.
|
[24] |
CHEN Z Y, HAUSER R, TRBOVICH A M, SHIFREN J L, DORER D J, GODFREY-BAILEY L, SINGH N P. The relationship between human Semen characteristics and sperm apoptosis: a pilot study. Journal of Andrology, 2006, 27(1): 112-120.
|
[25] |
GRUNEWALD S, SAID T M, PAASCH U, GLANDER H J, AGARWAL A. Relationship between sperm apoptosis signalling and oocyte penetration capacity. International Journal of Andrology, 2008, 31(3): 325-330.
pmid: 17573851
|
[26] |
ILICETO M, STENSEN M H, ANDERSEN J M, HAUGEN T B, WITCZAK O. Levels of L-carnitine in human seminal plasma are associated with sperm fatty acid composition. Asian Journal of Andrology, 2022, 24(5): 451-457.
doi: 10.4103/aja2021107
pmid: 35017387
|
[27] |
SINGH M, MOLLIER R T, PONGENER N, BORDOLOI L J, KUMAR R, CHAUDHARY J K, KATIYAR R, KHAN M H, RAJKHOWA D J, MISHRA V K. Linseed oil in boar’s diet during high temperature humidity index (THI) period improves sperm quality characteristics, antioxidant status and fatty acid composition of sperm under hot humid sub-tropical climate. Theriogenology, 2022, 189: 127-136.
|
[28] |
ROOKE J A, SHAO C C, SPEAKE B K. Effects of feeding tuna oil on the lipid composition of pig spermatozoa and in vitro characteristics of Semen. Reproduction, 2001, 121(2): 315-322.
|
[29] |
KOGAN T, GROSSMAN DAHAN D, LAOR R, ARGOV- ARGAMAN N, ZERON Y, KOMSKY-ELBAZ A, KALO D, ROTH Z. Association between fatty acid composition, cryotolerance and fertility competence of progressively motile bovine spermatozoa. Animals, 2021, 11(10): 2948.
|
[30] |
SAMADIAN F, TOWHIDI A, REZAYAZDI K, BAHREINI M. Effects of dietary n-3 fatty acids on characteristics and lipid composition of ovine sperm. Animal, 2010, 4(12): 2017-2022.
doi: 10.1017/S1751731110001308
pmid: 22445376
|
[31] |
PROCHOWSKA S, BONARSKA-KUJAWA D, BOBAK Ł, EBERHARDT M, NIŻAŃSKI W. Fatty acid composition and biophysical characteristics of the cell membrane of feline spermatozoa. Scientific Reports, 2024, 14(1): 10214.
doi: 10.1038/s41598-024-61006-5
pmid: 38702489
|
[32] |
AM-IN N, KIRKWOOD R N, TECHAKUMPHU M, TANTASUPARUK W. Lipid profiles of sperm and seminal plasma from boars having normal or low sperm motility. Theriogenology, 2011, 75(5): 897-903.
|
[33] |
KELSO K A, REDPATH A, NOBLE R C, SPEAKE B K. Lipid and antioxidant changes in spermatozoa and seminal plasma throughout the reproductive period of bulls. Journal of Reproduction and Fertility, 1997, 109(1): 1-6.
|
[34] |
LENZI A, GANDINI L, MARESCA V, RAGO R, SGRÒ P, DONDERO F, PICARDO M. Fatty acid composition of spermatozoa and immature germ cells. Molecular Human Reproduction, 2000, 6(3): 226-231.
pmid: 10694269
|
[35] |
MARTÍNEZ-SOTO J C, LANDERAS J, GADEA J. Spermatozoa and seminal plasma fatty acids as predictors of cryopreservation success. Andrology, 2013, 1(3): 365-375.
|
[36] |
ISLAM M M, UMEHARA T, TSUJITA N, SHIMADA M. Saturated fatty acids accelerate linear motility through mitochondrial ATP production in bull sperm. Reproductive Medicine and Biology, 2021, 20(3): 289-298.
doi: 10.1002/rmb2.12381
pmid: 34262396
|
[37] |
ZHU Z D, LI R N, FENG C W, LIU R F, ZHENG Y, MASUDUL HOQUE S A, WU D, LU H Z, ZHANG T, ZENG W X. Exogenous oleic acid and palmitic acid improve boar sperm motility via enhancing mitochondrial Β-oxidation for ATP generation. Animals, 2020, 10(4): 591.
|
[38] |
KIERNAN M, FAHEY A G, FAIR S. The effect of the in vitro supplementation of exogenous long-chain fatty acids on bovine sperm cell function. Reproduction, Fertility, and Development, 2013, 25(6): 947-954.
|
[39] |
VENN-WATSON S, LUMPKIN R, DENNIS E A. Efficacy of dietary odd-chain saturated fatty acid pentadecanoic acid parallels broad associated health benefits in humans: could it be essential? Scientific Reports, 2020, 10(1): 8161.
|
[40] |
SKEAFF C M, HODSON L, MCKENZIE J E. Dietary-induced changes in fatty acid composition of human plasma, platelet, and erythrocyte lipids follow a similar time course. The Journal of Nutrition, 2006, 136(3): 565-569.
|
[41] |
PFEUFFER M, JAUDSZUS A. Pentadecanoic and heptadecanoic acids: multifaceted odd-chain fatty acids. Advances in Nutrition, 2016, 7(4): 730-734.
doi: 10.3945/an.115.011387
pmid: 27422507
|
[42] |
LENZI A, PICARDO M, GANDINI L, DONDERO F. Lipids of the sperm plasma membrane: from polyunsaturated fatty acids considered as markers of sperm function to possible scavenger therapy. Human Reproduction Update, 1996, 2(3): 246-256.
doi: 10.1093/humupd/2.3.246
pmid: 9079417
|
[43] |
SAFARINEJAD M R, HOSSEINI S Y, DADKHAH F, ALI ASGARI M. Relationship of omega-3 and omega-6 fatty acids with Semen characteristics, and anti-oxidant status of seminal plasma: a comparison between fertile and infertile men. Clinical Nutrition, 2010, 29(1): 100-105.
|
[44] |
尤悦, 张文静, 许睿, 周义方, 吕彦锟, 张晖, 吴港城, 王兴国. γ-亚麻酸的富集及其生理功效研究进展. 粮油食品科技. 2024, 32(03): 101-108.
|
|
YOU Y, ZHANG W J, XU R, ZHOU Y F, LV Y K, ZHANG H, WU G C, WANG X G. Research progress on enrichment and physiological effects of gamma linolenic acid Grain and oil food technology 2024, 32(03): 101-108. (in Chinese)
|
[45] |
YUAN Y X, WANG G, ZOU J H, ZHANG Y T, LI D X, YU M Q, CHEN L, LI G. Study on comparative analysis of differential metabolites in Guanzhong dairy goat Semen before and after freezing. Theriogenology, 2023, 197: 232-239.
|
[46] |
BÖRJESSON S I, HAMMARSTRÖM S, ELINDER F. Lipoelectric modification of ion channel voltage gating by polyunsaturated fatty acids. Biophysical Journal, 2008, 95(5): 2242-2253.
doi: 10.1529/biophysj.108.130757
pmid: 18502799
|
[47] |
MARCHESINI N, HANNUN Y A. Acid and neutral sphingomyelinases: roles and mechanisms of regulation. Biochemistry and Cell Biology, 2004, 82(1): 27-44.
pmid: 15052326
|
[48] |
BRASH A R. Arachidonic acid as a bioactive molecule. The Journal of Clinical Investigation, 2001, 107(11): 1339-1345.
|
[49] |
ANDERSEN J M, RØNNING P O, HERNING H, BEKKEN S D, HAUGEN T B, WITCZAK O. Fatty acid composition of spermatozoa is associated with BMI and with Semen quality. Andrology, 2016, 4(5): 857-865.
|
[50] |
VAZQUEZ J M, ROLDAN E R. Phospholipid metabolism in boar spermatozoa and role of diacylglycerol species in the de novo formation of phosphatidylcholine. Molecular Reproduction and Development, 1997, 47(1): 105-112.
|
[51] |
MUSSA N J, RATCHAMAK R, RATSIRI T, VONGPRALUB T, BOONKUM W, SEMAMING Y, CHANKITISAKUL V. Lipid profile of sperm cells in Thai native and commercial roosters and its impact on cryopreserved Semen quality. Tropical Animal Health and Production, 2021, 53(2): 321.
|
[52] |
DÍAZ R, QUIÑONES J, SHORT S, CONTRERAS P, ULLOA- RODRÍGUEZ P, CANCINO-BAIER D, SEPÚLVEDA N, VALDEBENITO I, FARÍAS J G. Effect of exogenous lipids on cryotolerance of Atlantic salmon (Salmo salar) spermatozoa. Cryobiology, 2021, 98: 25-32.
doi: 10.1016/j.cryobiol.2021.01.004
pmid: 33412157
|
[53] |
HOSSAIN M S, TAREQ K M A, HAMMANO K I, TSUJII H. Effect of fatty acids on boar sperm motility, viability and acrosome reaction. Reproductive Medicine and Biology, 2007, 6(4): 235-239.
doi: 10.1111/j.1447-0578.2007.00191.x
pmid: 29699281
|
[54] |
LAHNSTEINER F, MANSOUR N, MCNIVEN M A, RICHARDSON G F. Fatty acids of rainbow trout (Oncorhynchus mykiss) Semen: composition and effects on sperm functionality. Aquaculture, 2009, 298(1/2): 118-124.
|